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“‘I think you’re begging the question,’’ said Hay-
dock, ‘‘and I can see looming ahead one of those ter-
rible exercises in probability where six men have white
hats and six men have black hats and you have to work
it out by mathematics how likely it is that the hats
will get mixed up and in what proportion. If you start
thinking about things like that, you would go round
the bend. Let me assure you of that!’’ (Agatha Christie,
The Mirror Crack’d)



Independence

Experiments are independent if the outcomes of some of

them have no effect on the probabilities of the others.

For example, successive rolls of a fair die, or successive
choice of a random card from a full deck with replacement, or
successive lottery draws, or successive roulette outcomes are
are all independent. But drawing cards without replacement

gives rise to dependent experiments.

Fact: Probabilities associated with independent experiments

multiply.

Example. Assume that 20% of adults in California are left-
handed, and 10% are rich. What percentage of adults are
right handed, rich, and their SS# is even? Assuming inde-
pendence, 0.8 -0.1-0.5 = 0.04

Ezxample. In an experiment success occurs with probability
p. Repeat the experiment independently n times. Compute

the probability of exactly k successes.

The answer is (7) - p*(1 —p)"~*.



Expectation.

Say each night you play 20 roulette games, each time bet-
ting a single dollar on red. Assume that the probability of
red is p = 18/38. How many times do you win per night, on

the average?

Average number of wins is p, so the average number of

wins in 20 tries is 20p.

This is an instance of an expectation of a random quantity.
We write E(no. of wins in a single night)= 20p. Also E(no.
of wins in 5 nights)= 100p.

Important but tricky fact: you can add expectations even

though the random quantities are not independent!



Poisson Approximation.

Suppose you have n independent events, each of which has
probability p. Assume that n is large, pis smalland A =n-p

is of moderate size.

The probability that the total number k of of these events

happens is
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for K = 0,1,.... The expression on the last line is called

Poisson distribution (or Law of Rare FEvents). In particular,

the probability that none of these events happens is about
e .

Important but very tricky fact: the above approximation

holds even if the events are nearly independent.



History.

This law was derived as above by S. Poisson in 1837, in
his book Research into probabilities in judgements of civil
and criminal matter, preceded by general rules for computing
probabilities. Its first use in statistics seems to be by von
Bortkewitsch (1898), in his analysis of the number of Prussian

soldiers killed each year by horses’ kicks.



Montreal Gazette, September 10, 1981.

Boston (UPI) -- Lottery officials say that there
is 1 chance in 100 million that the same four digit
lottery numbers would be drawn in Massachusetts and
New Hampshire on the same night. That’s just what hap-
pened Tuesday.

The number 8092 came up, paying $5,841 in Massachusetts
and $4,500 in New Hampshire. ¢‘There is a 1-in 10,000
chance of any four--digit number being drawn at any
time,’’ Massachusetts Lottery Commission official David
Ellis said, ‘‘but the odds of it happening with two

states at any one time is just fantastic,’’ he said.

Assuming daily drawings for three years, what really are
the odds? Here n = 1,095 and p = 1/10,000 so A = 0.1095
and the probability of at least one such occurrence is about
1 — e 01095 ~ 0.104.
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The Birthday Problem, revisited.

Assume that a year has d days and k people. The number
of unordered pairs of people is n = k(k —1)/2. For each fixed
pair, the probability they share a birthday is p = 1/d. This
gives
k(k—1) _ k?

2d 2d

Therefore, the probability that no pair shares a birthday is

\ =

about
o—k*/(2d)

Set this equal to 0.5 and solve for k£ to get

k=422 -da1.1774 - Vd.

This gives about 22.5 for d = 365.

How many people do we need to be 99% sure of a duplicate
birthday?

Answers: 60.



Boston Evening Globe, February 6, 1978.

[...] During the [Massachusetts Lottery’s] 22--
months existence, no winning number has ever been re-
peated. Hughes, the expert, doesn’t expect to see du-
plicate winnings until about half of 10,000 possibil-

ities have been exhausted.

If the year had d = 10, 000 days, and k£ = 660 people were
chosen at random, then A = 6602/20,000 = 21.78 and the

probability of no duplicate birthdays would be about 3.5 -
10101

If fact, after a more careful look, it turned out that there

were repetitions.
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The Birthday Problem, revisited again.

How many people do we need for a significant chance that
3 will share a birthday?

Now the number of triples is (’?f) = k(k—1)(k—2)/6 ~ k3/6
and p = 1/d?, so that the probability that none of the triples
share a birthday is about

e~k /(6:d%),

Setting this equal to 0.5, and solving for k gives

k= v6In2-d2.

which is about 0.5 when k£ = 82.



The Hat Check Problem.

A large company (of 10,000 employees, say) has a scheme
according to which each employee buys a Christmas gift, gifts
are then scrambled, put in a large container, and finally each
employee gets a random gift from the container. What is the

probability that someone gets his or her own gift?

Here n = 10,000 and p = 1/n, so the approximate proba-
bility is simply 1 — e~ ! ~ 0.632.
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The Socks Problem.

Assume that you have n (say 100) different pairs of socks in
a drawer. Assume that you can take out a specified number
of socks at random and your object is to get at least one

matching pair.

Clearly, if you take out n 4+ 1 = 101 socks you will be sure
to succeed. But this is clearly an overkill. If you select m
socks, the probability that a particular pair is among them
is
(3) _ mm-1)  m®

Y

p= (22") - 2n(2n — 1) T 4n2’

Therefore, the number of pairs among selected socks is ap-
proximately Poisson with A\ = np = m?/(4n). For example, if
you wish to suceed with 99% probability, select v/4n In 100 ~
43 socks.
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Number of successes.

Example 1. Flip a fair coin 100 times. You can expect
about 50 heads. What is the probability that you will get
more than 55 heads?

Ezxample 2. Playing the roulette, you plan to bet one
dollar on red for 200 times. What is the probability you will
be ahead at the end?

Assume again that there you are performing an experiment
independently n times, and success occurs each time with
probability p. The number of successes S has the following
probabilities:

n

Ps=h=(}) sa-p

The answer to the first example then is
100
100 1
P(§S>55) =) ( , ) 5100
k=56

a little unpleasant to compute. But if you plot the probabil-

ities, you get
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which suggests an approximation with a bell-shaped curve
and then the huge sums are really close to some integral.
This, the most famous of all probability approximations, was
first figured out by de Moivre in 1718.
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Central limit theorem.

The bell-shaped curve is the one from normal distribution

1 e
90(8):—%6 2,

and the approximation works as follows:

S_np ~ Z) = ’ S S
P< > §x>~<1>() | etsas

Example 1. Here n = 100, p = 1/2 and S < 55 occurs
exatly when (S —np)/+/np(1 —p) < (55—-50)/5=1, 50 =
1. So, P(S < 54) is about ®(1) ~ 0.8413 (these numbers are
obtained from tables in statistics books), and finally P(S >
55) ~ 0.1587.

By a similar computation, P(S > 60) ~ 0.0228.

Example 2. In order to win, you have to have more suc-
cesses than failures, i.e., S has to be larger than 100. Since
n = 200, p = 9/19, z = (100 — np)/+/np(1 — p) ~ 0.75, we
get

P(S <100) ~ ®(0.75) ~ 0.7734,

so the probability P(S > 100) that you will be ahead is less
than 23%. After 1000 games it drops down to 5%.



