Math 280: Quantum Probability Homework 1

This problem set is due Tuesday, October 23, by 8pm in my mailbox.

- **1.1.** The point of this exercise is to illustrate the *probabilistic method*, in which probabilistic reasoning establishes theorems that have no statement of randomness in them. Prove that there exists a graph Γ with 42 vertices such that neither Γ nor its complement has a complete subgraph with 8 vertices. In other words, if you are familiar with a Ramsey numbers, $R(8) \ge 43$. (Hint: Of course you should see what happens if you choose Γ at random.)
- **1.2.** Recall the notation from class that M_d is the algebra of $d \times d$ complex matrices.
 - (a) I said that $(M_d)_+ = \{y^*y\}$ is the cone of positive, semi-definite Hermitian matrices. Prove this fact.
 - (b) In general if K is a convex cone, then one talks about its extreme rays rather than its extreme points, since the apex of K is its only extreme point. Show that the points in the extreme rays of $(M_d)_+$ are exactly rank 1 Hermitian matrices, that thus factor as $x = |\psi\rangle\langle\psi|$.
 - (c) Use part (b) to show that $M_d^+ = (M_d)_+$ if we use the trace formula $\rho(x) = tr(\rho x)$ to identify M_d with its dual vector space.
 - (d) Use (b) and (c) to find the extreme points of the convex body M_d^{Δ} .
- **1.3.** Prove the statement from class that the state region M_2^{Δ} is a round unit ball in the coordinates $(a,b,c) \in \mathbb{R}^3$, where the general state ρ is expressed as

$$\rho = \frac{I + a\sigma_x + b\sigma_y + c\sigma_z}{2}$$

and each σ is a Pauli matrix. (Hint: Take the determinant.)

- **1.4.** Recall the definition from class that if X is a Banach space, then a *pre-dual* $X^{\#}$ of X is a subspace $X^{\#} \subseteq X^*$ such that the evaluation map induces an isometry $(X^{\#})^* \to X$.
 - (a) Let c₀(N) ⊆ ℓ[∞](N) be the Banach space of sequences that converge to 0 (with the sup norm). Show that c₀(N) is a predual of ℓ¹(N). (Hint: To get started, you should recognize that the elementary vectors with a 1 in one position and 0 everywhere else are a topological basis for c₀(N). Hence every functional φ ∈ c₀(N)* is determined by its values on this basis and is described by a sequence of numbers of some kind.)
 - *(b) Let $c_1(\mathbb{N}) \subseteq \ell^{\infty}(\mathbb{N})$ be the Banach space of sequences $(a_1, a_2, a_3, ...)$ that converge to the first term a_1 . Show that $c_1(\mathbb{N})$ is also a predual of $\ell^1(\mathbb{N})$.
 - (c) Show that if a Banach space *X* has a predual, then its unit ball has a non-empty set of extreme points. (Hint: Look up the statements of the Banach-Alaoglu theorem and the Krein-Milman theorem.)

*(d) Show that $c_0(\mathbb{N})$ does not have a predual.

*1.5. Let *K* be a convex set in some real vector space *V* and let $p \in K$. Then *p* is *k*-extreme when *k* is the largest integer such that $p \pm \varepsilon v \in K$ for some $\varepsilon > 0$ and some *k* linearly independent vectors $v \in V$. Prove that for every $1 \le k \le d$, the qudit state region M_d^{Δ} has a $(2dk - k^2 - 1)$ -dimensional manifold of $(k^2 - 1)$ -extreme points, and doesn't have any *j*-extreme points for any other *j*. For instance M_3^{Δ} has a 4-manifold of 0-extreme points, a 7-manifold of 3-extreme points.