
Chapter 10
Computational Challenges for Simulating
Strongly Elastic Flows in Biology

Robert D. Guy and Becca Thomases

Abstract Understanding the behavior of complex fluids in biology presents
mathematical, modeling, and computational challenges not encountered in classical
fluid mechanics, particularly in the case of fluids with large elastic forces that
interact with immersed elastic structures. We discuss some of the characteristics
of strongly elastic flows and introduce different models and methods designed
for these types of flows. We describe contributions from analysis that motivate
numerical methods and illustrate their performance on different models in a simple
test problem. Biological problems often involve the coupled dynamics of active
elastic structures and the surrounding fluid. The immersed boundary method has
been used extensively for such problems involving Newtonian fluids, and the
methodology extends naturally to complex fluids in conjunction with the algorithms
described earlier in this chapter. We focus on implicit-time methods because the
large elastic stresses in complex fluids necessitate high spatial resolution and
long time simulations. As an example to highlight some of the challenges of strongly
elastic flows, we use the immersed boundary method to simulate an undulatory
swimmer in a viscoelastic fluid using a data-based model for the prescribed shape.

There are many different kinds of complex fluids in biology, and they frequently
contain dynamic active or passive structures in the fluid. Numerical simulations
of these complex flows can be a powerful tool in understanding these biological
systems. Existing techniques in computational fluid dynamics are often sufficient
for problems with weak flows and low elasticity. However, when elastic forces
become large due to, for example, long relaxation times, extra forces from internal
structures, or interactions with complex boundaries, more care must be taken
to properly simulate these flows. This chapter is devoted to the challenges that
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arise when internal elastic forces are modeled in complex fluids with an eye
towards recognizing, understanding, and properly treating the features of strongly
elastic flows.

We will focus on the Oldroyd-B model as one of the simplest closed continuum
models of viscoelastic fluids. In the original derivation [1], Oldroyd set out
requirements for constitutive equations so that the material properties would be
frame invariant in a coordinate system which convected with the material. This
procedure leads to the upper-convected time derivative (also called the Oldroyd
derivative, see Eq. (10.5)) which gives the rate of change of a tensor property of a
small volume of fluid written in a coordinate system rotating and stretching with the
fluid. The most widely used Oldroyd model is the Oldroyd-B model, in part because
this model can also be derived from a theory of dilute polymer solutions [2]. The
Oldroyd-B model is given below for u the velocity of the fluid, p the pressure, and �

the deviatoric stress tensor; see also Chap. 1. From balance of momentum and mass
conservation for an incompressible fluid we have

ρ
Du
Dt

=−∇p+∇ ·� (10.1)

∇ ·u = 0, (10.2)

with

� = ηs�̇ +� p. (10.3)

Here ηs�̇ is the viscous stress from the Newtonian solvent, with viscosity ηs and
rate-of-strain tensor �̇ = ∇u+(∇u)T , and � p is the polymeric stress contribution.
In the Oldroyd-B model the polymer stress evolves by

� p +λ�
� p = ηp�̇, (10.4)

with polymer viscosity ηp and relaxation time λ . The upper-convected derivative is
defined as

�
� p ≡ (D/Dt)� p − (∇u)T ·� p −� p ·∇u. (10.5)

The relaxation time characterizes the time it takes for a material to adjust to applied
stresses or deformations. For the majority of this chapter we will focus on the
low Reynolds number (or creeping flow) regime where inertial forces are small
compared with viscous forces.

There are two important dimensionless parameters related to the relaxation time
of a fluid used in rheology. The Weissenberg number (Wi) is the ratio of the
relaxation time of the fluid and a specific process time. For example, in steady shear,
the Weissenberg number is defined as the shear rate (γ̇ =

√
�̇ : �̇/2, see Chap. 1)

times the relaxation time Wi= γ̇λ . The Deborah number (De) is used to characterize
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flows under specific flow conditions and is defined as the ratio of the relaxation time
to the characteristic time scale for fluid deformations, such as an imposed oscillation
period, De = λ

Tf
.

Weakly elastic flows (De or Wi � 1) can be handled using standard techniques
from computational fluid dynamics, and special treatment of the stress tensor is not
necessary. By contrast, strongly elastic flows (De or Wi � 1) create regions of high
stress and fine features that require high resolution for accurate flow solutions. Naive
implementations of standard CFD techniques may fail.

In Sect. 1 we identify and demonstrate some of the characteristics of strongly
elastic flows. These include large stresses and large gradients which require fine
meshes for accurate representation. We introduce a host of models and methods
designed to overcome these challenges and use a simple test problem to demonstrate
some of these techniques and models. In Sect. 2 we briefly present the ideas of the
immersed boundary method, a popular technique for simulating problems in biology
which typically involve fluid-structure interactions with large deformations and
complex flow patterns. One advantage of the immersed boundary method is that it
can be easily coupled with a preexisting fluid solver; however, long time simulations
and fine meshes necessitate the use of an implicit time stepping method. In Sect. 3
we use the immersed boundary method to simulate an undulatory swimmer with
a data-based model for the target shape. This problem highlights some of the
additional challenges associated with strongly elastic flows in biology, due, in part,
to the large forces which arise in the coupling of fluid to dynamic structures.

1 Strongly Elastic Flows

Simulating strongly elastic flows is difficult and requires care in the choice of
model and numerical method to ensure that the chosen technique treats the elastic
stresses and corresponding time scale properly. In this chapter we emphasize the
importance of recognizing these difficulties and understanding their origin, and we
provide some approaches for fixing them. As an example of one difficulty with the
Oldroyd-B model, we present a sample simulation of an extensional point flow in
Sect. 1.6 which demonstrates fine scales: near-singularities in the stress field and
near-jumps in the vorticity. In these simulations a body force drives a flow in which
u ∼ ε̇(x,−y) near the origin, where ε̇ is the strain rate. To demonstrate the flow
behavior we examine the vorticity and the trace of the polymer stress tensor, which
is proportional to the elastic energy. Figure 10.1a shows a contour plot of the trace of
the conformation tensor, Tr(C), which is related to the polymer stress tensor for the
Oldroyd-B model by � p = Wi−1(C− I). The vorticity of the flow (∇×u) is plotted
in Fig. 10.1b. These plots show the near-steady behavior for a strongly elastic flow
where large stress and stress gradients have developed at the extensional stagnation
point at the origin. The fine structures can be seen in slices of Tr(C) and vorticity,
which are shown in Figs. 10.1c and d. The details of the simulation are given in
Sect. 1.6.
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Fig. 10.1 Contour plots of (a) Tr(C) and (b) vorticity for Wi = 5.0 at t = 8. (c) Trace of
conformation tensor along line (0,y) : Tr(C(0,y)). (d) Vorticity along line (−π/2,y) : ∇ ×
u(−π/2,y)

1.1 Historical Perspective

Computational simulations of strongly elastic flows have historically suffered
from difficulties not seen in comparable Newtonian flows. These difficulties fre-
quently manifest in numerical methods as a breakdown beyond a critical Deborah
(or Weissenberg) number. These computational challenges have been observed
since the earliest numerical approximations of complex fluids were attempted in
the late 1970s. Standard finite difference and Galerkin finite element approaches
that were successful for Newtonian flows were converging only for O(1) Deborah
(or Weissenberg) numbers [3–5]. There are modeling and analytical questions
underlying the somewhat mysterious “high-Weissenberg number problem,” and so
the appropriate choice of numerical method is a delicate and extremely important
question which has received much attention over the years. Significant progress
has been made in the subsequent decades, but many questions related to the
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high-Weissenberg number problem are still subjects of active research. We discuss
some of the open analytical questions related to these problems in Sect. 1.2 and some
current numerical approaches which address these difficulties in Sect. 1.4. We focus
on the Oldroyd-B model in Sect. 1.3 and models derived from different molecular
assumptions in Sect. 1.5.

Several benchmark problems in engineering have been developed to test pro-
posed constitutive laws and numerical methods. These problems include flow
around a cylinder or sphere [6–12] and planar contractions [13–19]. A simplified
explanation for why flow around obstacles or near boundaries can cause difficulties
in viscoelastic flows which are not seen in corresponding Newtonian flows is that
when the velocity of the flow is near zero (due to a no-slip boundary condition or
a stagnation point in the flow) the internal elastic structures in the fluid have a long
time to get stretched and induce areas of high stress. Large stress gradients then
induce more stress on the flow and this leads to sharp boundary layers which require
high spatial resolution. Long time simulations or time-dependent simulations for
finding steady-state solutions are particularly difficult.

One must be aware of other challenges which arise when modeling viscoelastic
fluids such as possible change of type or loss of evolution in the flow. These
problems do not arise with the Oldroyd-B and the other models discussed here. We
leave further discussions of those problems and more detailed reviews of numerical
issues to the following books and review articles, and the citations contained within,
[5, 20–26].

1.2 Advances from Analysis

To begin to understand the complicated high-Weissenberg problem we note that
fundamental analytical questions about the Oldroyd-B model (Eq. (10.1)–(10.4)) are
still open. For example, it is unknown whether global solutions to the Oldroyd-B
equations exist. Even for the Stokesian limit in two space dimensions, the question
is challenging due to the lack of scale-dependent dissipation in the polymer stress
advection equation1. These basic questions are important because if a model is well
posed, i.e., unique solutions exist and are sufficiently smooth on some time interval,
then appropriate numerical approximations of these solutions are reliable. If not,
then even convergence of the method cannot guarantee that the correct solution has
been chosen.

Though having a well-posedness theory is useful for a numerical study of a
particular model, in many cases, notably the 3D Euler or Navier-Stokes equations,

1When derived from the kinetic theory of dumbbells [2, 27] there is polymer stress diffusion;
however the stress diffusion coefficient is proportional to the square of the ratio of the bead
diameter (or polymer radius of gyration) to the flow length scale, and even in the context of micro-
fluidics, it is minute, O(10−9), and is typically ignored.



364 R.D. Guy and B. Thomases

this is not available. However, there are often mathematical theorems which can be
helpful for guiding numerics. One particular example is a well-known condition for
the 3D Euler equations, referred to as the Beale-Kato-Majda criteria [28], which
states that the maximum norm of the vorticity controls the breakdown of smooth
solutions. More specifically this criteria states that the breakup of solutions in any
norm will imply the divergence of the supremum norm of the vorticity. This makes
investigating the loss of existence of solutions more tractable as you only have
to keep track of one quantity. A similar result can be derived for the Oldroyd-B
equations and the quantity to track is the supremum norm of the polymer stress
tensor [29, 30].

Along with this nonexistence criterion, some progress in well posedness has
been made. For example, if the initial data are sufficiently small, solutions to
the Oldroyd-B model are globally well posed [29, 31, 32], but this prescribes an
unrealistic constraint for many problems of interest. Additionally, these analytical
proofs require either an unbounded or periodic domain, while the question of how to
treat problems in complicated geometries remains an issue of current research that
is of significant importance in many applications.

As mentioned above, one of the main difficulties in obtaining analytical proofs of
global existence for the Oldroyd-B model is the lack of scale-dependent dissipation
in the stress advection equation, Eq. (10.4). A simple regularization is to include a
dissipative term in such as α∇2� p. With this type of polymer stress diffusion, some
analytical results are available [27], and, in particular, the Oldroyd-B equations
in two space dimensions are globally well posed for all initial data [33, 34]. The
addition of polymer stress diffusion is not without physical justification as stress
diffusion does arise in the physical model [2, 27, 35], but the diffusion is at such
small scales that it is typically ignored. However, artificially large polymer stress
diffusion can be introduced as a regularization parameter in numerical simulations
[36,37]. The effect of artificially large stress diffusion was studied in [36] where the
authors concluded that the stress diffusion had a stabilizing effect, in particular for
large Reynolds number calculations. Adding polymer stress diffusion is particularly
common in simulations of turbulent drag reduction [38, 39]. Although the polymer
stress diffusion may be artificially large in the context of the molecular derivation,
if the length scale of the artificial polymer stress diffusion is on the scale of the grid,
then the errors due to the regularization are on the order of the spatial discretization
errors.

1.3 High-Weissenberg Number Problem
in the Oldroyd-B Model

If the simulations presented in Fig. 10.1 are continued (without decreasing the
grid size), numerical oscillations will cause the solutions to break down at some
point in time. A “local” analytical solution given in [40] indicates that the polymer
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stress is likely approaching a diverging solution exponentially in time. Hence the
breakdown of the numerical solution appears to be due to the fact that at a fixed
grid size it becomes impossible to resolve the steeper and steeper gradients of an
underlying diverging solution. These oscillations can already be seen if one looks
closely in Fig. 10.1c at the polymer stress near y = 0. There are many possible
reasons for the breakdown of the numerical simulation; in particular it may be the
case that the solution itself does not exist for all time, and this is simply not known.
However, even if the solution remains smooth in time, other problems including
loss of positive-definiteness of the stress tensor, problems with the model (such
as infinite extension of polymer coils), or large stress gradients which create even
larger forces on the fluid which must be resolved can lead to the breakdown of a
numerical method. Problems with the Oldroyd-B model are typically blamed on the
linear elastic nature of the model, but as we will see in Sect. 1.6 this is probably not
the heart of the problem.

The Oldroyd-B model is attractive because it is the simplest closed continuum
model which can be derived from molecular assumptions. One derivation of the
Oldroyd-B model comes from representing immersed polymer coils in a Newtonian
solvent as two beads connected by a linear spring with a Hookean spring force
[2,41]. Additional forces on the beads include drag from the Newtonian solvent and
randomly fluctuating Brownian forces. Using statistical mechanics, one can derive
an expression for the stress tensor which evolves according Eq. (10.4).

This model predicts that in steady extensional flows, such as uniaxial extension,
the extensional viscosity, defined as the ratio of extensional stress to extensional
strain rate, will become infinite at finite strain rate. This happens when the frictional
drag force that stretches the dumbbell overcomes the spring force. When the
strain rate is “small” relative to the relaxation time the spring force dominates
and the dumbbell remains coiled. As the strain rate is increased the molecules
undergo a “coil-stretch” transition and the steady-state extensional viscosity goes
to infinity [41]. This is related to the fact that the linear Hooke’s law puts no
limit on the length of a dumbbell and has been seen as an underlying cause of the
“high Weissenberg number problem.” Rallison and Hinch questioned the “physics”
of the constitutive model [42], and later it was noted that even below the coil-
stretch transition the “smoothness of stresses should be expected to deteriorate with
increasing Weissenberg number” [43].

Numerical simulations in [40] found solutions that exhibit the Weissenberg
number-dependent smoothness described above. When an extensional flow is
posited, namely u = ε̇(x,−y), the equation for the polymer stress tensor (10.4)
decouples and can be solved exactly via the method of characteristics. In two space
dimensions the solution for one component of the stress tensor can be written as

S11(x,y, t) =
1

1−2ε̇Wi
+ e(2ε̇Wi−1)tF(xe−ε̇Wit ,yeε̇Wit), (10.6)

where the unknown function F must be determined with proper initial and boundary
conditions. This solution indicates that for ε̇Wi < 1/2 the stress should be bounded
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but for ε̇Wi > 1/2 the stress is diverging exponentially in time. Furthermore, the
solutions have a collapsing inner length scale in y which also depends on ε̇Wi.

One time-independent solution which was found to be in close agreement
with numerical simulations and which demonstrates decreasing regularity in the
Weissenberg number is

S∞
11 = |y|(1−2ε̇Wi)/ε̇Wi. (10.7)

It is important to be aware of exponential-in-time stress near-singularities, which
are not removed by simply modifying the constitutive model, as we will show in
Sect. 1.6. Next we look at a few ways to treat these near-divergent solutions.

1.4 Numerical Approaches

Defeating the “high-Weissenberg number problem” has been the aim of many
numerical methods developed over the past several decades. Techniques have been
developed to address issues of stability and convergence, for example, the use of
upwinding [44,45] has been successfully applied to viscoelastic flow problems using
finite element methods [46]. Other variations of finite element methods applied
to viscoelastic fluid simulations include using discontinuous Galerkin techniques
[47–49] and splitting techniques, such as EVSS (elastic viscous stress splitting)
[19,23,50–52], among others [53–55]. Another way to provide local diffusion is by
applying ENO schemes (essentially non-oscillatory shock capturing) [56] which use
upwinding with a high-order correction [57]. To resolve fine structures in problems
like the flow around a cylinder, techniques to improve accuracy include using hp-
spectral elements [12] and highly accurate finite volume methods [9]. For a more
complete review of the literature we refer the interested reader to a computational
rheology book [5] and several review articles that deal with specific aspects of
the numerical simulations of viscoelastic fluid flow [22–26]. In what follows we
describe in more detail a few ways to handle the near-singularities that arise in the
Oldroyd-B model discussed in Sect. 1.3.

1.4.1 Log-Conformation Method

The log-conformation method [58,59] is a numerical approach specifically designed
to address exponential singularities in the polymer stress tensor. The method was
designed for a large class of differential constitutive models (including Oldroyd-B)
in which an equation is derived for the matrix logarithm of the conformation tensor
or configuration tensor, C(x, t). C is the conformational average of the dumbbells,

C =
∫

RRΨdR, (10.8)
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where R is the end-to-end vector of the dumbbell and Ψ(x,R, t) is the probability
that a dumbbell at position x in the flow has orientation and extension R at time t
(see Chaps. 1 and 9). For the Oldroyd-B model, the conformation tensor is related
to the polymer stress tensor by

� p = Wi−1(C− I), (10.9)

and is advected by

(C− I)+Wi
�
C = 0. (10.10)

From the molecular derivation, the conformation tensor should be symmetric
positive definite, and it will remain so according to Eq. (10.10) if it is initially. Loss
of positivity of C is one source of numerical errors. The log-conformation method
maintains positivity by definition which can be a source of increased stability.

The log-conformation method replaces Eq. (10.10) with an equation for the
matrix logarithm of C:

A(x, t) = logC(x, t).

This is possible because a symmetric positive definite matrix, S, can always be
diagonalized, S = R�RT and hence logS = R(log�)RT . The method relies on
the fact that if u is a divergence-free velocity field and C is a symmetric positive
definite tensor, then there is a decomposition

∇u = ˝ +B+N ·C−1, (10.11)

where ˝ and N are anti-symmetric and B is symmetric, traceless, and commutes
with C. With this decomposition, the evolution of A is

∂A
∂ t

+(u ·∇)A− (˝ ·A−A ·˝)−2B = Wi−1e−A(I− eA). (10.12)

Under this transformation, the extensional components of the deformation act
additively, rather than multiplicatively. Higher Wi values can be achieved than in
similar studies without the matrix logarithm, and the log-conformation method has
been particularly successful in some standard benchmark problems [10,60–62]. This
method has been implemented in many different numerical frameworks including
finite difference, finite volume, and finite elements. There is a nontrivial cost
associated with implementation of this method, both in obtaining the decomposition
in Eq. (10.11) and in computing the matrix exponential to obtain C from A.
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1.4.2 Square-Root Method

A method which is simpler to implement and also maintains positive definiteness
of the polymer stress tensor is the square-root method [63]. An exact equation for
the square root of the conformation tensor is advected rather than the conformation
tensor itself, and therefore, the conformation tensor will remain positive. In this
method Eq. (10.10) is replaced with an equation for b(x, t), the unique positive
symmetric square root of C(x, t). The equation for b is

∂b
∂ t

+(u ·∇)b = b ·∇u+a ·b+
1

2Wi

(
(bT )−1 −b

)
, (10.13)

where a is any anti-symmetric matrix. Furthermore, a can be prescribed uniquely so
that if b is initially symmetric it will remain symmetric. In two dimensions the form
of a is

a =

(
0 a12

−a12 0

)
, (10.14)

where

a12 =

(
b12

∂u
∂x

−b11
∂v
∂x

)
+

(
b22

∂u
∂y

−b12
∂v
∂y

)

b11 +b22
,

for u = (u,v). An exact formula is also available in 3 space dimensions, but the
details are more complicated [63]. This method was tested in a spectral framework,
and it was observed that in practice the square-root method can be applied at higher
Wi and for longer time than methods for evolving the conformation tensor directly
[63]. This method does not address the exponential nature of the singularities
of the polymer stress tensor like the log-conformation method, but the cost of
implementation is no different than a direct implementation of the original model.

1.4.3 Polymer Stress Diffusion

As mentioned in Sect. 1.2, adding polymer stress diffusion will regularize the
Stokes-Oldroyd-B equations, and in two space dimensions, the problem is well
posed. In [37] it was shown that the exponential-in-time singularity obtained in [40]
is removed with the addition of polymer stress diffusion, and smooth and bounded
steady-state solutions can be found. Consider the polymer stress advection equation
with diffusion, which we write in nondimensional form as

(C− I)+Wi
�
C = α∇2C. (10.15)
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If a steady flow, u = Wi−1(x,−y), is prescribed, this leads to a decoupling of
Eq. (10.15), which is now linear in C. An exact solution can be found which has
the form

C =

(
−1+Ae−y2/(2α) 0

0 1/3

)

. (10.16)

The Gaussian structure of C11 is a regularization of the delta-like singularities seen
without diffusion in [40]. When comparing this local analytical solution to the
numerical simulations the dependence on α and Wi is

C11(0,y)≈−1+C Wiα−1/2e−y2/(2α). (10.17)

These solutions are bounded and smooth for all α > 0, and hence polymer diffusion
may be used with some confidence as a regularization of the Oldroyd-B equation as
long as care is taken to choose the length scale over which diffusion acts to be at or
below the grid discretization.

1.5 Molecular Models

Instead of trying to address the singularities of the Oldroyd-B model directly, it is
reasonable to criticize the molecular derivation of the Oldroyd-B model and use
a model with a bounded extensional viscosity or a model which penalizes infinite
extension of polymer coils. Many such models exist, and new molecular models
are still being developed to match desired experimental data. Unfortunately, many
modifications made at the molecular scale cannot be closed at the macroscopic level,
resulting in multiscale or micro-macro models which are extremely computationally
expensive. We discuss a few of the macroscopic models which are related to the
Oldroyd-B model here and refer the interested reader to [2, 5, 41] for many other
models. For various approaches to multiscale modeling of viscoelastic fluids see
[26, 64, 65].

1.5.1 Giesekus Model

Like the Oldroyd-B model, the Giesekus model is also derived using a simple
dumbbell model [66]. Giesekus proposed introducing an anisotropic drag force on
the dumbbell which depends on the stress tensor based on the reasoning that the
drag should be lower in the “direction” the fluid has been stressed. This could be
true for a polymer solution in which the stress causes the molecules to line up in one
direction resulting in lower drag in the direction of alignment. In this model, the drag
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coefficient becomes a drag tensor and adds a nonlinear term to the Oldroyd-B model.
Eq. (10.4) is replaced with

� p +λ�
� p +α

λ
ηp

(� p)
2 = ηp�̇. (10.18)

This additional nonlinear term leads to physically realistic normal stress differences
and bounded extensional viscosity but does not address infinite extension of polymer
coils.

1.5.2 PTT Model

A very different way to derive a similar constitutive model comes from transient
network model theory. Phan-Thien and Tanner [67] derived a model (called the
PTT model) which assumes that polymers are entangled but they can break and
reform. If the breaking rate increases with increasing average chain length, then a
closed constitutive model can be derived which predicts shear thinning and bounded
extensional viscosity. Eq. (10.4) is replaced with

� p +λ�
� p +α

λ
ηp

Tr(� p)� p = ηp�̇. (10.19)

1.5.3 Finite Extension Models

Another modification at the molecular level involves enforcing finite extensibility of
polymer coils. The following modification to the linear Hooke’s law was proposed
by Warner [68]. The force is penalized if the polymers stretch beyond some given
maximum stretch length, R0, which results in a force law

F =
HR

(1−Tr
(
RR)/R2

0

) , (10.20)

where H is a spring constant and R is the end-to-end vector of the dumbbell. The
main drawback with this force law is that one cannot obtain a closed continuum
model for the polymer stress tensor. There have been many closure approximations
suggested, see for example [69–72]. The simplest and most commonly used
approximation is to assume that the force depends on the average extension of the
distribution of springs, and this leads to the FENE-P model [73]; see also Chap. 1.
Including the full form for the force in Eq. (10.20) leads to micro-macro models
which are numerically expensive and beyond the scope of this chapter.
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1.6 Extensional Flow Simulations

Simulations with these models in place of the Oldroyd-B model show that neither
finite extensibility nor maintaining positive definiteness of the polymer stress tensor
will solve the high-Weissenberg number problem. An unavoidable cause of the
problem seems to be that advection of the polymer stress near extensional points
causes large stress gradients which create large forces on the fluid. In [40] it was
shown that although the polymer stress was bounded for the FENE-P model, sharp
gradients and corner singularities were still found in the simulations, perhaps as a
consequence of the force penalization. Here we show new simulations using the
Giesekus and PTT models, which are more stable than the Oldroyd-B model, but
they still break down in long time simulations beyond a critical Wi. These simula-
tions illustrate some of the ideas mentioned in Sects. 1.4 and 1.5 and highlight the
need for careful consideration of the polymer stress tensor. We compare the PTT,
Giesekus, and polymer stress diffusion models to the (Stokes) Oldroyd-B model
in a simple 2D (periodic) extensional flow. We repeat the numerical experiment
performed in [40] which involved solving the Stokes-Oldroyd-B equations in two
space dimensions with a background force prescribed to enforce an extensional flow.

The various models used for the following example all have the same form, given
non-dimensionally as

∇2u−∇p+ξ ∇ ·� p + f = 0, (10.21)

∇ ·u = 0, (10.22)

(C− I)+Wi
�
C+αR(C) = 0, (10.23)

where the conformation tensor is related to the polymer stress tensor as � p =

Wi−1(C− I). For the Stokes-Oldroyd-B equations we set R ≡ 0; the other models
are defined below.

Giesekus R(� p) = (� p)
2

PTT R(� p) = Tr(� p)� p

polymer stress diffusion R(� p) =−∇2� p

Wi = λ/Tf is the Weissenberg number, with λ the polymer relaxation time and
Tf the time scale of the fluid flow. The dimensional scaling F of the forcing f is
used to set the flow time scale as Tf = ηs/ρLF, where ηs is the solvent viscosity,
ρ the fluid density, and L the system size. This sets the dimensionless force and the
time scale of transport to be order one. The parameter ξ = GTf /ηs measures the
relative contribution of the polymer stress to momentum balance, where G is the
isotropic stress in the polymer field in the absence of flow. Note that the parameter
ξ is the ratio of the polymer viscosity to the solvent viscosity and in what follows
we set ξ = 0.5.
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The Giesekus and PTT models both have bounded extensional viscosity, unlike
Oldroyd-B, although we will see below that they still have large stress gradients
near extensional points in the flow for sufficiently large Wi. In what follows, the
parameter α is fixed at 0.001. We note that for this value, the resulting length scale
for the polymer stress diffusion is smaller than the grid spacing.

The numerical experiment in [40] involved analyzing the stress near hyperbolic
extensional points in the flow. The background force

f =
(

2sinxcosy
−2cosxsiny

)
. (10.24)

sets up a four vortex “mixer” in each [−π,π]2 cell, which in a purely Newtonian
Stokes flow (Wi = 0) has solution u =−f/2.

This 2D periodic “4-roll mill” geometry provides an opportunity to compare
solutions to these different models in an extensional flow with no boundary effects.
Given the regular domain, this problem is well suited to a pseudo-spectral method.
Furthermore, as the local analytical solution in Eq. (10.6) suggests, beyond a critical
Wi the polymer stress � p grows exponentially near extensional points, and using
a pseudo-spectral method allows one to analyze the regularity and evolution of the
singularity in Fourier space [74–76].

The algorithm used in [40] for solving (10.21)–(10.23), which is similar here for
R �= 0, was to prescribe initial data for � p, invert the Stokes equation to find the
velocity, and with that update the polymer stress via any appropriate time stepping
method (second-order Adams-Bashforth was used in [40] and will be used here).
We set C(0) = I for isotropic initial data. Inverting the Stokes equation amounts to
solving for u j in Fourier space ( j = 1,2)

û j =
1

|k|2
[
ik j p̂+ iξ k�(�̂ p)� j + f̂ j

]
, (10.25)

where the pressure is found using the incompressibility constraint

p̂ =
1

|k|2
[
ξ k jk�(�̂ p)� j − ik j f̂ j

]
, (10.26)

with summation convention applied for all repeated indices. The stress update is also
performed in Fourier space but care must be taken as the stress advection equation is
nonlinear. In Eq. (10.23) the quadratic nonlinearities are computed using de-aliasing
techniques [77]. We use a filter to zero the high wave numbers before inverting and
multiplying the terms in real space to avoid aliasing errors. The filter we apply
is similar to a simple 2/3 cutoff, but instead we apply a smooth rapidly decaying
exponential cutoff [78] which helps stabilize the simulations. The Fourier transform
is applied again and the nonlinear terms are used to update the polymer stress.

Simulations of the Stokes-Oldroyd-B model (R = 0) were performed with this
algorithm for n2 = 10242 grid points in the [−π,π]2 domain. In [40] two critical
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Fig. 10.2 Wi = 0.6 at t = 5.5: (left) C11(0,y) the first component of the conformation tensor
along the axis of compression where solution is at steady state. (right) Relative difference between
models (Giesekus, PTT, and Polymer diffusion) and the Stokes-OB solution

Weissenberg numbers were identified from the numerical simulations: for Wi < 0.5
it was seen that the polymer stress was smooth, for 0.5 < Wi < 1 the stress
approached a finite-valued cusp exponentially in time and for Wi > 1 the stress was
diverging exponentially in time. These different polymer stress solutions correspond
to different modifications to the velocity field. For sufficiently small Weissenberg
number, Wi � 1, the stress perturbation only modifies the amplitude of the flow,
namely u ≈ Cf where C depends on Wi. The dependence of C on Wi is described
in [40]. However for Wi � 1 the 4-roll mill structure persists, but oppositely signed
vortices arise along the axis of extension and compression. Figure 10.1a shows a
contour plot of Tr(C) at t = 8 for Wi = 5.0. At t = 8 the solution is at “near-steady
state.” Although the polymer stress is still increasing in a neighborhood of the axis of
compression and extension, the size of that neighborhood is decreasing, and the L2

norm of the stress is nearly constant as is the L2 norm of the velocity. The stress has
concentrated along the stable and unstable manifolds of the extensional stagnation
points in the flow. These stress regions are localized and need to be well resolved for
accurate simulations. Figure 10.1b shows a contour plot of the vorticity at the same
time. The near-delta-function stress creates near-cusps in the velocity field which
yield near-jumps in the vorticity. These features are seen in detail when looking at
slices of the polymer stress and vorticity in Figs. 10.1c and d.

In what follows, to compare the different models, we look at two singular
cases separately, namely Wi = 0.6 which has a cusp solution and Wi = 2.0 which
has diverging solutions. Simulations were done for the Stokes-Oldroyd-B model
(R ≡ 0) for Wi = 0.6 and Wi = 2.0 with n2 = 10242 grid points in the [−π,π]2
domain. These “exact solutions” are compared with coarser solutions of the various
models: Giesekus, PTT, polymer diffusion, at 4× coarser resolution, n2 = 2562, and
α = 0.001.
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1.6.1 Cusp Solution: Wi=0.6

Figure 10.2 (left) shows the solution, C11(0,y), for Stokes OB with Wi = 0.6 at
t = 5.5. At this time, the solution has reached steady state, the maximum difference
in the stress over 0.1 time units is O(10−3), and the maximum difference in the
velocity is 2 orders of magnitude smaller. The cusp in the polymer stress is located
at the extensional point in the flow (0,0). The other constitutive models were run
at 4× coarser resolution, n2 = 2562 grid points, and are compared with the Stokes-
OB solution in Fig. 10.2 (right). The different models agree well with Stokes OB.
As expected, the polymer stress diffusion model fails to capture the cusp. However,
outside an O(10−1) region near the extensional point all three models are accurate
to 2 digits. Examining the Fourier spectrum for each of these models (not shown)
reveals that the polymer diffusion model has a decaying spectrum similar to that of
the higher resolution Stokes-OB solution. The spectra of the Giesekus and PTT
models decay much less rapidly, which indicates the approach of a singularity.
Long time simulations with polymer diffusion go to steady state, while the other
models and the Stokes-OB simulations will eventually break down from oscillations
as the solutions become more singular over time.

1.6.2 Diverging Solution: Wi=2.0

When Wi = 2.0 the results from [40] and the local analytical solution indicate that
the polymer stress should be diverging near the extensional point at (0,0). Although
the stress is diverging, the set on which the stress is growing diminishes in time
so that the resultant velocity field approaches a steady state. In these simulations
between t = 6.9 and t ′ = 7.0 we see sup(x,y) |u(t)− u(t ′)| = O(10−4), although
the polymer stress is diverging. If we revisit Fig. 10.1, we see that the effect of
the concentration of polymer stress is to create recirculation cells in the vorticity.
Figure 10.3a shows a slice of the x−component of the velocity u1(π/2,y), at t = 7
(near-steady state) for Wi = 2. This value of Wi is beyond the coil-stretch transition
and we see that the diverging stress leads to a more significant modification to the
flow than the near-cusp stresses for Wi = 0.6. In Fig. 10.3a the flow perturbation
occurs near u1(π/2,0) and as t → ∞ this becomes a near-corner singularity. These
near-corners lead to the near-jumps in the vorticity seen in Fig. 10.1b.

Figure 10.3b compares the other constitutive models (at 4× coarser resolution) to
the Stokes-OB solution for the velocity u1(π/2,y) for Wi = 2, at t = 7. The results
are plotted on a log-log scale for 0 < y < π/2. Here the polymer stress diffusion
model captures the near-corner singularity almost one order of magnitude better
than the Giesekus and PTT models (whose data lies practically on top of one another
in the figure). Figures 10.3c and d show the Fourier spectra of the spatial data in
Fig. 10.3a and b, respectively. The Stokes-OB solution is well resolved at this time
with n2 = 10242 grid points, but the polymer diffusion model captures the essential
features of the flow and is well resolved with n2 = 2562 grid points. The Giesekus
and PTT models are both beginning to lose accuracy in the high frequencies which
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Fig. 10.3 Wi = 2.0 at t = 7: (a) C11(0,y) the first component of the conformation tensor along
the axis of compression where solution is “near-steady state.” (b) Difference between models
(Giesekus, PTT, and polymer diffusion) and the Stokes-OB solution. (c) and (d) Fourier spectra
û1(π/2,k) for different models

may indicate that the solutions are approaching a singularity. Long time simulations
of this problem break down for the Stokes-OB, PTT, and Giesekus model, whereas
the polymer stress diffusion smooths the singularity and the solutions converge to
steady state.

Simulations of FENE-P in this simple framework were done in [40]. It was
shown that simply adding a cutoff to the polymer stress does not solve the problem
of large stress gradients in extensional flows. The cusp-type singular solutions for
1/2 < Wi < 1 were still found for a sufficiently large maximum extension parameter
� and for Wi > 1 the diverging solutions became bounded for finite �, but numerical
evidence indicated an exponential approach to a pair of corner singularities. Some
numerical smoothing appears to be necessary even for this finite extension model
for accurate long time simulations.
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1.6.3 Simulation Conclusions

We see from this simple numerical test that long time simulations for strongly elastic
flows require care in choice of model and method. These high-stress regions arise
in many continuum models based on the upper-convected derivative (Eq. (10.5))
and care must be taken to resolve these regions for accurate information about the
polymer stress contribution to the flow. Adding polymer stress diffusion leads to a
nice balance of smoothing the stress locally while closely matching the flow outside
the small smoothing region.

It is important to be aware of underlying near-singularities in these complex fluid
models when designing numerical experiments. Model modifications which add
finite extension (FENE-P) or which produce finite steady-state extensional viscosity
(PTT and Giesekus) do not entirely get away from the underlying difficulties
with the polymer stress advection equation given in Eq. (10.4). When long time
simulations are required, these stress near-singularities can lead to loss of accuracy
in numerical simulations unless care is taken to identify and address those features.
The addition of polymer stress diffusion as a numerical smoothing, carefully chosen,
does a good job capturing the fine structures while maintaining accuracy over long
times.

Biological applications nearly always involve complex flows near walls and
around obstacles and these flows contain extensional stagnation points which are
subject to high-Weissenberg number problems. Near these regions, the flow has to
be sufficiently well resolved to incorporate the fine stress structures which arise and
feedback to create nontrivial flow patterns. The relaxation time of the elastic stress
also introduces a new time scale which needs to be considered. Coupling fluids with
structures adds further challenges which need to be addressed separately.

2 Immersed Boundary Methods

A common challenge of computational fluid mechanics is solving the equations
of motion in complex geometry. Biological systems are particularly challenging
because they often involve the coupled dynamics of active elastic structures and
the surrounding fluid. There are many examples of such systems involving complex
fluids, some of which were discussed in earlier chapters: beating cilia in mucus in
the respiratory system, swimming sperm in the mucus of the female reproductive
tract, and peristaltic pumping in the reproductive and digestive systems. In each of
these systems, the collective dynamics of the material is an emergent phenomenon
and is the product of the interactions between the fluid and the elastic material.

A popular method for biological fluid dynamics problems involving large
deformations is the immersed boundary (IB) method [79]. The IB method was
originally developed to study blood flow in the heart [80], and it has been applied to
a large range of biological and nonbiological systems over the past thirty years.
The IB method uses two coordinate systems: a moving Lagrangian coordinate
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system for the immersed structures and a fixed Eulerian coordinate system for the
fluid. The Eulerian domain is discretized with a regular, Cartesian mesh which
permits the use of fast methods for solving the equations of fluid mechanics.
A key feature of the method is that it does not require conforming discretizations
of the fluid and structure; instead, the curvilinear mesh is free to cut through the
background Cartesian grid in an arbitrary manner. Consequently, IB simulations
do not require dynamic grid generation, even for problems involving very large
structural deformations.

The popularity and longevity of the immersed boundary method are partly due to
its robustness and simplicity. The method is highly adaptable, and codes require few
changes to be modified for different applications. Typical implementations of the IB
method generally require only solvers for the fluid equations along with routines
to compute elastic forces and to transfer data between the Lagrangian and Eulerian
grids. IB codes can be built on top of existing codes for solving the equations of
the fluid. In fact, the computational examples presented in Sect. 3 use the same
viscoelastic fluid solver for Stokes Oldroyd-B with polymer diffusion that was
used to generate the results in Sect. 1. In Chap. 11, a boundary integral method is
presented to simulate the dynamics of a suspension. We note that boundary integral
methods can only be used for linear equations, and they do not extend to the Stokes
Oldroyd-B model. In this way, immersed boundary methods are more general.

Recently, the IB method has been used to investigate several classical low
Reynolds number bio-fluid problems involving complex fluids in place of New-
tonian fluids. For example, [57, 81] use the IB method to investigate peristaltic
pumping of viscoelastic fluids, and [82–84] use the IB method to explore the
swimming of microorganisms in complex fluids. The goal of this chapter is not
to review the many variants and applications of immersed boundary methods, but
rather to highlight key considerations when using immersed boundary methods
for applications involving strongly elastic fluids at low Reynolds number. In the
remainder of this section, we briefly introduce the key ideas of the immersed
boundary method. We pay particular attention to time stepping algorithms. As we
show in the later sections, traditional explicit-time methods are severely limited for
strongly elastic flows with stiff boundaries.

As discussed in Sect. 1, viscoelastic flows tend to form regions of high stress
with sharp velocity gradients near extensional points. These regions of highly
concentrated stress can be generated by active immersed objects in the fluid, and
resolving these stresses requires finer grid resolution than similar problems of
Newtonian fluid mechanics. Viscoelastic stresses introduce additional time scales
into the problem, and at moderate to high-Weissenberg numbers, the stress evolves
on very long time scales. Capturing these slow dynamics requires performing
long time simulations. In Sect. 3, we illustrate these ideas using an example problem
of a swimming organism in a viscoelastic fluid.
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2.1 Immersed Boundary Equations

Let x ∈ ˝ denote fixed physical coordinates, with ˝ ⊂ R
nf being the physical

domain where nf = 2 or 3 is the dimension of the fluid. Let s ∈ Γ denote
material coordinates attached to the immersed structure, with Γ ⊂ R

ns denoting
the Lagrangian coordinate domain and ns denoting the dimension of the structure.
The physical location of material point s at time t is given by X(s, t)∈ ˝ . The name
immersed boundary method suggests that the elastic structure is a thin interface, i.e.,
an object of codimension one with respect to the fluid (ns = nf−1). While this is the
case in many applications of the IB method, this formulation applies equally well to
immersed structures that have nonzero thickness.

In many biological problems, the structure has the same density as the fluid,
and thus the combined fluid and structure can be described by a single momentum
balance equation, and their motion can be described by a single velocity field.
In the absence of other loading, the forces generated by the deformations of the
structure drive the motion of the fluid through a body force term in the balance of
momentum equation. In this chapter we consider the boundary to be immersed in an
Oldroyd-B fluid (with diffusion coefficient α) at zero Reynolds number. The system
of equations describing the fluid and structure is

ηsΔu−∇p+∇ ·� p + f = 0, (10.27)

∇ ·u = 0, (10.28)

� p +λ�
� p = μp�̇ +λαΔ� p, (10.29)

f(x, t) =
∫

Γ
F(s, t)δ (x−X(s, t)) ds, (10.30)

∂X(s, t)
∂ t

= U(s, t) =
∫

˝
u(x, t)δ (x−X(s, t)) dx, (10.31)

in which u(x, t) is the velocity field, U(s, t) is the velocity of the structure, p(x, t)
is the pressure, � p(x, t) is the viscoelastic stress, f(x, t) is the Eulerian elastic force
density generated by the immersed structure, F(s, t) is the Lagrangian elastic force
density generated by the immersed structure, and δ denotes the Dirac delta function.

The integral operator in (10.30) that determines the Eulerian force density from
the Lagrangian force density is called the spreading operator, which we denote by
S. The interpolation operator that transfers the velocity to the structure is the adjoint
of the spreading operator. Using this notation, equations (10.30) and (10.31) can be
compactly expressed as

f = SF, (10.32)

∂X
∂ t

= U = S∗ u, (10.33)
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respectively. Note that the spreading operator depends on the current position of the
structure. For a discussion of discretizing these operators see [79].

A constitutive law which relates the boundary configuration to the force is
needed to complete the description of the system. The form of the constitutive law
depends on the application being considered. In Sect. 3 we present an example in
which penalty forces are used to actively drive the immersed boundary to follow a
prescribed shape to mimic the undulatory stroke of a swimming worm.

2.2 Explicit-Time Stepping

Typical implementations of the IB method use a fractional time stepping approach
to solve the equations of motion. In the simplest version of such a scheme, the fluid
velocity, pressure, and viscoelastic stress are updated while keeping the position
of the structure fixed, and then the structural position is updated using the newly
computed velocity. In this section, we consider that the viscoelastic stress is known
at the beginning of a time step and thus can be described by its force density
fve = ∇ ·� p. For the model equations considered here, the explicit-time method
advances the solution variables from time tn = nΔ t to time tn+1 = (n+1)Δ t via

ηsΔhun+1 −∇h pn+1 + fn+1
ve +Sn

hF(Xn) = 0, (10.34)

∇h ·un+1 = 0, (10.35)

Xn+1 = Xn +Δ t (Sn
h)

∗ un+1. (10.36)

Notice that the explicit-time method effectively decouples the computation of
the boundary mechanics from the computation of the fluid velocity, pressure, and
viscoelastic stress. This decoupling makes it easy to use existing codes for solving
the fluid mechanics for IB simulations. In this way, the IB method for complex fluids
is identical to the IB method for Newtonian fluids.

It is well known that for applications involving stiff elastic structures, the explicit-
time method requires very small time steps to maintain stability. We let L −1

denote the inverse Stokes operator which maps force densities to velocity fields.
The boundary update equation (10.36) can be expressed as

Xn+1 = Xn +Δ t (Sn
h)

∗L −1Sn
hF(Xn), (10.37)

where we have suppressed the viscoelastic forces for simplicity. This expression
shows that the explicit-time scheme is essentially a forward-Euler method for the
boundary positions, which explains the origin of the stability restriction. For many
constitutive laws, as the grid is refined the problem becomes increasingly stiff.
Because viscoelastic fluids require high grid resolution and sometimes involve long
time integration, the stability restriction may be more limiting than for Newtonian
fluids.
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2.3 Implicit-Time Stepping

Much effort has been devoted both to understanding and to alleviating the severe
time step restriction of fractional step IB methods [85–87]. The solution methods
used in early implicit IB methods were not efficient and were not competitive with
explicit methods [88], and some semi-implicit methods intended to allow for large
time steps still suffered from significant time step restrictions [89,90]. Newren et al.
[86] analyzed the origin of instability in semi-implicit IB methods using energy
arguments, and they gave sufficient conditions to achieve unconditional stability in
the sense that the total energy is bounded independent of the time step size. An
important result by Newren et al. [86] is that it is not necessary to employ a fully
implicit-time discretization to achieve unconditional stability, but the stable time
stepping schemes proposed therein do simultaneously solve for both the Eulerian
velocity field and the Lagrangian structural configuration. As indicated by the early
experience with implicit IB methods, however, developing efficient solvers for the
coupled equations is challenging.

More recently, a number of stable semi-implicit [91–94] and fully implicit
[95, 96] IB methods have been developed. The efficiency of these methods is
generally competitive with explicit methods, and in some special cases, these
implicit schemes can be faster than explicit methods by several orders of magnitude.
Many implicit methods use a Schur complement approach to reduce the coupled
Lagrangian-Eulerian equations to purely Lagrangian equations [94, 95, 97]. These
methods achieve a substantial speedup over explicit methods especially when there
are relatively few Lagrangian mesh nodes [94]. An open question is whether there
exist robust, general-purpose implicit methods that are more efficient than explicit
methods or whether specialized methods must be developed for specific problems.

We present an example of a semi-implicit method which is very similar to
methods presented in [91, 94, 95]. In our implicit-time method, the fluid velocity
at time tn+1 depends on structure forces at time tn+1, rather than on the forces at
time tn as in the explicit method. Again we consider the viscoelastic forces as given.
The system of equations that must be solved for the fluid velocity, pressure, and
structure position is

ηsΔhun+1 −∇h pn+1 + fn+1
ve +Sn

hF(Xn+1) = 0, (10.38)

∇h ·un+1 = 0, (10.39)

Xn+1 = Xn +Δ t (Sn
h)

∗ un+1. (10.40)

Notice that in this time stepping scheme, the structural positions used to define the
spreading and interpolation operators are lagged in time. As shown by Newren et al.
[86], this scheme is unconditionally stable, despite the fact that the positions of the
spreading and interpolation operators are treated explicitly rather than implicitly.
This type of scheme is often termed semi-implicit to emphasize that not all of the
terms are treated implicitly.
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Rather than solve for the velocity, pressure, and boundary position simultane-
ously, we reduce the equations to a single equation for the unknown boundary
positions. Using the inverse operator for the Stokes equations, L −1, the boundary
update equation (10.40) can be written as

Xn+1 = Xn +Δ t (Sn
h)

∗L −1Sn
hF(Xn+1), (10.41)

which resembles a backward-Euler scheme for advancing the boundary positions.
This is a nonlinear equation, which we solve by applying Newton’s method to

G(X) = X−Xn −Δ t (Sn
h)

∗L −1Sn
hF(X) = 0. (10.42)

Let Xk represent the approximate solution at the kth step of the Newton iteration.
Each Newton step involves the update

JδX =−G(Xk) (10.43)

Xk+1 = Xk +δX, (10.44)

where J is the Jacobian of G. We do not explicitly form J. Rather, we perform
multiplication by J as described below, and we solve equation (10.43) using the
generalized minimum residual method (GMRES).

Let JF represent the Jacobian of the force function, F. The Jacobian of G may be
expressed as

J = I−Δ t (Sn
h)

∗L −1Sn
hJF . (10.45)

The product JδX is accomplished by first explicitly multiplying by JF (which is
sparse), then spreading the result to the grid, solving the Stokes equations, and inter-
polating back to the structure. This procedure avoids the need to explicitly form J.
The GMRES solver requires a good preconditioner for efficient performance. As a
preconditioner, we ignore the Stokes solve and use

M = I−Δ t (Sn
h)

∗ Sn
hJF . (10.46)

This matrix is sparse and relatively small (number of the IB points) and can be
factored quickly. The performance of the method is discussed in Sect. 3.5.

Note that each evaluation of the objective function, G, as well as each application
of the Jacobian, J, involves the application of L −1. This operator is never explicitly
constructed. Its application is achieved by solving the Stokes equations for the
fluid velocity. This implicit-time method uses the same code as the explicit-time
method for finding the fluid velocity. Although the immersed boundary code for the
implicit-time method is significantly more involved than the explicit-time method,
this method retains the appealing modularity of the original IB method and allows
the algorithms presented in Sect. 1 to be used without modification.
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3 Locomotion of Undulatory Swimmers

Locomotion of microorganisms at low Reynolds number occurs in numerous
biological processes, and swimming in a Stokesian Newtonian fluid has been
extensively studied and the underlying physics is well understood. See [98] for
a review of low Reynolds number locomotion. There have been many recent
theoretical studies on locomotion in complex fluids [83, 84, 99–106]. Asymptotic
analyses of infinitely long, small-amplitude, undulatory swimmers in a viscoelastic
fluid showed that swimming is hindered by the addition of elastic stresses [100,101].
However, numerical simulation of finite-length large-amplitude swimmers in a
viscoelastic fluid showed that under some conditions, the swimming speed may
be enhanced by the elastic stresses [83]. A similar enhancement was shown for
numerical simulations of infinite-length helical swimmers with large pitch angles
[105]. The results from these papers highlight the importance of computational
methods in exploring problems that are beyond the reach of asymptotic analysis.

In the remainder of this chapter, we use the problem of a finite-length free
swimmer to illustrate the ideas of the immersed boundary method. We pay particular
attention to the additional complications introduced from the viscoelastic fluid,
namely, the need for high grid resolution and the presence of long time dynamics
at high-Weissenberg numbers. The problem we explore is very similar to that
presented in [83], except that the stroke pattern of the swimmer is based on data for a
swimming nematode presented in Chap. 7 of this book and in [107]. In this chapter,
we primarily use this problem as a computational example of the methodology.
For a more in-depth analysis of how the fluid elasticity, body elasticity, and stroke
kinematics affect swimming speed in this problem, see [106].

3.1 Swimmer Model

The worm is modeled as an inextensible infinitely thin sheet, which in two
dimensions is a curve in the plane. The position of the worm is given by X(s, t),
where s ∈ [0,L] is the Lagrangian coordinate. The swimming is driven using a
prescribed target curvature κ0(s, t), which in the absence of resistance from the
surrounding medium represents the shape of the worm.

3.1.1 Immersed Boundary Forces

Both the inextensibility and the shape are enforced by forces that are designed to
penalize extension and deviation from the prescribed curvature. These forces are
derived from expressions for the bending and extension (stretching) energy, which
are given below. For a given configuration of the worm the energy from stretching is
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Es =
ks

2

∫

Γ

(|Xs|−1
)2

ds, (10.47)

where ks is a stiffness coefficient. The bending energy is

Eb =
kb

2

∫

Γ
(κ −κ0(s, t))

2 ds, (10.48)

where kb is the bending stiffness, κ is the curvature of the worm, and κ0 is the
prescribed target curvature. The total energy is the sum of the bending and stretching
energy:

E = Es +Eb. (10.49)

The Lagrangian force densities come from the variational derivative of the total
energy:

δE
δX

X̃ =−
∫ L

0
FX̃ds =−

∫ L

0
(Fs +Fb)X̃ds, (10.50)

where Fs and Fb are the force densities corresponding to stretching and bending,
respectively. The expressions for the force densities are derived by first discretizing
the structure (and hence the energy functional) and then taking the variational
derivative of the discrete energy. The advantage of this approach is that it guarantees
that the total forces discretely sum to zero, which is a requirement to be able to find
a solution to Stokes equations in a periodic domain.

The signed curvature is computed using a discretized version of

κ = n̂ · ∂ t̂
∂ s

= n̂ · ∂ 2X
∂ s2 , (10.51)

where t̂ is the tangent vector and n̂ is the normal vector. We are assuming that the
material is inextensible and the tangent vector is expressed as t̂ = Xs. We compute
the discrete curvature at an interior point using the expression

κ j =

(
n̂ j+1/2 + n̂ j−1/2

2

)
·
(

t̂ j+1/2 − t̂ j−1/2

Δs

)

, (10.52)

where the discrete tangent vector is

t̂ j+1/2 =
X j+1 −X j

Δs
(10.53)

and the discrete normal is the π/2 rotation of the tangent. The discretized expression
for the total energy is
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E =
ks

2

N−1

∑
j=1

(∣∣∣∣
X j+1 −X j

Δs

∣∣∣∣−1

)2

Δs+
kb

2

N−1

∑
j=2

(
κ j −κ0 j

)2 Δs. (10.54)

3.1.2 Curvature Model

We take shape data of a nematode swimming in the water to identify the target
curvature.2 The measured curvature as a function of time and position along the
worm are shown in Fig. 10.4. The body coordinate (in units of mm) runs from s = 0
at the head to s = 1.2 at the tail. The worm shows a periodic motion with a dominant
frequency around 2 Hz (period of 0.5 s), which is evident in the curvature data.

For the model swimmer, we use a curvature function of the form

κ0 = A(s)cos

(
2π
T

(
t +φ(s)

))
, (10.55)

where A is the amplitude, φ is the phase, and T = 0.5 s is the period. We identify the
phase function, φ , by finding the peak cross-correlation between the head and points
along the body. This phase function and a linear fit to it are shown in Fig. 10.5. The
slope of the linear fit is −0.250 s/mm, and so we use a phase function of φ(s) =
−s/4+φ0, where φ0 is the value of the phase assigned to the head.
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Fig. 10.4 Color field of the curvature (in mm−1) data of the swimming nematode as a function of
time and body coordinate along the worm. s = 0 is the head and s = 1.2 is the tail

2The data are kindly provided by Paulo Arratia and Xiaoning Shen.
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Fig. 10.5 Phase (left) and amplitude (right) functions based on the curvature data of a swimming
nematode and their linear fits that are used to define the curvature in the model computations

Data

headtail

Model

headtail

Fig. 10.6 Time sequence of worm shapes from the data (left) and model (right). The colors
correspond to the time progressing from blue to red. The body is positioned with a fixed center
of mass and horizontal end-to-end vector

We compute the time-averaged curvature of the data by

κ̄(s) =
√

1
N ∑

t j

κ (s, t j)
2 (10.56)

and fit this with a linear function. The averaged curvature and the linear fit are
displayed in Fig. 10.5. We choose the amplitude of the curvature in the model by
A(s) =

√
2κ̄fit, so that the model matches the data in the mean squared curvature.

Figure 10.6 shows a time sequence of the actual shapes and the shapes produced
by the model fit. Changes in curvature propagate as phase waves from the head
(s = 0), where the amplitude of the curvature is largest, to the tail. In what follows
we call this type a swimmer a “burrower.” The exact form of the curvature function
used to drive the swimming worm is
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κburrower
0 = (5.3−3.1s)cos

(
4π(t − s/4+φ0)

)
, (10.57)

where φ0 = L/4 is the phase shift chosen to have zero phase at the tail. We note
that in [83] the desired motion of the swimmer involved waves of curvature that
propagated with an increasing amplitude along the direction of the wave. We call
this type of swimmer a “kicker.” For comparison we simulate a kicker using the
change of coordinates

κkicker
0 (s, t) = κburrower

0 (L− s, t0 − t), (10.58)

where L is the length of the swimmer and t0 is a phase shift that keeps the head at
the same phase as the burrower.

3.1.3 Simulation Parameters/Nondimensionalization

The length of the swimmer is 1.2 mm, the period of the oscillation is 0.5 s, and
the phase velocity of the bending motion is 4 mm/s. We nondimensionalize the
equations using a characteristic length scale of L = 1 mm, a time scale of 1 s, and a
velocity scale of U = 1 mm/s. The viscoelastic stresses are scaled by ηpU/L. As in
the previous sections, we set the ratio of the polymer viscosity to the fluid viscosity
to be ξ = ηp/ηs = 0.5. In the viscoelastic fluid we use the Deborah number, De, to
characterize the ratio of the relaxation time of the polymers to the time scale of the
flow. We note that we use the characteristic time scale of 1 s to define the De rather
than the period of swimmer.

For the bending stiffness we choose a characteristic bending stiffness of nema-
todes: kb = 2×10−15 Nm2 [108], which when nondimensionalized becomes kb = 2.
For the stretching stiffness we choose a nondimensional value of ks = 2500. We note
that with this value of the bending stiffness, the actual curvature may be significantly
different from the target curvature. We return to examining the effect of changing
the bending stiffness in Sect. 3.4.

The computations are performed in a 2 mm by 1 mm doubly periodic domain,
with the worm initially aligned in the x-direction. The domain is discretized using a
regular Nx = 256 by Ny = 128 grid, and the points on the swimmer are spaced so that
Δs ≈ Δx. We use the implicit-time stepping scheme with a time step of Δ t = 10−3

and a stopping tolerance of 5×10−5 for the nonlinear solver.
The viscoelastic fluid solver used here is the same solver described in Sect. 1.6.

The dimensionless polymer stress diffusion coefficient is fixed at α = 0.01. The
length scale associated with polymer stress diffusion over a time step is smaller
than the grid spacing (

√
Δ tα ≈ 0.0032 � Δx = 1/27 ≈ 0.0078).
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3.2 Swimming Speed

We simulate the swimming of both the burrower and the kicker until time t =
max(10,10De) which allows sufficient time to establish a periodic motion inde-
pendent of the initial transients. We measure their steady-state swimming speed
by computing the displacement of the center of mass over the last period of the
simulation. In Fig. 10.7 we show the swimming speeds for both the burrower and
the kicker as a function of De, scaled by the swimming speeds for De = 0. While the
burrower always swims slower in a viscoelastic fluid, the kicker swims up to 25%
faster in a viscoelastic fluid. The swimming speed changes non-monotonically as a
function of De for both swimmers, with a local maximum a little beyond De = 1.
The relative swimming speed for the kicker is consistent with the result reported
in [83].

Figure 10.8 shows contours of the elastic energy, Tr(� p), for both the burrower
and kicker at the ending time of the simulation for De = 0.1,0.5,1.0,2.0. These
plots demonstrate the significant differences between both the size and location of
the elastic stresses for the burrower and the kicker. Generally, the elastic stresses are
larger for the kicker, and much more concentrated at the tail.

In Sect. 1, we showed that large, highly concentrated elastic stresses were
produced around extensional points. It is not a priori clear whether the swim-
mer problem is prone to exhibit the flow characteristics associated with high-
Weissenberg number problems. In Fig. 10.9 we show the extensional points, centers,
and streamlines at four representative times in a steady frame translating at the
worm’s average swimming speed for the burrower at De = 0. Periodically, a new
extensional point and center are generated at the head, and shortly after this, an
extensional point and center coalesce at the tail. In between these events, there
are a pair of extensional points and a pair of centers traveling from the head to
the tail. In the plots shown, the strengths of the extensional points range from
0.9 to 2.8, which is in the range subject to high-Weissenberg number phenomena.

Fig. 10.7 Scaled swimming
speed of both the burrower
and the kicker as a function of
De. The swimming speed is
scaled by the speed at De = 0
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Fig. 10.8 Contours of the elastic energy at the end of the simulation for both the burrower and
kicker for different De. The head is on the right

However, examining streamlines provides only limited information. It remains
an open question whether these moving extensional points are related to high-
Weissenberg number phenomena. See Chap. 7 for a similar discussion, and see
[106] for a more detailed study of the effects of fluid elasticity, body mechanics,
and stroke kinematics on swimming speed for this problem.
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time =  1.000

time =  1.195

time =  1.185

time =  1.250

Fig. 10.9 Streamlines in the frame translating with the average swimming speed of the worm for
the burrower in a Newtonian fluid (De = 0). The extensional points are marked with dots and
centers are marked with squares. Four representative times are shown including the creation of a
new extensional point at the head and the disappearance of an extensional point at the tail. The
head is on the right

3.3 Time and Space Resolution

The results of the previous section show that the swimmer problem involves strong
extensional points and highly concentrated elastic stresses that are associated with
high-Weissenberg number problems. Here we demonstrate the importance of long
time scales and fine spatial scales for the swimmer problem.

Figure 10.10 (left) shows the polymer elastic energy, measured as the trace of the
polymer stress tensor, for three different De up to time 20. These data demonstrate
that for high De the elastic stresses evolve very slowly. For De= 5 the elastic energy
is still growing substantially at time t = 20, while the energy is near-steady state
for the lower values of De. The elastic energy for De = 5 up to time 50 is shown
in the inset. The effect of this slow evolution of stress on the swimming speed is
demonstrated in Fig. 10.10 (right) which shows the swimming speed (averaged
over the previous period) as a function of time for different De. For De = 1, the
swimming speed rapidly approaches a steady state, but for high De the swimming
speed increases on a time scale on the order of De, but on long time scales it slowly
decays to a much smaller value. These data demonstrate that understanding the
effects of elastic stresses in systems with large De (or large Wi) requires performing
long-time simulations.
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Fig. 10.10 (left) Time course of the elastic energy in the kicker simulations up to t = 20 for De =
1,2,5. The inset shows the data for De = 5 up to time 50. (right) Swimming speed averaged over
previous period as a function of time for the same parameters
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Fig. 10.11 Swimming speed for burrower and kicker for Ny = 32,64,128,256 and varying De

As Fig. 10.8 shows, highly localized stresses develop around the swimmer for
large De. Here we demonstrate the importance of adequately resolving these large
stress gradients. Figure 10.11 shows the swimming speeds as a function of De for
both the burrower and the kicker as the grid is refined. The results from the two
coarsest meshes and the two finest meshes are notably different. In fact, on the
coarsest mesh, the simulations predict the wrong dependence of swimming speed
on De.
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3.4 Effect of Increasing Bending Stiffness

In these simulations, the active forces of the worm are driven by changes in the
desired curvature, κ0. In the limit that the bending stiffness goes to infinity, the
curvature of the worm approaches the desired curvature, but for any finite value
of the bending stiffness, the curvature of the worm and the desired curvature are
different. In the simulations presented in the previous sections, the bending stiffness
was chosen based on the measured bending stiffness of nematodes. In this section
we examine the effect of changing the bending stiffness on the swimming speed.

Figure 10.12 shows the swimming speed at De = 0.5 for eight different bending
stiffness values from four times lower than that used in the previous sections to 50
times higher. As the bending stiffness increases, the curvature of the simulated worm
more closely follows the prescribed curvature, and the swimming speed approaches
a constant. It is notable that the swimming speed for kb = 100 is about 80 % larger
than for kb = 2, which was the value used in the previous sections.

We repeat the calculations of the steady-state swimming speed from Sect. 3.2
for a range of De for a larger bending stiffness. Figure 10.13 shows the relative
swimming speeds for both the burrower and the kicker for De = 0 − 5 for both
kb = 2 and kb = 40. For both swimmers, the results are very different between the
two stiffness values. In contrast to the softer worm, with the larger bending stiffness,
the burrower’s swimming speed decreases monotonically with De, and the kicker’s
swimming speed is always slower than in a Newtonian fluid.

For the softer bending stiffness, there is a significant difference between the
prescribed curvature and the realized curvature. The target curvature represents
the equilibrium shape that would be achieved in the absence of resistance from
the surrounding medium. The product kbκ0 can be related to the internal torque
density resulting from muscular contraction. In the soft regime, the realized shape

Fig. 10.12 Average
swimming speed at De = 0.5
for different values of the
bending stiffness
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Fig. 10.13 Scaled swimming speed of both the burrower and the kicker as a function of De for
two different bending stiffnesses. The swimming speed is scaled by the speed at De = 0. The data
for kb = 2 is the same as that from Fig. 10.7

results from the complex interaction between the fluid, passive body mechanics,
and actively generated torques. For large elastic stresses, the fluid offers significant
resistance to deformation, and the bending forces must be stiff enough to maintain
the prescribed shape if the intention is to simulate that prescribed shape.

These results demonstrate that care must be exercised when using penalty
methods to ensure that the forces are sufficiently stiff so that the choice of numerical
parameters does not affect the predicted results. Even with the lower bending
stiffness, the equations are extremely numerically stiff, and explicit-time methods
would be very inefficient (see next section). The implicit-time method is necessary
to be able to simulate on long time scales, with a fine grid, and with sufficiently
large stiffness to capture the correct dynamics of the prescribed shape swimmers.

3.5 Efficiency of the Implicit-Time Method

For given stiffness coefficients and grid spacing, we let Δ texp represent the largest
time step that gives a stable simulation in the explicit-time method. We identify
Δ texp using a bisection algorithm. The worm simulation is run until time 0.1, and
considered unstable if the elastic energy rises above a prescribed threshold. In
Table 10.1, we report Δ texp for two different bending stiffnesses and four different
grid resolutions, for De = 0.5. The table shows that when the grid is refined by a
factor of 2, the time step shrinks by a factor of about 8, which is as expected for
bending forces at low Reynolds number [109]. On the finest grid, the reported time
step restriction is an estimate from the coarse grid values.

Each time step of the implicit method requires repeated solution of the Stokes
equations. Each evaluation of the objective function in the Newton’s method and
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Table 10.1 Maximum stable
time step for the explicit
method. The value reported
on the finest grid is estimated
from the coarser grids

Δx kb = 2 kb = 20

2−5 2.76e-4 2.65e-5

2−6 3.28e-5 3.14e-6

2−7 4.01e-6 3.86e-7

2−8 (est) 4.81e-7 3.49e-8

Table 10.2 Average number
of Stokes solves over 1,000
time steps of the implicit code
with Δ t = 10−3

tol = 5×10−5 tol = 1×10−5

Δx kb = 2 kb = 20 kb = 2 kb = 20

2−5 17.82 21.70 22.21 32.34

2−6 20.99 33.45 33.10 43.02

2−7 24.23 44.11 39.48 67.44

2−8 39.58 – 64.41 102.93

each application of the Jacobian require solving the Stokes equations. In Table 10.2
we report the number of times the Stokes equations are solved per time step
for 1,000 time steps of the implicit method with Δ t = 10−3 (two periods of
the swimming motion). We report these values for two different stiffnesses, four
different grid resolutions, and two different stopping tolerances for the Newton’s
method.

Note that on the finest grid with the largest stiffness, the solver failed with the
larger tolerance during the simulation. With a smaller tolerance, no failure occurred.
A more sophisticated nonlinear solver, e.g., including line searching or trust region
methods, would likely be able to compute with the larger tolerance [110, 111]. This
failure illustrates one of the many added difficulties of working with implicit-time
methods in place explicit-time methods.

To estimate the efficiency of the implicit method we compare the number of
times the Stokes equations are solved per time unit with the explicit-time method.
We measure the efficiency as the ratio of Stokes solves in the explicit method to
the implicit method per unit time. This efficiency estimate ignores the extra work
involved in the GMRES iteration in the implicit method. However, it also ignores the
extra updates of the stress equation in the explicit method, and the fact that one is not
likely to run the explicit method exactly at the stability limit. With this in mind, one
may loosely interpret the efficiency measurement as the expected speedup gained
by using the implicit method in place of the explicit method.

The efficiency is reported in Table 10.3 for two different bending stiffnesses, four
different grid resolutions, and two different stopping tolerances for the Newton’s
method. Only on the coarsest grid is the explicit method ever significantly more
efficient than the implicit method. However, as noted previously, the solutions on
the two coarsest grids have very large errors. The coarsest grid spacing which
we consider usable is Δx = 2−7. At this resolution and above, the implicit solver
significantly outperforms the explicit method.

As the grid is refined, the problem gets significantly stiffer, but the work involved
in the nonlinear solver grows only mildly. The number of Stokes solves required per
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Table 10.3 Efficiency of the
implicit method measured as
the ratio of the number of
times the Stokes equations
are solved per time unit in the
explicit method to the
implicit method

tol = 5×10−5 tol = 1×10−5

Δx kb = 2 kb = 20 kb = 2 kb = 20

2−5 0.20 1.15 0.16 1.16

2−6 1.45 6.84 0.92 7.39

2−7 10.28 58.68 6.31 38.38

2−8 52.42 – 32.27 278.23

Numbers greater than one indicate that the
implicit method is more efficient than the
explicit method

time step increases by only a factor between about 2 and 3 as the grid is refined by a
factor of 8, while in the explicit method, the number of Stokes solves would increase
by a factor of over 500. Similarly, when the bending stiffness is increased by a factor
of 10, the work increases by less than a factor of 2 in the implicit method and by
about a factor of 10 in the explicit method. These results illustrate that implicit
methods far outperform explicit methods for very stiff problems on fine grids.

4 Conclusions

Strongly elastic flows at low Reynolds numbers share some characteristics of
high Reynolds number flows, namely, regions of highly localized stress and sharp
gradients in the velocity. One does not expect to be able to use the same algorithms
for low and high Reynolds number, and similarly, special care must be used to
simulate flows at high-Weissenberg numbers. We have highlighted some recent
analytical work on low Reynolds number viscoelastic fluids which has led to new
algorithms for successfully simulating flows at high-Weissenberg numbers. The
unbounded stress growth exhibited by the Oldroyd-B model is not present in many
other models with nonlinear relaxation rates. However, these models also exhibit
large stress gradients at high-Weissenberg numbers, and the algorithms developed
for Oldroyd-B are often still necessary to mitigate these numerical challenges. In
particular, we have demonstrated that the polymer stress diffusion modification
regularizes the Oldroyd-B model so that accurate, smooth, and bounded solutions
are obtained in periodic extensional flow.

It is not obvious how the standard benchmark problems for the high-Weissenberg
number phenomenon such as flow in a contracting channel or steady elongational
flow are directly related to biological problems. We used the classical problem of
an undulatory swimmer at low Reynolds number to demonstrate that when elastic
stresses are under-resolved, the predicted relative swimming speed is qualitatively
different from simulations with resolved stresses. We note that the immersed
boundary method is first-order accurate near structures, and this low accuracy may
make the resolution of stresses more difficult.
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The popularity of the immersed boundary method comes from its simplicity
and robustness which make it more attractive than using a significantly more
complicated high-order method, in particular for problems in biology where high-
order accuracy is often not paramount. Any algorithm for solving the forced
equations of motion for the fluid on a structured grid can be used in an immersed
boundary simulation. The methodology extends to complex fluids without modifi-
cation. The method is not without its drawbacks; notably, its low accuracy and the
severe stability restriction imposed by explicit-time stepping schemes in problems
involving stiff elastic structures. Accurately resolving the stress in strongly elastic
flows requires high grid resolution and long time integration of the equations.
The implicit-time method presented in this chapter makes it possible to perform
simulations on long time scales, with a fine grid, and with large elastic stiffness.
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