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Abstract

The formation of platelet aggregates during blood clotting is modeled on two scales using ideas motivated by Peskin’s immersed
boundary method. The microscopic scale models track individual platelets, their mechanical interactions with one another and the sur-
rounding fluid, their detection of and response to chemical activators, and the formation of cohesive and adhesive ‘links’ between plate-
lets and between platelets and the vascular wall. These models allow inclusion of detailed mechanisms of binding–unbinding, platelet
stimulus-response, and chemistry on the platelets’ surfaces. The macroscopic scale models treat the same interactions in terms of con-
centrations of platelets and distributions of cohesive and adhesive links, and can be used to study platelet aggregation in vessels of clinical
interest including the coronary and cerebral arteries. In both types of model, the development of platelet aggregates affects the fluid
motion only through an evolving fluid force density, and consequently, Cartesian grid methods are effective in solving the model
equations.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Intravascular blood clots (thrombi) are initiated by
damage to the endothelial cell lining of a blood vessel
and involve the formation on the damaged surface of
clumps of cells intermixed with a fibrous protein gel. This
happens in the face of continued blood flow past the injury,
and the interplay between the development of the clot and
the local fluid dynamics is one of our principal concerns.
Under some conditions, the clot grows to completely
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occlude the vessel. In other situations, it grows to a maxi-
mum size and then portions of it break away and the clot’s
size may settle into a rough steady state. One of our major
goals is to be able to capture both kinds of behavior in our
models, and to understand why they occur.

Clot formation involves two intertwined processes both
of which are initiated by damage to the vessel lining. One
process is platelet aggregation and begins when circulating
blood platelets adhere to the damaged wall. Other platelets
can be activated by chemicals released by these first platelets
and then bind to the already wall-adherent platelets; this
results in the buildup of a platelet aggregate or thrombus.
The other process is coagulation which we view as itself com-
prised of two distinct subprocesses. The first of these
involves a network of tightly regulated enzymatic reactions
that begins with reactions on the damaged vessel wall and
continues with important reactions on the surfaces of acti-
vated platelets. The end product of this reaction network
sed-boundary-type models of intravascular platelet aggregation,
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Fig. 1. Model Problem: Massless elastic membrane immersed in fluid.
Here, x is a point in the fluid, X(q, t) is the location of a material point on
the immersed elastic membrane, and F is the force generated at a point in
the membrane because the membrane is stretched.
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is the enzyme thrombin which (i) activates additional plate-
lets and (ii) creates monomeric fibrin which polymerizes into
the fibrous protein gel component of the clot. This polymer-
ization process is the second subprocess of coagulation.
Both platelet aggregation and the two parts of coagulation
occur in the presence of moving blood, and are strongly
affected by the fluid dynamics in ways that are as yet poorly
understood. One indication of the effect of different flow
regimes is that clots that form in the veins, where blood flow
is relatively slow, are comprised mainly of fibrin gel (and
trapped red blood cells), while clots that form under the
rapid flow conditions in arteries are made up largely of plate-
lets. Understanding why there is this fundamental difference
between venous and arterial clotting should give important
insights into the dynamics of the clotting process.

In this paper, we review our development of models of
platelet aggregation and we point how these models are
designed with the future inclusion of coagulation in mind.
Thus, for example, we make provision for the later inclu-
sion of coagulation chemistry on surfaces of model acti-
vated platelets. We describe two classes of platelet
aggregation model. One involves the behavior of a collec-
tion of individual platelets interacting with the suspending
fluid, the vessel wall, and platelet activating chemicals. We
refer to these as our microscale platelet models, and note
that they are appropriate for small diameter arterioles
and venules (approximately 50 lm in diameter), as well
as, perhaps, for detailed studies of the aggregation process
in small portions of a larger clot. The other, our macroscale

platelet models, tracks the dynamics of the same sorts of
interactions but on a larger scale appropriate for larger ves-
sels. These continuum models involve the spatial–temporal
evolution of a platelet thrombus using density functions to
describe the distribution of the relevant platelets and other
species. For the microscale modeling a major tool is the
immersed boundary (IB) method. For the macroscale mod-
els, the classical immersed boundary method motivates our
modeling approach.

Because the approach of the IB method underlies our
modeling of platelet aggregation in both scales of models,
we briefly review the fundamentals of the IB method. Then
we describe aspects of platelet biology important in our
modeling efforts. After that we describe the microscale
aggregation models based on the immersed boundary
method. Finally, we discuss how these ideas are extended
to much larger spatial scales in our macroscale models.

2. Immersed boundary method

The fundamental problem for which the IB method has
been developed concerns the interactions of a viscous
incompressible fluid with one or more moving and/or
deformable elastic objects in contact with that fluid. The
motion of the fluid influences the motion of the elastic
objects and vice versa, and so the IB method involves cou-
pled equations of motion for both types of material (fluid
and elastic) and solves for both motions simultaneously.
Please cite this article in press as: A.L. Fogelson, R.D. Guy, Immer
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To introduce the IB method we focus on a simple model
problem in which a single fluid-filled closed elastic mem-
brane is immersed in a viscous fluid (see Fig. 1). For sim-
plicity we describe a two-dimensional model problem, but
emphasize that the IB method has been used extensively
for three-dimensional studies in a number of application
areas. We also assume that the fluid inside and outside
the membrane has the same density and viscosity (although
this is not essential). The physics of the model problem is
that the elastic membrane is under tension and exerts force
on the adjacent fluid. These forces may cause the fluid to
move and, in that case, points on the membrane move
along with the fluid. In the IB method, the fluid is described
in Eulerian terms through a velocity field u(x, t) and pres-
sure field p(x, t) defined at every point x in the physical
domain X. The elastic membrane is described in Lagrang-
ian terms. Let the elastic membrane be parameterized by
q, and denote by X(q, t) the spatial coordinates at time t

of the membrane point labeled by q. The IB equations
are coupled equations of motion for the fluid variables
u(x, t) and p(x, t) and the membrane configuration X(q, t).
The basic IB equations are:

qðut þ u � ruÞ ¼ �rp þ lDuþ f; r � u ¼ 0; ð1Þ
Fðq; tÞ ¼ FðXðq; tÞ;Xqðq; tÞÞ; ð2Þ

fðx; tÞ ¼
Z

Fðq; tÞdðx� Xðq; tÞÞdq; ð3Þ

oX

ot
ðq; tÞ ¼

Z
X

uðx; tÞdðx� Xðq; tÞÞdx: ð4Þ

Eqs. (1) are the Navier Stokes equations which describe the
dynamics of a viscous incompressible fluid, of constant den-
sity q and constant viscosity l, driven by a force density f

which here arises because of the elastic deformation of the
immersed membrane. Eq. (2) specifies the elastic force (per
unit q) at each point of the immersed boundary object.
The functional dependence of this force on the state of the
boundary is specified appropriately to the material being
modeled. An example is given below. Eq. (3) defines the fluid
force density f(x, t) in terms of the immersed boundary elas-
sed-boundary-type models of intravascular platelet aggregation,
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tic force density F. By integrating both sides of this equation
over an arbitrary region of the fluid, we see that the total
fluid force on this region equals the total elastic force along
the portions of the immersed boundary, if any, that pass
through this region. So the fluid force density is concen-
trated along the immersed boundary curve. Eq. (4) specifies
that the velocity of each immersed boundary point equals
the fluid velocity at the same location. This is a formulation
of the no-slip boundary condition for viscous flows. The key
idea in this formulation that makes the IB approach so use-
ful in modeling biofluid problems is that as far as the fluid is
concerned, the immersed objects are seen only through the
force field f. Even if the objects move or deform substan-
tially, there is no change in the geometry of the fluid region;
fluid is everywhere and only the distribution of forces ex-
erted on the fluid by the elastic objects changes. In the model
problem and the platelet applications, we assume that the IB
objects are neutrally buoyant; the IB membrane itself carries
no mass, its mass is attributed to the fluid in which it sits.

To illustrate the specification of the IB force function,
we consider the case of the forces generated within a
stretched fiber. Let the points on the fiber be denoted by
X(q), assume that the only force the fiber can sustain is ten-
sion along the fiber direction s(q), and let T ðk oX

oq kÞ give the
dependence of the tension on the local stretch of the fiber.
Consider a segment of the fiber corresponding to
q1 6 q 6 q2 and let F denote the force that this segment
of fiber exerts on the surrounding fluid. Because the fiber
segment is massless, we have the balance of forces,

0 ¼ �Fþ ðT sÞjq¼q2
� ðT sÞjq¼q1

¼ �Fþ
Z q2

q1

o

oq
ðT sÞdq:

ð5Þ

Hence, F ¼ o
oq ðT sÞ gives the force density (per unit q) in the

fiber, and the force exerted on the fluid by this fiber seg-
ment is given by the integral of F over the segment. Speci-
fying the function T, e.g., T ¼ Sðk oX

oq k � rÞ for positive
constants S and r, determines the fiber’s elastic properties.

In actual IB calculations, the Navier–Stokes equations
are approximated at points of a Cartesian grid placed over
the domain X. A second grid of Lagrangian points is used
to discretize each elastic object, and the d-functions in Eqs.
(2) and (4) are approximated by smooth but very localized
functions. This implies that the fluid force density is non-
zero only for fluid grid points close to the immersed bound-
ary and that the velocity of each immersed boundary point
is computed as a weighted average of the fluid velocity at
grid points near that IB point. Aspects of the IB method
are described further below. More information about the
IB method can be found in Peskin’s review article [1] and
the references cited therein.
3. Biological background

Platelets are anuclear blood cells that have a discoid
shape when circulating with the blood in their usual unac-
Please cite this article in press as: A.L. Fogelson, R.D. Guy, Immer
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tivated state. They have a diameter of about 2 lm and a
number density of about 250,000–300,000/ll. They are
much smaller and less numerous than the red blood cells
that make up about 45% of the blood’s volume, and so
individual platelets have a negligible effect on the flow of
the blood [2]. In their unactivated state, platelets do not
adhere to one another or to the intact endothelial cell lining
of blood vessels. Disruption of the endothelial layer
exposes to the blood collagen and adsorbed von Wille-
brand factor (vWF) molecules in the subendothelial
matrix. Platelets adhere to both molecules via specific
platelet surface receptors. In addition to slowing or stop-
ping platelet motion over the subendothelium, this binding
triggers intracellular signaling pathways that lead to plate-
let activation [3,4].

Platelet activation is multifaceted: (i) The platelet’s cyto-
skeleton is reorganized and the platelet balls up into a
spherical shape and extends a number of appendages called
pseudopodia. The platelet becomes sufficiently flexible that
over time it can spread out over the surface to which it is
adhered. (ii) The platelet surface membrane changes in
important ways: Integrin (aIIbb3) receptors embedded in
the membrane are activated and become capable of binding
dimeric fibrinogen molecules and multimeric vWF mole-
cules from the blood plasma. By binding to receptors on
two platelets, these molecules serve as links between the
platelets. The platelet membrane also undergoes processes
that makes it able to support important reactions of the
coagulation process. (iii) The activated platelet secretes
chemicals into the surrounding blood plasma. Probably
the most important of these are ADP released from cyto-
plasmic storage granules and the coagulation enzyme
thrombin, activated by the prothrombinase enzyme com-
plex that can form on the surface of activated platelets.
A platelet has specific surface receptors for ADP and
thrombin and binding of these molecules to an unactivated
platelet can trigger the activation process in that platelet.
These chemicals provide a second pathway to platelet acti-
vation that does not require direct contact of the platelet
with the injured vessel wall, and allows the activation pro-
cess to be propagated away from the wall [5].

Exposure of the subendothelium also brings the passing
blood into contact with Tissue Factor molecules embedded
in the matrix and initiates the coagulation process [6]. The
first coagulation enzymes are produced on the subendothe-
lial matrix and released into the plasma. If they make their
way through the fluid to the surface of an activated plate-
let, they can participate in the formation of enzyme com-
plexes on the platelet surface that continue and accelerate
the pathway to thrombin production. Thrombin released
from the platelet surface feeds back on the enzyme network
to accelerate its own production, activates additional plate-
lets (as mentioned above), and converts soluble fibrinogen
molecules in the plasma into insoluble fibrin monomers.
Once formed, the fibrin monomers spontaneously bind
together into thin strands, these strands join side to side
into thicker fibers, and a branching network of fibrin fibers
sed-boundary-type models of intravascular platelet aggregation,
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Fig. 2. Left: Schematic of discrete Cartesian grid for fluid and Lagrangian
grids for platelets and vessel wall. Right: IB force is transmitted to a 4 · 4
portion of the grid.
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grows between and around the platelets in a wall-bound
platelet aggregate [7]. Ends of the fibrin strands may be
anchored to the surfaces of the platelets by binding of
fibrin to integrin aIIbb3 receptors. The coagulation process,
in particular, the interactions of coagulation biochemistry
with flow and platelet events, is a fascinating subject, but
it is not the focus of this paper. If interested, see [8–10].

The red blood cells, which make up almost half of the
blood’s volume, have significant effects on the motion
and distribution of platelets in blood flowing in a tube.
For one, platelets exhibit much larger transverse excursions
(across the tube) than under similar flow conditions in
plasma alone [2]. This motion is often described as an
enhanced diffusivity (above Brownian motion), and exper-
imental studies suggest that the degree of enhancement
depends on the flow shear rate [11]. A second effect is that
the concentration of platelets is higher (by up to eight fold)
a few microns from the tube wall than at other distances
from the wall. This effect is seen only for shear rates above
200 s�1 at which red blood cells deform, and, in experi-
ments, is a function of the volume fraction occupied by
red blood cells [12]. The rheological processes that lead
to these observed effects are not understood; a rough pic-
ture is that tumbling and colliding of red blood cells gener-
ates local flow disturbances that lead to these behaviors.
Whatever their cause, the enhanced random motion and
the enhanced near-wall concentrations are likely important
in determining the rate at which platelets contact the vessel
wall and the rate at which wall-bound aggregates grow.

4. Microscale platelet aggregation models

Our microscale platelet aggregation models [13–16]
track the motion and behavior of a collection of individual
platelets as they interact with the suspending fluid, one
another, and the vessel walls. These models also track fluid
concentrations of platelet activating species such as ADP,
cell–cell and cell-surface forces, fluid motion, and the local
fluid forces on the growing thrombus. In the models, non-
activated platelets are activated by contact with reactive
sites on the injured wall, or through exposure to a suffi-
ciently high concentration of activator in the fluid. Activa-
tion enables a platelet to cohere with other activated
platelets, and to secrete additional activator. The platelets
and the secreted chemical move by advection with the fluid
and diffusion relative to it. Each platelet and each vessel
wall is represented as an IB object, i.e., as a collection of
elastically linked Lagrangian points that each move at
the local fluid velocity. New elastic links are created
dynamically to model the adhesion of a platelet to the
injured wall or the cohesion of activated platelets to one
another. The multiple links, which in the models can form
between a pair of activated platelets or between a platelet
and the injured wall, collectively represent the ensemble
of molecular bridges binding real platelets to one another
or to the damaged vessel. The links exert forces on the sur-
rounding fluid to resist motions which would otherwise
Please cite this article in press as: A.L. Fogelson, R.D. Guy, Immer
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separate the linked entities. Through the forces generated
by the platelet–platelet and platelet–wall links, aggregate
growth can profoundly influence the flow, even to the
extent that vessel closure can occur. Links may break if
subject to sufficiently high stress by the fluid motion. As
we discuss below, the models consist of stochastic and par-
tial differential equations and auxiliary ‘change of state’
conditions. Model variables are fully coupled: the fluid car-
ries the activator and platelets, while the interplatelet
forces, potentiated by chemically induced activation of
the platelets, determine the local flow.

There are two major aspects of platelet behavior that the
models attempt to capture. One is the mechanical interac-
tions among the platelets, fluid, and vessel walls. The other
is the platelet’s detection and response to stimuli that can
induce its activation. The IB approach is key to our mod-
eling of the mechanical interactions. It also provides the
scaffolding on which the platelet stimulus-response behav-
iors are modeled. We turn next to our use of the IB method
in modeling the mechanical features of platelet
aggregation.

4.1. Mechanical interactions

Our representation of discrete platelets as IB objects has
evolved over the years: Initially, we treated platelets as
point particles whose effective volume within the fluid
was determined by the support of the approximate d-func-
tion and whose effective interaction distance with other
platelets was determined by the range of an interplatelet
repulsive force that was intended to prevent platelets from
overlapping one another [15]. Currently, we model platelets
as closed curves of interconnected IB points in 2D (see
Fig. 2) and closed surfaces of interconnected IB points in
3D. A platelet’s area or volume is determined by the region
enclosed by the curve or surface, respectively, and is pre-
served because of the incompressibility of the fluid. There
is no need for an explicit repulsive force, as the IB formu-
lation automatically detects contact between the platelets
and prevents one platelet from penetrating into the space
occupied by another. This is an important advantage of
the IB method over many other particle-tracking methods.
sed-boundary-type models of intravascular platelet aggregation,
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We describe the microscale model in its two-dimensional
version for simplicity, and we describe the IB components
of the model in discretized form, because that is how they
are actually implemented and for some of these compo-
nents, e.g., cohesive link formation, this is the natural
way to describe them.

In our microscale platelet aggregation calculations, the
Navier–Stokes equations are discretized using finite differ-
ence methods on a simple uniform Cartesian grid. Hence,
the fluid velocity, pressure, and force density are defined
only at nodes xg of this grid. Each platelet is represented
by a ring of elastically-linked Lagrangian IB points as
shown schematically in Fig. 2. Let Xp,i denote the ith point
of the ring that represents the pth platelet. We track the
locations of these IB points for each platelet as time
evolves. Between each pair of consecutive points Xp,i,
Xp,i+1 on the platelet we assume there is a spring that gen-
erates forces on each of these points to try to maintain the
separation between them at a prescribed value. (Arithmetic
in the subscript i is modulo the number of IB points in each
platelet ring.) In addition, to give the platelet some rigidity,
we assume that for each triplet of consecutive points Xp,i�1,
Xp,i, Xp,i+1, there is a ‘hinge spring’ that generates forces
that try to maintain the angle formed by the vectors
Xp,i � Xp,i�1 and Xp,i+1 � Xp,i at a prescribed value. (An
alternative way to give the platelet rigidity, used in our
3D modeling, is to include an additional IB point initially
at the platelet’s center of mass and to add spring forces that
try to maintain the distance between this point and each IB
point on the platelet surface at a prescribed value.) The
(linear) spring force on platelet point Xp,i due to connec-
tions with its neighbors in the ring is:

SðkXp;i � Xp;iþ1k � rÞ Xp;iþ1 � Xp;i

kXp;iþ1 � Xp;ik

þ SðkXp;i � Xp;i�1k � rÞ Xp;i�1 � Xp;i

kXp;i�1 � Xp;ik
: ð6Þ

Suitable rearrangement of this expression shows that it is a
discretization of the tension force expression (o(Ts)/oq)dq

discussed earlier in the case of a Hookean tension rule with
stiffness S and rest length r. The expression for the hinge-
spring force is more complex (see [13].)

The walls of the blood vessel are also modeled as chains
of elastically linked IB points. In addition to the spring
forces and hinge forces between neighboring wall points,
each IB point Xw,i on the wall is connected by a spring to
a corresponding ‘tether point’ Xtether

w;i . For stationary vessel
walls, the location of each tether point is held fixed in time.
To model vasoconstriction or other vascular motions that
can accompany vessel injury, the motion of the tether
points would be a prescribed function of time or other
model variables.

When a cohesive link connects IB points on two differ-
ent platelets, there is an additional force on each of these
points. Suppose link l connects point i1(l) on platelet p1(l)
to point i2(l) on platelet p2(l). Then, a force increment
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ScohðkXp2ðlÞ;i2ðlÞ � Xp1ðlÞ;i1ðlÞk � rcohÞ Xp2ðlÞ;i2ðlÞ � Xp1ðlÞ;i1ðlÞ

kXp2ðlÞ;i2ðlÞ � Xp1ðlÞ;i1ðlÞk
ð7Þ

is applied at point Xp1ðlÞ;i1ðlÞ and the negative of this force
increment is applied at point Xp2ðlÞ;i2ðlÞ. Here, Scoh and rcoh

are the stiffness and rest length of cohesive links. A similar
expression is used to calculate the forces generated by an
adhesive link joining an IB point on a platelet to an IB
point on a vessel wall. (Of course nonlinear or viscoelastic
spring forces can be used for the intraplatelet springs and
cohesive/adhesive links if desired.)

The mechanical state of the model system at any time is
described by the fluid velocity and the locations of all of the
IB points, as well the configuration of elastic links which
join IB points to one another and the properties of these
links. Here we summarize how the fluid velocity and IB
point locations are advanced during one timestep of a sim-
ulation. Below we describe how other aspects of the model
system (activator chemical distribution, platelet activation
status, configuration of cohesive and adhesive links) are
updated.

There are four steps to updating the velocity and IB
point locations. First, the resultant Fq of all of the IB force
contributions that act on the qth IB point is calculated for
each q. Next, these forces are distributed to the Eulerian
grid used for the fluid dynamics equations using a discrete
version of Eq. (3):

fðxgÞ ¼
X

q

Fqdhðxg � XqÞdq: ð8Þ

Here, xg and Xq are the coordinates of grid point g and IB
point q, respectively, Fq is the IB force (per unit q) on this
point, dq is the increment in parameter q between consecu-
tive discrete IB points, and dh is a discrete approximation
to a two-dimensional d-function. With the fluid force den-
sity fg now known at each grid point, the fluid velocity is
updated taking one step with a discrete Navier–Stokes sol-
ver. We use a projection-method type of Navier–Stokes
solver [17]. Denoting the new velocity field by unew

g , the
fourth step of the update process is described by a discrete
analog of Eq. (4)

Xnew
q ¼ Xq þ dtUq � Xq þ dt

X
g

unew
g dhðxg � XqÞh2; ð9Þ

where h is the fluid grid spacing and dh is the same approx-
imate d-function as used in Eq. (8). (Below we discuss an
additional term in the update equation for Xq that may
be used to model the effect of red blood cells on platelet
motion.)

The function dh is chosen to be a tensor product of one-
dimensional approximate d-functions,

dhðxÞ �
1

h2
/

x
h

� �
/

y
h

� �
; ð10Þ

where x = (x,y). A common choice for the function /(r) is
sed-boundary-type models of intravascular platelet aggregation,
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/ðrÞ ¼
1
4

1þ cos pr
2

� �� �
; �2 6 r 6 2;

0; otherwise;

�
ð11Þ

which ensures that the entire IB force is transmitted to the
grid, that the force density on the grid is a continuous func-
tion of the IB point locations, and that the communication
between grid and IB points is very localized. In fact, the IB
force Fq is spread to a 4 · 4 region of the grid surrounding
IB point Xq, and the velocity of this IB point is interpolated
from the velocity values at the same grid points (see Fig. 2).

Note that two IB objects can come arbitrarily close to
one another. If two IB points are separated by a distance
less than 4h (the width of the approximate d-function),
there is overlap in the grid velocities from which the IB
point velocities are interpolated using Eq. (9). As the dis-
tance between the points approaches 0, their velocities
approach a common value. This implies that IB objects
cannot interpenetrate so there is no need for extra forces
or rules to prevent overlap.

4.2. Red-blood-cell-induced platelet motion

As noted in Section 3, tumbling and colliding red blood
cells impart to the platelets a ‘random’ motion. In princi-
ple, we could use the IB method to model each red blood
cell and its motion and the consequent effects on platelet
motion would presumably emerge from the simulations.
Unfortunately, it is currently not practical to track hun-
dreds of red blood cells over the time periods (tens of sec-
onds) over which thrombi form in small vessels. Bagchi [18]
recently used the IB method to simulate the motion of hun-
dreds of red blood cells but only for very short periods
(0.5 s). Since direct simulation of red blood cells is not
yet feasible in our simulations, we instead model their
effects on platelet motion, guided by empirical observa-
tions, without explicitly treating the red blood cells in
detail.

The effect of red blood cells on platelet motion is often
described as an effective ‘diffusion’. The simplest way of
incorporating this into the microscale models is to add a
random step to each platelet’s motion during each time
step. This is accomplished by specifying that the motion
of platelet IB points satisfy the equation,

dXp;iðtÞ ¼ Up;iðtÞdt þ dBp; ð12Þ

where dBp = (2Ddt)1/2R with R a Gaussian random vari-
able with mean 0 and variance 1, and Up,i(t) is the interpo-
lated velocity given in Eq. (9). The effective diffusion
coefficient D may be allowed to depend on the local shear
rate and on the prescribed red blood cell volume fraction as
suggested by experiments [11,12]. The random step is taken
only by individual platelets, not by aggregated ones, be-
cause the effect of the red blood cells should be less for
platelets bound together in an aggregate.

An alternative way to incorporate the effect of the red
blood cells is, for each platelet p, to add a random force
Frandom

p to the IB force at each point on platelet p before
Please cite this article in press as: A.L. Fogelson, R.D. Guy, Immer
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its IB forces are transmitted to the surrounding fluid. The
random force thus contributes to the local force density
on the fluid. In this case the platelet motion is by advection
in the resulting velocity field, without the additional ran-
dom step (dBp). In this approach, the platelets and the sur-
rounding fluid are both affected by the random forces and
there is no relative motion between the platelets and the
fluid. We are currently experimenting with this approach,
considering different ways of choosing random force vec-
tors and distributing the forces among the IB points of
the platelets, in order to obtain platelet motions consistent
with empirical observations.

4.3. Activator transport and secretion

When a platelet becomes activated, it begins to secrete
activator chemical (e.g., ADP or thrombin) into the fluid,
and so the platelet serves as a (moving) source of activator.
Once the chemical has been released into the fluid, we
assume it moves by advection with the fluid and diffusion
relative to the fluid. We also allow for the possibility that
the activator is degraded in the fluid. The equation describ-
ing the evolution of the activator concentration c(x, t) is
therefore

ct þ u � rc ¼ DcDcþ sðx; tÞ � Kc ð13Þ

where Dc is the activator diffusion coefficient, K is its deg-
radation rate, and s(x, t) is the source of chemical due to
secretion by platelets. The source function is defined by
the sum,

sðx; tÞ ¼
X

k

Hðx;Xk;1ðtÞ;Xk;2ðtÞ; . . .ÞGðt � tkÞ: ð14Þ

Here, k ranges over the indices of activated platelets in the
domain, tk is the time of activation of platelet k, G de-
scribes the (prescribed) timecourse of activator secretion
following platelet activation, and H describes the spatial
distribution of the source due to platelet k. For example,
in a variant of the model in which the activator diffuses
both within the platelets and in the surrounding fluid, the
secreted activator can be distributed uniformly within the
region bounded by the IB curve that represents the platelet.
The secreted chemical then gradually diffuses across the
platelet boundary into the fluid (see Fig. 4).

In reality, the activator chemical should move only in
the portions of the domain occupied by fluid, not those
occupied by platelets. That is, activator should be able to
diffuse up to but not across platelet walls. The same is true
with regard to the vessel walls. For straight vessel walls, it
is simple to impose the no flux condition on the activator
chemical within the context of a finite-difference approxi-
mation to Eq. (13). For irregular vessel walls and for mov-
ing platelets, it is more difficult. One approach that we have
used for irregular vessel walls (see Fig. 8 below) is to use the
immersed interface method (IIM) which is a method for
modifying the finite difference stencils near a boundary to
impose boundary or jump conditions [19–21]. This works
sed-boundary-type models of intravascular platelet aggregation,
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well for stationary irregular boundaries, but since there is
significant overhead in determining the modified stencils,
it is less well suited to moving boundaries. Another
approach [22] with which we are currently experimenting
is to define a potential field U with respect to the current
platelet boundaries and to update the chemical concentra-
tion by taking a step of a discretized version of the modi-
fied transport equation

ct þ u � rc ¼ �r � ð�Dcrc� crUÞ þ sðx; tÞ � Kc: ð15Þ

Since the additional term describes a flux of chemical down
gradients in U, we can design U to be a barrier to chemical
crossing the platelet boundary from the fluid. In fact, U can
be defined by using the discrete d-function dh to spread to
the computational grid an appropriate scalar function de-
fined at the IB points which make up each platelet’s bound-
ary. Tests of the potential barrier approach are very
encouraging and will be reported on elsewhere.

4.4. Modeling activation, adhesion, and cohesion

Our modeling of other aspects of platelet behavior,
including activation, adhesion, and cohesion, is faciliated
by our Lagrangian representation of a platelet’s surface.
Recall that activation of a platelet can be stimulated by a
platelet’s interaction with specific molecules exposed on
the damaged vascular wall or present in the blood plasma,
and that platelet binding to the injured wall or to another
platelet is accomplished by the formation of molecular
bonds involving specific molecules on the respective sur-
faces and in the blood plasma.

Until recently, our modeling of these events has been rel-
atively simplistic, and while this has allowed us to make
qualitative comparisons between simulation results and
real aggregation, it precludes meaningful quantitative com-
parisons. New biological information allows us to begin to
make more sophisticated models and to begin to make
quantitative comparisons between simulated and real
aggregation events. It is a strength of our computational
approaches that they facilitate incorporating into the mod-
els much more sophisticated treatment of platelet responses
to stimuli and of adhesion and cohesion.

For the simulations shown in Figs. 3 and 4, we made the
following assumptions about platelet adhesion to the dam-
aged wall: (i) Whenever a platelet comes within a pre-
scribed distance of the injury, it immediately adheres. (ii)
Adhesion is accomplished by formation of an elastic link
between an IB point on the platelet and a nearby IB point
on the vessel wall. (iii) Additional links form quickly as
long as there are pairs of unbound IB points on the platelet
and vessel wall that are sufficiently close to one another.
(iv) Each link behaves like a Hookean spring with a stiff-
ness coefficient that is constant in time. (v) Link formation
is irreversible except that a link breaks if subject to a suffi-
ciently large force. Similar assumptions governed our mod-
eling of cohesion between activated platelets.
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We also assumed that activation is an immediate
response to a platelet’s contact with the injured wall or
its exposure to a sufficiently high concentration of activa-
tor, and that activation (i) instantaneously allows the plate-
let to cohere to other (nearby) activated platelets and (ii)
instantaneously causes activator release into the surround-
ing fluid. As with adhesion, whenever an unactivated plate-
let came within a prescribed distance of the injury, it was
activated. To respond to the chemical activator, unactivat-
ed platelets must sense the level of activator in their vicin-
ity, and this was done by interpolating, for each
unactivated platelet, the activator concentration from the
grid to each of its IB points. If the average of these interpo-
lated concentrations was above a prescribed threshold
level, the platelet became activated.

Each platelet’s activation status was tracked with a sim-
ple ‘activation flag’ with values true and false. We tracked
each cohesion and adhesion link by maintaining lists from
which we could extract, for any link l, the indices of the IB
objects (platelets or walls) and of the IB points within those
objects joined by link l, as well as the resting length and
stiffness of that link. From this information we could access
the coordinates of the points joined by the link and calcu-
late the force generated by the link (see Eq. (7)). This force
(with appropriate sign) was added to the IB force at each of
the two IB points joined by the link. When a new link
formed, the relevant information was added to these lists;
when an existing link broke, the corresponding informa-
tion was removed.

In recent years, it has become clear that a real platelet’s
surface is studded with large numbers of molecules that
perform different (but in some cases overlapping) roles in
the platelet’s detection and response to vascular injury.
These include approximately 25,000 GPIb receptors that
can bind to vWF molecules adsorbed onto the exposed
subendothelial matrix [23], large numbers of receptors
(GP-VI and a2b1) that bind to subendothelial collagen
[24], about 50,000 aIIbb3 receptors that are involved both
in platelet–platelet and platelet–wall binding [25], and at
least two different types of receptors for each of the activa-
tors ADP and thrombin [26,27]. Within the framework of
our existing Lagrangian representation of each platelet,
we can easily represent each class of these receptors and
include their associated reactions in the model.

To do this we partition the surface of a model platelet
into small patches around each of its IB points and we
assign to each IB point an appropriate fraction of each type
of receptor on the platelet surface. As simulation events
unfold, ligands bind to and unbind from these receptors,
and we track these events by associating with each IB point
a vector whose components are the number densities of
bound and unbound receptors of each type at that IB
point. Using appropriate kinetic equations that ‘live’ at
the IB point, we follow the formation/breaking of new
bonds, the activation of receptors, and the overall stimulus
for activation to which the platelet is exposed. For exam-
ple, for adhesion, link formation occurs, as in the current
sed-boundary-type models of intravascular platelet aggregation,
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Fig. 3. Development of platelet aggregates during a 2D microscale model simulation. Rings depict immersed boundary platelets, arrows show velocity
field. A portion of the computational domain is shown. Time advances left to right and top to bottom.

Fig. 4. Close up of formation of a small aggregate during a 3D microscale simulation. Each ‘‘ball’’ is actually an IB representation of a platelet using a
triangulated surface mesh of 362 elastically connected points. (The colors of the platelets are not meaningful.) Line segments show cohesive and adhesive
links. Below the red isosurface the activator concentration is sufficiently high to activate platelets. See [16] for more information.
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model, when an IB point on a platelet comes sufficiently
close to an IB point on the injured vessel wall, and the link
will, as now, represent a collection of molecular bonds.
However, rather than treating the link’s stiffness as con-
stant, which is tantamount to assuming that all of these
bonds form simultaneously, we will follow the dynamics
of bond formation and breakage and relate the mechanical
properties of the link at each instant of time to the number
and type of each bond present then. Let nj(t) denote the
Please cite this article in press as: A.L. Fogelson, R.D. Guy, Immer
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number density of bonds of type j between a particular pair
of linked IB points. These bonds contribute an amount S

da nj(t)(l(t) � l0), to the magnitude of the force that the link
exerts on each of the two IB points. Here, l(t) is the dis-
tance between the two IB points, l0 is its resting length, S

is the stiffness of an individual bond, and da is the area
of the surface patch associated with the IB point. The
sum of these contributions is transmitted to the fluid grid
near the corresponding linked IB points.
sed-boundary-type models of intravascular platelet aggregation,
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The evolution of the bond density nj(t) will be governed
by an equation of the form:

dnj

dt
¼ kþj ðnmax

j � njÞ � k�j
fP
knk

� �
nj: ð16Þ

Here, f is the force on the link that results from flow-med-
iated stretching, and which we assume is distributed
equally to all the

P
knk bonds that make up this link. In this

equation, we assume that the bond dissociation rate k�j is
an increasing function of the force on the bond as is typical
for molecular bonds [28]. For some types of bonds, the
maximum number of bonds possible ðnmax

j Þ may vary with
the platelet’s activation status [29]. Cohesive links between
activated platelets will be treated in a simular fashion, but
modified to take into account the fact that the bonds be-
tween platelets are formed by a plasma protein binding
to sites on each of the two platelets.

A platelet’s interaction with activator chemical in the
plasma can be handled using similar ideas. Let r denote
the number density of receptors associated with a particu-
lar IB point and let b be the number density of receptors
occupied by an activator molecule. Then b evolves accord-
ing to an equation of the form

db
dt
¼ koncðXÞðr � bÞ � koffb ð17Þ

where c(X) is the concentration of activator at the IB
point’s location as interpolated from nearby grid points,
and kon and koff are binding constants. When we incorpo-
rate the coagulation enzyme network into our platelet
aggregation models, a similar approach will be used to
track the interactions between coagulation molecules in
the plasma and binding sites on the platelet’s surface. Addi-
tional reactions between two platelet-surface-bound species
will involve ordinary differential equations relating their
surface densities.

4.5. Microscale simulation results

Fig. 3 shows snapshots of a portion of the computa-
tional domain during a microscale aggregation simulation
using the two-dimensional model. Recent theoretical [30–
32] and experimental studies [33] highlight the fluid
dynamic importance of the resting platelet’s discoid shape
and this is straightforward to take into account in the IB
model. In our simulations, each platelet is initially repre-
sented by an approximately rigid ellipse comprised of 28
sequentially linked IB points. The platelet shape is main-
tained using stiff hinge forces as described in Section
(4.1). Upon a platelet’s activation, the hinge force parame-
ters for that platelet are reset so that the platelet’s target
shape is circular and the platelet is more deformable. This
allows the platelet to change shape, as do real platelets
upon activation and adhesion to the vessel wall or to a
developing thrombus [24]. In the simulation, a portion of
the bottom vessel wall is designated as injured and platelets
that contact it, adhere to it and become activated. Only the
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portion of the computational domain near the injured wall
is shown in Fig. 3.

Each of the two small aggregates that form early in the
simulation disturb the flow to a small extent. Although the
aggregate in the center of the injured region is initially lar-
ger, the aggregate at the upstream end of the injury grows
more quickly and partially shields the downstream portions
of the injured wall, slowing growth of the centrally located
aggregate. Together these aggregates disturb the flow suffi-
ciently that few platelets contact and adhere to the down-
stream portion of the injured wall. One can see linear
chains of platelets bend in response to the fluid forces,
bringing platelets of the two aggregates into close proxim-
ity and potentially leading to consolidation of the adherent
platelets into one larger thrombus. For an aggregate that
projects substantially into the vessel lumen there is a sub-
stantial strain on its most upstream attachments to the ves-
sel wall (see upstream end of last panel) and this can lead to
breaking of these attachments allowing the aggregate to
roll downstream. For this simulation, no activator chemi-
cal was included; unactivated platelets became activated
if they came sufficiently close to another activated platelet.
This simulation pertains to events in a 200 lm long seg-
ment of a 37 lm diameter arteriole in which the peak
inflow velocity was 1.0 cm/s. The aggregates developed
during a time period of approximately 2.5 s. This is one
to two orders of magnitude faster than thrombi develop
in injured arterioles [34]. The speedup here is partly due
to our use of a platelet concentration somewhat higher
than physiological. Mostly, it is due to the very simple rules
governing platelet responses (see Section 4.4) according to
which any platelet contacting the injured wall adheres, any
activated platelet contacting another activated platelet
coheres, and platelet activation happens instantaneously.

Fig. 4 shows snapshots from a brief three-dimensional
simulation [16]. For this simulation, a platelet is repre-
sented by a triangulated surface mesh of elastically con-
nected IB points. The surface mesh was constructed
beginning with the vertices of a truncated icosahedron
(‘soccerball’), introducing new vertices to triangularize
each hexagonal and pentagonal face, and then refining each
of the resulting triangles into four smaller triangles. Platelet
contact with the injured portion of the vessel wall leads to
activation of the platelet and its secretion of activating
chemical into the blood plasma. The isosurface bounds
the region in which the activator concentration is suffi-
ciently high to activate platelets. Below it, we see the devel-
opment of a small wall-bound aggregate and a number of
platelet doublets not attached to the vessel wall.

5. Continuum models of platelet thrombosis

Our continuum models of platelet aggregation are
intended to describe events in large diameter blood vessels
such as the coronary arteries in which it is infeasible to
track all platelets and all adhesive and cohesive links indi-
vidually. These models are based on the same interactions
sed-boundary-type models of intravascular platelet aggregation,
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as the microscale models but follow the evolution of den-
sity functions that describe the distribution of nonactivated
and activated platelets and of cohesive and adhesive links.

As indicated in Fig. 5, two spatial scales arise in this
problem. One, the macroscale, is the scale of the vessel
(1–2 mm) which also is the scale of clots that grow to sub-
stantially or completely occlude the vessel. The other, the
microscale, is that of platelets (1–2 lm). As a consequence
two sets of spatial variables appear in the models. The vec-
tor x refers to the macroscale and the statement kxk = O(1)
signifies distances on the order of a millimeter. The vector y

refers to the microscale and kyk = O(1) means distances on
the order of a micron. The ratio of the platelet scale to the
vessel scale is denoted by �� 1, and the model’s equations
are actually the leading order terms in expansions in �.
5.1. Fluid-phase multiscale model

We begin with a description of the models in the absence
of vessel walls, so that all interactions are between fluid-
phase species. (Below we show how interactions with the
vessel walls are added to the models.) The unknowns in
the models are the fluid velocity u(x, t) and pressure
p(x, t), the concentrations of nonactivated and activated
platelets, /n(x, t) and /a(x, t) respectively, the concentra-
tion of activator chemical c(x, t), and a function E(x,y, t)
that describes the distribution of interplatelet cohesive
links. We refer to this function as the ‘elastic link function’.
E is defined so that E(x,y, t)dxdy is the number of elastic
links which connect activated platelets at location x to acti-
vated platelets a short distance away at x + �y; hence, E

has dimensions of number of links per volume per volume.
From the distribution of elastic links at any time t, we can
calculate the stresses that the links exert on the fluid.

The equations for the solution-phase model fall into
three groups. The first group consists of the Navier–Stokes
equations for the fluid motion.

qðut þ u � ruÞ ¼ �rp þ lDuþr � rp; r � u ¼ 0: ð18Þ
Platelet Bond Network

Fig. 5. The continuum models involve two spatial scales; the vessel scale is
on the order of millimeters, and the platelet–platelet cohesion scale is on
the order of microns.
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These equations contain a forcing term $ Æ rp which in-
volves the ‘cohesive stress tensor’ rp that is generated by
the interplatelet elastic links as we describe below.

The second group of equations governs the transport of
platelets and activator chemical:

ð/nÞt þ u � r/n ¼ DnD/n � RðcÞ/n; ð19Þ
ð/aÞt þ u � r/a ¼ RðcÞ/n; ð20Þ
ct þ u � rc ¼ DcDcþ ARðcÞ/n � Kc: ð21Þ

Eq. (19) embodies the assumptions that nonactivated plate-
lets move by advection and diffusion, and that they disap-
pear, through activation, at a rate that depends on the local
concentration of activator chemical. The diffusive term in
this equation is intended to model the effect of red blood
cells on platelet motion. According to Eq. (20), activated
platelets move by advection and appear due to activation
of nonactivated platelets. No diffusive term appears here,
because, as in the microscale models, we assume that the
effect of red blood cells on aggregated platelets is small.
Eq. (21) indicates that activator chemical moves by advec-
tion and diffusion, and that it is produced at each location
at a rate proportional to the rate of platelet activation
there.

The third group of equations pertains to the interplatelet
links. The equation

Et þ u � rxE þ ðy � ruÞ � ryE ¼ aðkykÞ/2
a � bðkykÞE ð22Þ

describes the evolution of the elastic link function by
advection in x at velocity u, advection in y at velocity
y Æ $u, formation of new links at rate aðkykÞ/2

a, and break-
ing of existing links at rate b(kyk)E. The unusual advection
term (y Æ $u) Æ $yE arises because of the slight difference in
velocity at the two ends of a link. The link formation and
breaking rate functions, a(kyk) and b(kyk) are assumed to
depend on the distance kyk between the linked platelets.
Link formation occurs at a rate proportional to /2

a because
each link joins two activated platelets, and is isotropic (in
y) because a depends only on the length of y. In a shear
flow, the advection term (y Æ $u) Æ $yE has the important ef-
fect of progressively stretching the links and aligning them
with the flow. The equation

rpðx; tÞ ¼
Z

y

Eðx; y; tÞ 1

2
SðkykÞyyT

� 	
dy ð23Þ

shows how the cohesive stress tensor is determined from
the distribution of elastic links. In Eq. (23), S(kyk) denotes
the stiffness of a single link of length kyk. The formula for
rp can be derived by summing up the individual contribu-
tions to the stress at x of each link which joins a platelet at
x to a platelet elsewhere.

The model, although formulated completely in terms of
Eulerian variables, is similar to the IB method in a very
important way. As platelet aggregates grow in the model,
the fluid is affected solely through the forcing term $ Æ rp

in Eq. (18); there is no change in geometry as a result of
aggregate growth.
sed-boundary-type models of intravascular platelet aggregation,
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It is useful to introduce an additional variable
zpðx; tÞ ¼

R
y

Eðx; y; tÞdy which measures the concentration
of elastic links emanating from activated platelets at x.
Since the presence of an aggregate is manifest only through
the stresses from these links, we regard zp as a useful indi-
cator of the extent of aggregation at point x, and refer to zp

as the ‘aggregation intensity’. For now, zp is just a diagnos-
tic variable that allows us to monitor where aggregation
has occured, but later it will enter into an approximate
form of the model.
a b

dc

Fig. 6. (a–d) Snapshots at increasing times of the velocity field, an outer
contour that encloses the region in which c is sufficiently high to induce
platelet activation, and inner contours that show levels of the aggregation
intensity zp (highest near the aggregate’s center).
5.2. Model reductions

Through the function E(x,y,t), the model just presented
describes both microscale and macroscale events. E

impacts the rest of the model only through the stress tensor
rp, and this stress tensor and all other model variables
depend only on the macroscale spatial variables x. This
prompts the question of whether an evolution equation
for rp, which involves only the macroscale variable x, can
be derived. Toward this end, multiply Eq. (22) by
f1

2
SðkykÞyyTg and integrate over the microscale variable y

to obtain:

rp
t þ u � rrp ¼ rpruþ ðrpruÞT þ a2/

2
aI

�
Z

bðkykÞE 1

2
SðkykÞyyT

� 	
dy

þ
Z
ðyTruyÞ 1

2
S0ðkykÞ=kyk

� 	
EyyTdy

ð24Þ

where a2 ¼
R

y
f1

2
aðkykÞSðkykÞkyk2gdy is a constant that re-

flects the rate of stress-production due to new link forma-
tion. The first five terms in Eq. (24) involve only the
macroscale variable x. The last two terms are problematic
in general; they cannot be expressed in terms of the existing
model variables that depend only on the macroscale vari-
able x.

If we impose two restrictions on the model, namely, that
the links behave as linear springs so S(kyk) = S0 and
S 0(kyk) = 0, and that links break at a constant rate inde-
pendent of how stretched they are so b(kyk) = b0, then
the two problematic terms vanish, and we have an exact

evolution equation for rp.

rp
t þ u � rrp ¼ rpruþ ðrpruÞT þ a2/

2
aI � b0r

p: ð25Þ

Under the same restrictions, the aggregation intensity zp

satisfies the evolution equation:

zp
t þ u � rzp ¼ a0/

2
a � b0zp; ð26Þ

where a0 ¼
R

y
aðkykÞdy. The set of equations Eqs. (18)–(21)

and Eq. (25) form a closed system of equations that govern
the behavior of the model under the restrictions that S = S0

and b = b0 are constant. We refer to these equations as the
‘special’ form of the model. We studied its properties
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[35,36], and among other things, saw that it can demon-
strate a phase transition that we interpret as platelet aggre-
gation. Consider a period box in which initially /n = 1 and
/a = 0 for all x. Suppose that a background force is applied
to the fluid to drive a periodic stagnation-point flow as
shown in Fig. 6a, and that at t = 0 a sufficiently high con-
centration of activator is added in a region centered at the
stagnation point. Early on, activation occurs, links form,
and this early aggregate is stretched by the elongational
flow along the x-direction. As time progresses, further acti-
vation and net link formation occur and the link distribu-
tion becomes more and more aligned with the flow and
therefore able to generate forces to resist further elonga-
tion. By the end of the simulation, the core of the aggregate
has solidified and the flow within it has dropped essentially
to zero.

The special form of the model is limited by the restric-
tions imposed in its derivation. In particular, the require-
ment that links break at a rate that is independent of
stretch leads to nonphysical behaviors and makes it impos-
sible to cause an aggregate to break up by subjecting it to
force. Since real clots do break up (embolize), presumably
because of the stresses the flowing blood applies to them,
this is an unacceptable limitation. The full multiscale ver-
sion of the model does allow the link breaking rate to
depend on stretch, but using it means having to contend
with the substantial computational expense of dealing with
two sets of spatial variables. Referring to Eq. (24), recall
that the reason we cannot in general get a macroscale equa-
tion for rp is that b(kyk) cannot be brought outside of the
sed-boundary-type models of intravascular platelet aggregation,
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Fig. 7. Succession of snapshots of the velocity field and aggregation
intensity contours for calculations with (left) the full multiscale model Eqs.
(18)–(22) and (right) the approximate closure model Eqs. (18)–(21), (28),
(29). Bars in each picture denote locations of applied pulling force. Full
multiscale model computations were done as described in [38].
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integral in the next to last term in this equation. (We are
content for now with the restriction that the stiffness
S(kyk) be constant, so the final term in Eq. (24) vanishes.)
If b were not a function of kyk itself, but of some macro-
scale quantity that reasonably represents kyk, then b could
be brought outside of the integral and this term would
reduce to b rp. Consider the macroscale quantity Tr(rp)/
zp, where Tr(rp) denotes the trace of the tensor rp. Recall-
ing the definitions of rp and zp we see that

TrðrpÞ
zp

¼ S0

2

R
Eðx; y; tÞkyk2dyR

Eðx; y; tÞdy

( )
¼ S0

2
hkyk2iðx; tÞ; ð27Þ

that is, Tr(rp)/zp is a constant multiple of the mean-squared
length of links emanating from platelets at x. Its square
root therefore serves as a reasonable surrogate for the
actual link length, and so we make the approximation that
b is a function of this macroscale quantity rather than
of kyk. With this closure approximation, the equation for
rp is

rp
t þ u � rrp ¼ rpruþ ðrpruÞT þ a2/

2
aI

� b TrðrpÞ=zp
� �

rp: ð28Þ

Since the variable zp is important in determining the local
link breaking rate, it is now an actual component of the
model (not just a diagnostic variable), and we follow its
evolution using the equation:

zp
t þ u � rzp ¼ a0/

2
a � b TrðrpÞ=zp

� �
zp: ð29Þ

We refer to the version of the model consisting of Eqs.
(18)–(21), (28) and (29) as the ‘approximate closure’ model.

Asymptotic and numerical analyses of the approximate
closure and full multiscale models under simple shear flow
show, given a breaking rate function in the multiscale
model, how to choose the function b(Tr(rp)/zp) so that
the two models’ behavior matches very closely for all shear
rates [37]. In Fig. 7 we show a different comparison
between the two models. The experiment shown is an
extension of that depicted in Fig. 6. Events begin as in
the earlier experiment, but after a specified time has
elapsed, further activation is shut off, and extra forces are
applied (at the locations indicated by the bars in Fig. 7)
to accelerate the fluid and increase the stress on the aggre-
gate in an attempt to break it into two pieces. We see that
the approximate closure model did a good job of capturing
the behavior of the full multiscale model in this complex
situation, and we note that the closure model calculations
took about 1% of the computational time of the multiscale
calculation. In corresponding calculations with a constant
link breaking rate, it proved impossible to break the aggre-
gate; the central portion of the aggregate did neck off to an
extent but did not break. Calculations with the full multi-
scale model and constant breaking rate showed that the
explanation was the existence of a relatively few nonphys-
Please cite this article in press as: A.L. Fogelson, R.D. Guy, Immer
Comput. Methods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.20
ically long links that generated most of the force resisting
rupture.
5.3. Vessel walls in the continuum model

To model intravascular events, the vessel wall must be
modeled and the nature of platelet interactions with it must
be defined. We use an IB approach to build the actual
structure of the wall; that is, we use strings of IB points
connected elastically to one another and to prescribed
tether point locations (see Section 4.1) to construct an
approximately stationary vessel wall with the geometry of
the vessel we wish to simulate. To define the injured por-
tion of the wall, we introduce a density function w(x, t) of
reactive wall sites. The function w is defined everywhere
in the domain, but it is nonzero only in a thin layer of space
along the portion of the wall deemed injured. Platelets
sed-boundary-type models of intravascular platelet aggregation,
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interact with these sites in two ways; they can be activated
and they can form adhesive links where w > 0. It is straight-
forward to incorporate these interactions into the model.
To add the possibility of platelet activation by contact with
the reactive wall sites, an additional term is added to each
of the transport equations Eqs. (19)–(21) as illustrated here
for the equation for /n:

ð/nÞt þ u � r/n ¼ DnD/n � RðcÞ/n � eRðwÞ/n: ð30Þ

The new term eRðwÞ/n represents activation of platelets at a
per platelet rate eRðwÞ that is positive only where w > 0. To
add adhesive platelet–wall links to the full multiscale mod-
el, we would introduce an adhesive link function Ew analo-
gous to the cohesive link function E. Here, we skip to the
analogue of the the closure approximation for rp and zp

and introduce the following equations for an adhesive link
stress tensor rw and adhesive link intensity zw:

rw
t þ u � rrw ¼ rwruþ ðrwruÞT þ aw

2 /awI

� bw TrðrwÞ=zw
� �

rw; ð31Þ

zw
t þ u � rzw ¼ aw

0 w/a � bw TrðrwÞ=zw
� �

zw: ð32Þ

The divergence of this stress tensor is added to the forces
driving the fluid motion on the right hand side of the Na-
vier–Stokes equations (18). The adhesive link breaking rate
bw is assumed to be a function of the macroscale quantity
Tr(rw)/zw. Eq. (31) is very similar to the equation for rp; a
difference is that the rate of formation of adhesive links de-
pends on the product w/a since these links join reactive
wall sites and platelets. The constants aw

2 and aw
0 are ana-

logues of the constants a2 and a0 in Eqs. (28-29).
5.4. Numerical solution of the continuum model equations

In this section we describe the computational methods
used to solve the continuum model’s equations. The com-
putational domain is a rectangular region R in which we
construct vessel walls using the immersed boundary
method as already described. In the region between the ves-
sel walls, we apply a spatially constant background force
density f g in the x-direction, which, for flat walls and in
the absence of platelet aggregation, would result in a para-
bolic velocity profile between the vessel walls.

The model’s Eulerian variables are approximated in the
cells of a uniform Cartesian mesh placed over R. We take
the mesh spacing in both coordinate directions to equal h.
Mesh points are denoted (xj,yl) = ((j � 1/2)h,(l � 1/2)h).
Time is discretized into timesteps of size k. We think of
the discrete velocity as being defined at time levels
tn+1/2 = (n + 1/2)k and all other variables as being defined
at time levels tn = nk. We do this because the ‘time-centered’
velocities un+1/2 are involved in the transport of advected
quantities between times tn and tn+1, and the ‘time-centered’
stresses, such as (rp)n, determine the fluid motion between
Please cite this article in press as: A.L. Fogelson, R.D. Guy, Immer
Comput. Methods Appl. Mech. Engrg. (2007), doi:10.1016/j.cma.20
times tn�1/2 and tn+1/2. The notation u
nþ1=2
jl is used for our

approximation to the velocity in the cell centered at (xj,yl)
at time tn+1/2, and similar notation is used for each of the
other Eulerian variables. For each of the partial differential
equations which govern the behavior of an Eulerian variable,
we use an appropriate finite-difference approximation
defined at points of this mesh. During each timestep of the
computation, we use a sequence of fractional steps to update
each of the unknowns, as follows:

(1) The adhesion and cohesion force densities are calcu-
lated using discrete versions of fp = $ Æ rp and
fw = $ Æ rw and summed to give their contributions
to the fluid force density fn. The background force
density fg is also added to f n.

(2) The IB points are moved (using un�1/2) and the IB
forces are calculated and transmitted to the fluid grid
adding to the fluid force density fn.

(3) Using fn, the discretized Navier–Stokes equations are
solved to give new velocities un+1/2 and pressure pn.

(4) The variables /a, /n, c, rp, rw, zp, and zw are updated
to account for advective transport (using un+1/2), and
/n and c are further updated to account for diffusive
transport.

(5) The variables /a, /n, c, rp, rw, zp, and zw are updated
to account for the reaction terms in their respective
transport equations and to yield values at time level
tn+1.

Additional description of parts of the numerical meth-
ods follows; more details can be found in [39].
5.4.1. Solution of Navier–Stokes equations

To solve the Navier–Stokes equations, we use a second-
order approximate projection method [40]. In each time-
step, the method has two substeps. In the first, a discretiza-
tion of the momentum equations is used to determine an
intermediate velocity field u* which is typically not diver-
gence free

u� � un�1=2

k
þ an ¼ �Gpn�1 þ m

2
Lu� þ Lun�1=2
� �

þ fn: ð33Þ

In this equation and below, G, D, and L are discrete gradi-
ent, divergence, and Laplacian operators defined using
standard central difference approximations except close to
domain boundaries. The term

an ¼ 3

2
ðun�1=2 � GÞun�1=2 � 1

2
ðun�3=2 � GÞun�3=2

is an approximation at time tn to the nonlinear advection
term (u Æ $)u in the momentum equation.

In the second substep of an exact projection method, u*

would be decomposed into the sum of a divergence free
velocity field un+1/2 and a gradient field G/ which would
be used to update the pressure
sed-boundary-type models of intravascular platelet aggregation,
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u� ¼ unþ1=2 þ kG/ ð34Þ

pn ¼ pn�1 þ kG/� m
2

D � u�: ð35Þ

The requirement D Æ un+1/2 = 0 used with Eq. (34) would
give a discrete Poisson equation k D Æ G/ = D Æ u* with a
wide (4h · 4h) stencil. Instead, because the resulting Na-
vier–Stokes solver has better stability properties, we solve
k L/ = D Æ u* with the standard 5-point discrete Laplacian.
Therefore, D Æ un+1/2 = 0 is satisfied only approximately to
O(h2). As part of the projection step, we calculate cell-edge
velocities uj±1/2,l and vj,l±1/2 which satisfy the incompress-
ibility equation

unþ1=2
jþ1=2;l � unþ1=2

j�1=2;l þ vnþ1=2
j;lþ1=2 � vnþ1=2

j;l�1=2 ¼ 0: ð36Þ

This property is important in the algorithm used to advect
the Eulerian variables other than u.

5.4.2. Advection and diffusion

We use a slight modification of LeVeque’s high resolu-
tion advection algorithm [41] to discretize the advective
terms in the transport equations for /n, /a, c, rp, rw, zp,
and zw. The method is second-order accurate when the
solution and velocity field are smooth, and uses flux-limit-
ers to control oscillations in the numerical solution near
discontinuities or steep gradients. LeVeque’s algorithm is
concerned with solution of a scalar advection equation of
the form

qt þ u � rq ¼ 0; ð37Þ

where the velocity field u is incompressible. Because
$ Æ u = 0, the advective form Eq. (37) can also be written
in conservative form as qt + $ Æ (u q) = 0. The two forms
are equivalent for the differential equations, but discretiza-
tions based on the advective form are generally different
from and often superior to those based on the conservative
form. Among the advantages of advective differencing is
better treatment of patches of constant q. On the other
hand, advective differences may not preserve total mass.

In LeVeque’s algorithm, qn
jl is interpreted as the cell-

average of q over the cell jl, and the method uses cell-edge
velocities in defining numerical flux functions Fj±1/2,l and
Gj,l±1/2 which give fluxes of q across the respective cell
edges. The final update formula for q is

qnþ1
jl ¼ qn

jl �
k
h
fF jþ1=2;l � F j�1=2;l þ Gj;lþ1=2 � Gj;l�1=2g:

ð38Þ

The version of LeVeque’s algorithm that we use proceeds
in four steps, the first corresponding to a first-order upwind
method, and the later steps giving a series of improvements
to this basic method. Each of the steps can be described in
terms of waves propagating across the edges of the cells
with each wave contributing to the numerical flux of q from
one cell to another. The algorithm is a hybrid in that the
first step is written in advective form while the correction
terms, though based on advective differences, are written
Please cite this article in press as: A.L. Fogelson, R.D. Guy, Immer
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in terms of flux differences. The resulting algorithm has
the good features of advective differencing, but is fully con-
servative provided the discrete incompressibility condition
Eq. (36) holds.

We use LeVeque’s advection algorithm over the entire
grid and and we want to ensure that there is no advective
flux across the immersed boundaries that make up the ves-
sel walls. We accomplish this by employing a mask which
zeros the cell edge velocities for any cell edges outside of
the immersed boundary walls.

The variables /n and c are also affected by diffusion. We
use a Crank–Nicolson time-discretization of the diffusive
terms in the equations for /n and c, with standard five-
point approximations to the Laplacian operator at most
grid points. For points close to the vessel walls, we use a
modified stencil that enforces a no diffusive flux boundary
condition at the vessel walls. The stencils are derived using
the ideas of the immersed interface methods introduced by
LeVeque and Li for elliptic problems with discontinuous
coefficients [20], and extended to elliptic and parabolic
problems with Neumann conditions imposed along an
irregular boundary [19]. The combined advection–diffusion
algorithm for /n and c is second order accurate in test
problems for which the solution is smooth.
5.4.3. Reaction terms

We turn next to the reaction terms in (a) Eqs. (19)–(21);
(b) Eqs. (28) and (29); and (c) Eqs. (31) and (32). In these
terms, there is no coupling between different grid points, so
our discussion here applies to each grid point (xj,yl) sepa-
rately. We treat separately the reaction terms within each
of the three groups notated above and describe each in
turn. Platelets display a threshold-like response to activat-
ing chemicals [42], and so we take the activation rate func-
tion R(c) in Eqs. (19)–(21) to be R(c) = R0H(c � cT) where
H(Æ) is a smoothed version of the Heaviside step function
and cT is the threshold concentration for activation. A
similar choice is made for ~RðwÞ.

The reaction terms for /n, /a, and c give rise to the
ordinary differential equations

d/n

dt
¼ �ðRðcÞ þ ~RðwÞÞ/n; ð39Þ

d/a

dt
¼ ðRðcÞ þ ~RðwÞÞ/n; ð40Þ

dc
dt
¼ AðRðcnÞ þ ~RðwÞÞ/nðtÞ � Kc: ð41Þ

To update, /n and /a, we assume that c, and therefore
R(c), is constant over the duration of the timestep and
we solve analytically the resulting linear differential equa-
tions Eqs. (39) and (40) to obtain /nþ1

n and /nþ1
a . Then,

we replace /n(t) and /a(t) in Eq. (41) by their respective
averages ð/nþ1

n þ /n
nÞ=2 and ð/nþ1

a þ /n
aÞ=2, and solve the

resulting linear equation analytically to determine cn+1.
The reaction terms in Eqs. (28) and (29) give rise to the

ordinary differential equations
sed-boundary-type models of intravascular platelet aggregation,
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drp

dt
¼ rpruþ ðrpruÞT þ a2/

2
aI � b

Trrp

zp

� �
rp ð42Þ

dzp

dt
¼ a0/

2
a � b

Trrp

zp

� �
zp: ð43Þ

These are used to determine the cohesion force density fp

which contributes substantially to determining the fluid
motion, and we found it important for stability to use an
implicit (trapezoidal) time discretization of these equations.
To describe it, let A be the operator which computes the
time-average of its input at times tn and tn+1, and let
$u = $un+1/2. Our discretization is

ðrpÞnþ1 � ðrpÞn

k
¼AðrpÞruþ ðAðrpÞruÞT þ a2Að/aÞ

2

�A b
Trrp

zp

� �
rp

� �
;

ðzpÞnþ1 � ðzpÞn

k
¼ a0Að/aÞ

2 �A b
Trrp

zp

� �
zp

� �
:

Fig. 8. Snapshots at corresponding times from two simulations of thrombosis
are the same for the two simulations; only the location of the rupture differs. Le
stress is high. Right: Rupture at downstream end of stenosis where flow is slow
aggregation intensity zp + zw (dark: low, light: high).
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These implicit equations are solved iteratively with New-
ton’s method, using local time-refinement at a grid point,
if necessary, to ensure convergence of the iterations. The
same procedure is used for the reaction terms in the equa-
tions for rw and zw.

5.5. Continuum model simulation results

An important application of the continuum model is to
investigate thrombosis in a stenotic (constricted) vessel fol-
lowing the rupture of an atherosclerotic plaque and the
consequent exposure of strongly thrombogenic stimuli.
Atherosclerotic plaques can develop slowly over many
years and, in themselves, may cause little problem. How-
ever they are mechanically fragile and can rupture and trig-
ger thrombosis that, in a matter of minutes, can lead to
occlusion of the vessel in which the plaque resides, or can
lead to the dispersal of clot fragments into the blood that
end up blocking smaller vessels downstream.
following rupture of 50% stenosis. Flow conditions and kinetic parameters
ft: Rupture at upstream end of stenosis where flow is accelerating and shear
ing and shear stress is relatively low. Each plot shows velocity field and the

sed-boundary-type models of intravascular platelet aggregation,
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Simulations in a 50% stenosis (see [39]) show that, under
some conditions, the thrombus grows to occlude the vessel.
In Fig. 8, we show two simulations, identical except for the
location of the rupture within the stenosis. With a rupture
at the downstream end, where the flow through the stenosis
is decelerating and the shear stresses are relatively low, a
solid thrombus grows slowly out into the sheltered recircu-
lation zone downstream of the plaque. With a rupture of
identical size, but at the upstream end of the stenosis,
where the flow is accelerating and the shear stresses are rel-
atively high, the evolution of the thrombus is very different.
As it begins to grow, the initial thrombus is subject to high
stresses which lead to large strains and a high rate of cohe-
sive link breaking (see Fig. 9). The thrombus never
becomes fully solid; it behaves more as a weakly elastic
very viscous fluid. Pieces of it fragment and are carried
downstream. The thrombus remains small, and eventually
is broken apart (not shown) by continued shear stress.
Meanwhile, the fast flow carries activating chemical
through the stenosis and into the recirculating zone where
a larger thrombus develops. The center of this thrombus
becomes quite solid, but the thrombus is not anchored to
the injured portion of the vessel wall and cannot adhere
to the healthy portions of the vessel wall, so it too is even-
tually washed downstream. The two simulations, identical
in set up except for the location of the injury relative to
the flow, give a striking illustration of the importance of
fluid dynamics in the clotting process. For these simula-
tions, the peak inflow velocity was 10 cm/s, the channel
height and length were 0.18 cm and 0.8 cm, respectively.
These values are chosen to simulate coronary arteries.
The Reynolds number was about 50 and the maximum
shear rate, which occured at the upstream top corner of
the stenosis, was 1750 s�1. The duration of the simulations
was about 0.5 sec, which like the microscale simulations, is
about two orders of magnitude too fast.

6. Conclusions

We have presented both semidiscrete microscale and
continuum macroscale models of platelet aggregation dur-
ing blood clotting. The microscale models represent each
platelet as a separate entity using Peskin’s immersed
boundary method. The continuum models are motivated
by the IB idea of representing biological tissue as a com-
posite incompressible fluid-elastic material, so that changes
in geometry or phase are manifest solely through changes
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in mechanical forces within the material. Both types of
models are able to capture salient behaviors in the platelet
aggregation process including the influence of aggregate
growth on the flow, shear-stress-related limitations of
aggregate growth, and the possibility of complete vessel
occlusion.

The implementation of the IB method is relatively
straightforward, since it uses a fixed Eulerian grid, com-
pared to other computational methods for treating deform-
ing objects interacting with a fluid. One significant
limitation in computing with the IB method is in having
to use very small timesteps to maintain stability when
doing explicit time-stepping. Recently, new insights have
been developed into what is needed in an implicit discreti-
zation in order to achieve unconditional stability in IB
calculations [43,44]. This may lead to the development of
efficient implicit IB methods that will lessen the current
timestep restrictions. For work in this direction, see
[45].

There are substantial challenges remaining for both the
micro- and macroscale modeling projects. Three-dimen-
sional microscale simulations are very computationally
expensive, and substantial work to make good use of new
implicit solvers, parallelization, and other ideas for exploit-
ing differences in time scales will be needed before we can
simulate physiologically interesting periods of time. Simu-
lation of the continuum model equations requires being
able to handle adjacent materials of very different mechan-
ical properties. The computational methods described in
this paper do a good job in most situations, but can pro-
duce nonphysical (bounded) oscillations under some cir-
cumstances. Work on algorithms that better exploit the
mathematical structure of the continuum equations to
eliminate this problem is described in [46]. The current
model is also limited in that all species move in the same
velocity field. Because there can be no relative motion
between aggregated platelets and the local fluid, in order
to have a solid aggregate the local fluid must be brought
to rest. This means that for a solid aggregate to develop
in the current model, it must do so quickly. It is more real-
istic to allow relative motion between the fluid and platelets
in porous aggregates of low platelet volume fraction. As
the volume fraction of platelets in the aggregate increases,
in part because the flow brings new platelets into the
thrombus, the thrombus becomes less permeable and the
relative motion of fluid and platelets decreases toward zero.
We are developing versions of the model that allow such
sed-boundary-type models of intravascular platelet aggregation,
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relative motion between aggregated platelets and the local
fluid.
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