
Math 280: Quantum Probability
Homework 4

This problem set is due Thursday, December 13, by 8pm in my mailbox.

All of the problems on this problem set concern the standard or “computational” basis for n qubits. The idea is
that |0〉 and |1〉 is a standard orthonormal basis for the qubit Hilbert space C2, and then the space (C2)⊗n for n qubits
should have the tensor basis. The tensor products of these basis vectors are typically abbreviated by bit strings inside
a single “ket”, e.g.:

|10010〉= |1〉⊗ |0〉⊗ |0〉⊗ |1〉⊗ |0〉.

Also: A real or complex vector subspace of Mn = Mn(C) is a Lie algebra when it is closed under the commutator
operation [A,B] = AB−BA. In particular Mn itself is a Lie algebra under the new name gl(n). Meanwhile a Lie group
G⊆Mn has a Lie algebra g, by definition its tangent space at the identity element I ∈G. The Lie algebra of the unitary
group U(n) is u(n). Finally gl(n) is a complexification of u(n):

gl(n) = u(n)⊕ iu(n)∼= u(n)⊗RC.

4.1. One of the important facts about quantum gates is that 2-qubit gates are universal in a group-theoretic sense:
Unitary gates in U(4) that act on pairs of qubits generate the Lie group U(2n) acting on all n qubits. The aim of
this exercise is to prove this by induction.

(a) Show that if you have n ≥ 3 qubits and gl(2n−1)⊗ I acts on the left n− 1 of them while I ⊗ gl(2n−1)
acts on the right n− 1 of them, then together these two Lie algebras generate gl(2n) (by taking repeated
commutators). To get started with this exercise, you should look for elementary matrices A and B (matrices
with a single non-zero entry) in gl(2n−1) such that

C = [A⊗ I, I⊗B]

is an elementary matrix in gl(2n). For instance, if n = 3

A|00〉= |11〉 B|00〉= |01〉,

where A and B each annihilate the other 3 standard basis vectors, then

C|000〉= |111〉

and C also annihilates the other 7 standard basis vectors, so C is elementary. After making some elementary
matrices in this way, you can take further commutators to eventually make all off-diagonal elementary
matrices. Diagonal matrices can be recovered in a similar but slightly different way.
If this exercise seems too complicated for all n, try the case n = 3 for partial credit. (Or try that case first!)

*(b) Prove that if g1 and g2 are two real Lie algebras in u(n), then they generate g3 if and only if their complex-
ifications g1⊗C and g2⊗C generate g3⊗C in gl(n).

*(c) Prove that two connected Lie groups G1,G2 ⊆Mn generate a (necessarily connected) Lie group G3 ⊆Mn
if and only if the Lie algebras g1 and g2 generate g3, where in each case gk is the Lie algebra of Gk.

(d) Combine (a), (b), and (c) to prove the assertion of the problem.

4.2. If C[S] is a Hilbert space with a finite standard basis S (maybe the Hilbert space of n qubits) and T ⊆ S is a subset,
then we can define the constant pure state

|T 〉= 1√
|T | ∑s∈T

|s〉 ∈ C[S].
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Now let f : S→ X be a function to another finite set X , and define the unitary embedding

U f : C[S]→ C[S]⊗C[X ]∼= C[S×X ]

by
U f |s〉= |s, f (s)〉.

Starting with |S〉, form the state U f |S〉 and then discard the C[X ] factor to obtain a certain mixed state ρ ∈
L (C[S])∆. Show that

ρ = ∑
x∈X

| f−1(x)|
|S|

| f−1(x)〉〈 f−1(x)|.

In other words, ρ is a weighted mixture of the constant states | f−1(x)〉, weighted by the size of the inverse image
f−1(x). (Hint: One way to get this formula is to imagine that someone else the system with Hilbert space C[X ]
out of the trash and measures it.)

4.3. This exercise describes Simon’s algorithm, which is an important, simplified precursor to Shor’s algorithm. Let

f : (Z/2)n→ X

be a function which is periodic with respect to an unknown vector v, and otherwise injective. I.e., f (x) = f (y) if
and only if x = y+ v. We suppose that there is a polynomial-time classical algorithm to compute f , which thus
means a polynomial-sized quantum circuit to compute the unitary embedding

U f |x〉= |x, f (x)〉

as in problem 4.2.

(a) Assume n qubits that are each initialized to the state |+〉. Show that all n qubits are then in the state |(Z/2)n〉.
Apply U f to this state and discard the output, to obtain a state ρ . Using problem 4.2, show that this state is

ρ = 2−n
∑

x∈(Z/2)n
|{x,x+ v}〉〈{x,x+ v}|.

Argue that if you are given the state ρ on n qubits, it is equivalent to being given the state |{x,x+v}〉 for a
randomly chosen value of x ∈ (Z/2)n.

(b) Given a state |{x,x+ v}〉 as in part (a), measure each qubit in the basis |+〉 and |−〉, and then replace each
measured “+” by 0 and each “−” by 1 to obtain a vector y ∈ (Z/2)n. Show that

v · y = ∑
k

vkyk = 0 ∈ Z/2,

and that y is randomly chosen with this property.

*(c) The set of y such that v · y is a certain vector space Y ⊆ (Z/2)n of dimension n− 1. Prove that n− 1
randomly chosen vectors in Y span Y with probability greater than

∞

∏
k=1

(1−2−k)>
1
4
,

and that when this happens it is easy to recover v with linear algebra over Z/2. (Note: Although you
don’t have to prove this, if you use moderately more than n− 1 vectors, the probability that they span Y
converges to 1 at an exponential rate.)

(d) Conclude that the hidden vector v can be computed in quantum polynomial time.
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