Math 280: Quantum Probability
Homework 4

This problem set is due Thursday, December 13, by 8pm in my mailbox.

All of the problems on this problem set concern the standard or “computational” basis for n qubits. The idea is
that |0) and |1) is a standard orthonormal basis for the qubit Hilbert space C2, and then the space (C?)®" for n qubits
should have the tensor basis. The tensor products of these basis vectors are typically abbreviated by bit strings inside
a single “ket”, e.g.:

[10010) = [1) ©0) ®[0) @ 1) ©10).

Also: A real or complex vector subspace of M,, = M, (C) is a Lie algebra when it is closed under the commutator
operation [A,B] = AB — BA. In particular M, itself is a Lie algebra under the new name gl(n). Meanwhile a Lie group
G C M, has a Lie algebra g, by definition its tangent space at the identity element / € G. The Lie algebra of the unitary
group U(n) is u(n). Finally gl(n) is a complexification of u(n):

gl(n) = u(n) @iu(n) 2 u(n) g C.

4.1. One of the important facts about quantum gates is that 2-qubit gates are universal in a group-theoretic sense:
Unitary gates in U(4) that act on pairs of qubits generate the Lie group U(2") acting on all n qubits. The aim of
this exercise is to prove this by induction.

(a) Show that if you have n > 3 qubits and gl(2"~!) ®1I acts on the left n — 1 of them while I ® gl(2"~!)

*(b)

acts on the right n — 1 of them, then together these two Lie algebras generate gl(2") (by taking repeated
commutators). To get started with this exercise, you should look for elementary matrices A and B (matrices
with a single non-zero entry) in gl(2"~!) such that

C=[A®I1,I®B|
is an elementary matrix in gl(2"). For instance, if n = 3
A|00) = |11) B|00) = |01),
where A and B each annihilate the other 3 standard basis vectors, then
C|000) = |111)

and C also annihilates the other 7 standard basis vectors, so C is elementary. After making some elementary
matrices in this way, you can take further commutators to eventually make all off-diagonal elementary
matrices. Diagonal matrices can be recovered in a similar but slightly different way.

If this exercise seems too complicated for all n, try the case n = 3 for partial credit. (Or try that case first!)

Prove that if g; and g, are two real Lie algebras in u(n), then they generate g3 if and only if their complex-
ifications g; ® C and g ® C generate g3 ® C in gl(n).

*(c) Prove that two connected Lie groups G1,G, C M, generate a (necessarily connected) Lie group Gz C M,

if and only if the Lie algebras g; and g, generate g3, where in each case gy is the Lie algebra of G.

(d) Combine (a), (b), and (c) to prove the assertion of the problem.

4.2. If C[S] is a Hilbert space with a finite standard basis S (maybe the Hilbert space of n qubits) and T C S is a subset,
then we can define the constant pure state

) = \/TT Y Is) € C[s].

seT



Now let f: § — X be a function to another finite set X, and define the unitary embedding
U : C[S] = C[S]@ C[X] = C[S x X]

by
Ugls) = |5, f(5))-

Starting with |S), form the state U¢|S) and then discard the C[X] factor to obtain a certain mixed state p €
Z(C[S])*. Show that

—1(x
p= Y O ey 1),

xeX ‘S|

In other words, p is a weighted mixture of the constant states | f ' (x)), weighted by the size of the inverse image
f~!(x). (Hint: One way to get this formula is to imagine that someone else the system with Hilbert space C[X]
out of the trash and measures it.)

4.3. This exercise describes Simon’s algorithm, which is an important, simplified precursor to Shor’s algorithm. Let
f(ZR2) =X

be a function which is periodic with respect to an unknown vector v, and otherwise injective. Le., f(x) = f(y) if
and only if x = y 4 v. We suppose that there is a polynomial-time classical algorithm to compute f, which thus
means a polynomial-sized quantum circuit to compute the unitary embedding

Uylx) = Ix, f(x))
as in problem 4.2.

(a) Assume n qubits that are each initialized to the state |+). Show that all n qubits are then in the state |(Z/2)").
Apply Uy to this state and discard the output, to obtain a state p. Using problem 4.2, show that this state is

p=2" ¥ [fxxtv(fxrtvl.

xe(zj2)n
Argue that if you are given the state p on n qubits, it is equivalent to being given the state |{x,x+ v}) for a
randomly chosen value of x € (Z/2)".

(b) Given a state [{x,x+v}) as in part (a), measure each qubit in the basis |+) and |—), and then replace each
measured “4” by 0 and each “—” by 1 to obtain a vector y € (Z/2)". Show that

v-y:kaykzer/Z,
k

and that y is randomly chosen with this property.

*(c) The set of y such that v-y is a certain vector space ¥ C (Z/2)" of dimension n — 1. Prove that n — 1
randomly chosen vectors in Y span Y with probability greater than

ﬁ(l—Z*")> %,

k=1

and that when this happens it is easy to recover v with linear algebra over Z/2. (Note: Although you
don’t have to prove this, if you use moderately more than n — 1 vectors, the probability that they span ¥
converges to 1 at an exponential rate.)

(d) Conclude that the hidden vector v can be computed in quantum polynomial time.



