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Abstract

This work examines the relationship between spatiotemporal coordination of intracellular
flow and traction stress and the speed of amoeboid locomotion of microplasmodia of Physarum
polycephalum. We simultaneously perform particle image velocimetry and traction stress mi-
croscopy to measure the velocity of cytoplasmic flow and the stresses applied to the substrate by
migrating physarum microamoebae. In parallel, we develop a mathematical model of a motile
cell which includes forces from the viscous cytosol, a poro-elastic, contractile cytoskeleton and
adhesive interactions with the substrate. Our experiments show that flow and traction stress
exhibit back-to-front directed waves with a distinct phase difference. The model demonstrates
that the direction and speed of locomotion is determined by this coordination between contrac-
tion, flow, and adhesion. Using the model, we identify forms of coordination that generate model
predictions consistent with experiments. We demonstrate that this coordination produces near
optimal migration speed and is insensitive to heterogeneity in substrate adhesiveness. While
it is generally thought that amoeboid motility is robust to changes in extracellular geometry
and the nature of extracellular adhesion, our results demonstrate that coordination of adhesive
forces is essential to producing robust migration.
Keywords: amoeboid motility, traction force microscopy, cytoplasmic streaming, cell locomo-
tion, particle image velocimetry

1 Introduction

Cell migration plays a critical role in a wide variety of biological processes, including morphogenesis,
wound healing and the immune response. Amoeboid motility is a fast type of cell migration
defined by large shape changes as the cell extends and retracts various pseudopodia and blebs [46].
These extensions are driven by the interplay between substrate adhesion, the polymerization of
filamentous actin and the pressure driven flow of cytoplasm [39]. Research on amoeboid motility
has recently intensified in part because this migration mode is robust to changes in the extracellular
matrix and the specific molecular nature of the cell-matrix adhesions [35, 17]. That is to say,
amoeboid cells are able to cross barriers, move through confined channels, or squeeze through 3-
D matrices by contracting and pushing-off the surrounding environment. This versatility has
also spurred the exploratory design of bio-inspired millimetric robots made of active self-oscillating
hydrogels [36]. Despite the vast existing knowledge about the biological and molecular processes
involved in cell migration, our understanding of the underlying mechanical processes is still rather
phenomenological. In particular, the coordination of contractility, adhesion and flow of cytoplasmic
material that enables pseudopod extension is not fully understood. In fact, it is not even clear if
coordination of these processes is necessary for motility in all scenarios [35].

This work investigates the coordination of cellular contractile force, substrate adhesion and
cytoplasmic flow in migrating amoebae of the slime mold Physarum polycephalum. Physarum

plasmodia generate a periodic flow of cytoplasm (known as shuttle streaming) through a tubular
network. This flow is driven by pressure gradients created by contraction of the actomyosin network
within the plasmodium [30, 13, 41]. Small-scale physarum amoeabe (∼ 100µm in length) can
exhibit a similar behavior where a rhythmic flow of cytoplasm moves back and forth along the
centerline of a roughly tadpole shaped cell. The onset of this behavior has been observed to coincide
with a drastic increase in the locomotion speed of growing physarum [43]. Larger scale plasmodia
(l ∼ 500µm) can develop more complex morphologies including chains of round contractile heads
connected by relatively inert tubes, as shown by Rieu et al in a companion paper [51].

Due to the relatively large scale of the organism, Particle Image Velocimetry (PIV, [44]) ex-
periments allow researchers to measure the intracellular fluid velocity in physarum amoebae using
cell organelles as flow tracers. The periodic waves of cytoplasmic streaming in tadpole shaped cells
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have been well characterized by PIV and it has been argued that the traveling-wave nature of the
intracellular flow is responsible for generating directed motility [22]. However, a purely hydrody-
namic explanation of physarum amoeboid motility does not address the transmission of traction
stress to the underlying substrate, which is ultimately necessary for cellular migration to take place.
It is unclear if passive, uncoordinated cell-substrate interactions are sufficient for physarum plas-
modia to effectively “flow” across a substrate. Alternately, the motility of physarum plasmodium
might depend upon cell-substrate adhesion being dynamically coordinated relative to the stresses
generated by the flow. It is known that substrate bound structures are mechanically linked the to
actomysosin network within the plasmodium [16]. However, the precise nature of these structures
is not well studied, and there currently exists no quantitative description of the stresses which the
cell exerts on the substrate as it migrates, nor how these stresses are correlated to the cytoplasmic
flow.

To answer these questions, we concurrently perform Traction Force Microscopy (TFM) and
PIV measurements on migrating physarum amoebae. In the past, TFM has been used to study the
adhesive forces that enact locomotion of a diverse array of unicellular and multicellular organisms
ranging from a few microns to a few centimeters in size [45, 24, 42, 29]. In conjunction with
these experiments, we develop a computational model for migrating physarum amoebae based on
a modified Immersed Boundary (IB) [50]. The model accounts for hydrodynamic effects, elastic
forces within the cell interior, and adhesive coupling of the cytoskeleton to the substrate. We use
the model to examine how cytoskeletal contraction, cyotosolic flow, and cell-substrate adhesion
work together to generate cell locomotion.

Our measurements show that traction stresses in migrating physarum amoebae are mainly
distributed along the cell periphery forming an inward contractile pattern. These stresses are
spatiotemporally modulated to establish a rythmic contraction wave that travels in the direction
of cell migration. The contractile wave has the same time period as the intracellular flow waves
previously described, and a phase lag of approximately 1/3 of a cycle. These spatiotemporal
flow and stress patterns are reproduced by the numerical simulations using an idealized model of
adhesion. We apply this adhesion model to investigate the strength of adhesion and its coordination
relative to the rhythmic flow of cytoplasm. Specific coordination patterns are identified which are
consistent with experimental data. These parameters are seen to be optimal in that they (nearly)
maximize migration velocity of the model cell for a given strength of actomyosin contraction.
Finally, we perform numerical simulations of the model cell crawling across randomly heterogeneous
substrates and show that the speed of migration is only mildly perturbed. These simulations imply
that the proposed model of motility is robust to perturbations of adhesiveness of the extracellular
substrate.

2 Experimental Materials and Methods

This section summarizes the cell culture, microscopy and analysis methods employed to prepare mi-
grating physarum microamoebae, and to jointly measure the intracellular flows and traction forces
generated by these amoeabe while migrating. A more exhaustive description of these methods can
be found in the Supplementary Information. Physarum plasmodia were obtained from a generous
gift by Toshiyuki Nakagaki (Research Institute for Electronic Science, Hokkaido University) and
cultured as previously described [22]. Small portions of area ∼ 0.2 × 0.2 mm2 were cut from the
parent plasmodia to produce migrating amoebae, which were transfered to collagen-coated poly-
acrylamide (PA) gels embedded with fluorescent beads. The PA gels were prepared as previously
described [32]. We kept the PA gel humidified throughout the experiment and flattened the amoe-
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bae to facilitate intracellular flow visualization by placing an agarose cap on top of the PA gel
containing the specimen.

Using an inverted microscope, we simultaneously acquired transmitted-light and fluorescence
z-stack image sequences of the migrating physarum amoebae with time resolutions of 0.2 s and 12
s respectively. These data enabled us to jointly measure the intracellular flow and traction forces
generated by the amoebae, which oscillate with a much slower period of ∼ 100 sec [22].

Physarum’s dense distribution of intracellular vesicles was exploited to determine intracellular
streaming velocities from the transmitted light images using particle image velocimetry (PIV)
[22, 44]. The raw image sequences were pre-processed for PIV by applying high-pass, band-pass
and low-pass temporal filters, which allowed us to resolve the flow inside narrow channels (see
Figure 2(a)). The resulting spatial resolution of the flow measurements was 6.5 µm.

The three-dimensional deformation produced by physarum amoebae on the PA substrate was
measured by tracking the displacements of the embedded fluorescent beads as described by del
Álamo et al. [32]. From the measured deformation, we computed the traction stresses (see Fig-
ure 2(b)) and strain energy (see Figure 9) generated by the cells using Fourier TFM methods
described elsewhere [42, 32]. The spatial resolution of these measurements was 13 µm.

3 Mathematical Model

Our model of the cell incorporates the effects of intracellular liquid (cytosol), the solid internal
cell structure (cytoskeleton), and interaction with the extracellular substrate (through adhesion)
in a moving geometry defined by the cell membrane and underlying cortex (see Figure 1). The
model is described by the balance of forces on three materials: the liquid cytosol, the porous
elastic cytoskeleton, and the adhesive complexes which mechanically couple the cell interior to
the substrate. The velocity of the viscous cytosol (~uf ) satisfies the forced Stokes equations. The
fluid forces (viscosity and pressure) are balanced by body forces from the drag due to the internal
cytoskeleton (~fdrag) and the elastic forces on the membrane/cortex which bounds the cell (~fmem).

The forces acting on the cytoskeleton are the elastic forces due to deformation (~Fe), an active
contractile force due to myosin molecular motors in the actin network (~Fa), drag due to the cytosol
(~Fdrag), forces due to adhesions to the substrate (~Fadh), and forces generated by attachment of

the cytoskeletal network to the surrounding membrane/cortex (~F attach
net ). Finally, the adhesion

complexes are subject to forces applied by the external substrate (~Fsubs), balanced by the forces
which the complexes apply to the internal cytoskeleton. The system of equations which describe
these force balances is

µ∆~uf −∇p+ ~fdrag + ~fmem = 0, (1)

∇ · ~uf = 0, (2)

~Fe + ~Fa + ~Fdrag + ~Fadh + ~F attach
net = 0, (3)

~Fsubs −
~Fadh = 0. (4)

These equations effectively describe the cell interior as an actively contractile poro-elastic network.
A similar model (with an additional description of chemical kinetics) has been used to investigate
symmetry breaking and the onset of contractile waves in physarum microplasmodia [21, 20]. For
a description of how we compute these forces and the material parameters, see [34], as well as
Supplemental Section S.2.

The active contractile force (~Fa) drives the deformation of the cell and the flow of cytosol. We
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Figure 1: A schematic of our computational model of a physarum plasmodium. Cytoskeletal
network points are shown as red circles. Membrane points are shown as blue diamonds. Adhesive
points are illustrated as brown exes. Viscous cytosol that permeates the porous media is illustrated
as light blue shading.

assume that this force is generated by a traveling wave of isotropic contractile stress with magnitude

Σa(x, t) =
C

2

(

cos

(

2π

ℓcont
x−

2π

T
t

)

+ 1

)

, (5)

where C is the maximum contractile stress, ℓcont is the wavelength, and T is the period. The spatial
variable x is the the longitudinal body coordinate of the cell. The wave travels along the body
(from posterior to anterior) with wavespeed ℓcont/T . We assume that the resulting wave of cell
shape deformation is directly correlated with the underlying cytoskeletal contraction and choose
ℓcont = 1600 µm (four body lengths) and T = 100 sec, which is consistent with the wavelength and
period of deformation reported in [22] and with our own experiments. Similarly, the value of C is
chosen so that the resulting deformations of the model cell are on the same scale as those observed
in experiments.

Many of the material parameters can be measured or estimated. Conversely, the precise nature
of the proteins with which physarum adheres to the substrate is not known, even if some candidates
have been identified [26]. The period of the deformations observed in physarum is long (∼ 100
sec) compared to the timescale of the dynamics of a cell-substrate bond, and so we represent the
dynamics of adhesion via a viscous drag law [23] of the form

~Fsubs = −ζ(x, t)~Uadh, (6)

where ~Uadh is the velocity of the adhesion complexes (relative to the substrate), and ζ is a viscous
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interaction coefficient. In Section 4.5 we investigate an idealized ζ of the form

ζ(x, t) =
A

2

(

cos

(

2π

ℓadh
x−

2π

T
t+ φ

)

+ 1

)

+ ǫ. (7)

This choice of ζ is inspired by the observation that both the deformation of, and associated flow
within physarum appear to propagate from the posterior to the anterior of the cell as a traveling
wave (discussed in more detail in Section 4). The wavelength ℓadh and period T of the adhesion
modulation are assumed to be the same as those of the contractile wave. The parameter φ represents
the phase of the coordinated adhesion relative to the traveling wave of contraction strength (eq. (5)).
The amplitude parameter A is a measure of the strength of active coordinated adhesion, and will
often be referred to as the “coefficient of adhesion” in the following text. The parameter ǫ represents
nonspecific adhesive interactions between the substrate and the basal surface of the cell. We report
coefficient of adhesion in nondimensional units of [A/ǫ].

4 Results

4.1 Cell Behavior

Upon reaching an adequate size (approximately 100 µm across), we observe the cells elongate into a
tadpole-like shape concurrent with the onset of a rhythmic, pulsating flow of cytosol. In most cases,
this behavior is similar to that reported in [22], with waves of contraction and flow traveling from
posterior to anterior along the long axis of the cell. We refer to these cells as “peristaltic.” We also
observe a second mode of deformation which we call “amphistaltic” due to the fact that the front
and rear contract and relax in an anti-phase manner. The amphistaltic amoeboid mode could be the
precursor of the contractile dumbbells found by Rieu et al. in the companion paper [51]. Of the 21
cells we study, 10 of them clearly exhibit the peristaltic behavior, while 6 are amphistaltic. For an
illustration of the difference between these modes, see Supplementary Information. Approximately
5 of the cells we observe do not obviously fall into the category of peristaltic of amphistaltic mode,
and exhibit characteristics of each. The peristaltic mode appears to be stable on timescales of at
least 1000 sec. After this, the cells migrated far enough to leave the observation window. In this
work we focus only on the peristaltic cells due to the fact that they migrate approximately twice as
fast as amphistaltic cells, and are consistent with the experiments of previous investigations [22].

In peristaltic cells, the cytoplamsic flow is primarily directed along the cell centerline from its
anterior to its posterior end (hereafter referred to as the longitudinal or cell axis), and has a distinct
period of 90±12 sec (measured over 10 cells). A region of cytoplasmic flow directed forward develops
at the cell rear. This pattern of forward flow becomes more prominent and travels along the cell
axis toward the cell front. Eventually, a region of flow directed backwards emerges at the cell rear,
and it also propagates toward the the cell front, before the entire pattern repeats. Figure 2(a)
shows three instantaneous measured velocity fields: a fully developed forward flow pattern, a fully
developed backward directed flow pattern, and the final stages of the backward flow pattern, as
a new forward flow begins at the posterior of the cell. The emergence of this periodic wave of
back-and-forth flow is observed to coincide with a dramatic increase in the migration velocity of
the cell [43].

The migration of the cell is necessarily accompanied by the application of traction stresses to
the substrate. Figure 2(b) shows a sequence of the stresses applied to the substrate by physarum

at three time points which are approximately those reported in Figure 2(a). There is a slight
time difference between the images of (a) and (b) due to changing the imaging channel of the
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(c)(b)(a)

m100 µ

Figure 2: (a) Instantaneous intracellular flow observed in migrating physarum. Arrows indicate the
direction of flow, colormap indicates the projection of flow velocity onto the cell axis [µm/sec]. (b)
Instantaneous traction stresses exerted on the substrate. Arrows indicated the direction of traction
stress, colormap indicates the magnitude [Pa]. (c) Traction stresses with the moving cortical average
removed. Arrows indicate the direction of stresses, colormap indicates the magnitude [Pa]. All
arrow fields are downsampled by a factor of 4 in each direction for visual clarity.

microscope from bright field to fluorescent field. Supplementary Movie 1 shows the joint time
evolution of intracellular flow and traction stresses for the cell in Figure 2.

The dominant feature of this traction stress pattern is purely contractile, with the larger stresses
distributed along the cell periphery. This behavior has been observed in other cell types, and it
has been hypothesized that this effect is due to strong stresses associated with the cell cortex and
directed out of the plane of the substrate [3]. Because our model only considers in-plane stress,
we remove the average “cortical” stress from the measured stress field to compare with model
predictions (See Supplemental Information). At each instant of time, the average traction stress field
is compiled from the traction stresses recorded during the previous, current and following periods
of the observed behavior. We then remove the average contractile stress from the instantaneous
traction stress field, yielding the stress patterns shown in Figure 2(c). This procedure reveals
loci of expansive and contractile stress that propagate from the posterior to the anterior. As the
expansive locus leaves the front of the cell, a new one develops behind the contractile locus.

4.2 Comparison of Model Behavior

In this section, we illustrate the behavior of our model simulations and compare with experimental
observations. All simulations were run with φ = 3π/2 and A = 100ǫ, respectively. In Sections 4.4
and 4.5 we justify this choice and consider other adhesion parameters. In Figure 3(a) we show
instantaneous fluid velocity fields obtained from the model at time intervals analogous to Figure 2.
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Figure 3: (a) Instantaneous intracellular flow computed in model cell. Arrows indicate the di-
rection of flow, colormap indicates the projection of flow velocity onto the cell axis [µm/sec]. (b)
Instantaneous traction stresses computed in model cell. Arrows indicate the direction of stress field,
colormap indicates the magnitude of stress field [Pa]. Again, all arrow fields are downsampled by
a factor of 4 in each direction for visual clarity.

The three panels illustrate a fully developed forward flow, a fully developed region of backward
flow, and the onset of a forward flow pattern at the posterior of the cell (Supplementary Movie
2 shows the time-resolved animation). Qualitatively, they are very similar to the behavior shown
in Figure 2(a). In Figure 3(b) we provide illustrations of traction stress fields (~Ftrac) generated
by our model cell during the same simulation shown in Figure 3(a). The time points shown are
offset from those in Figure 3(a) for a more direct comparison with experiments. The three panels
show the forward propagation of a contractile locus of stress through the cell body, as well as a
locus of expansive stress that exits the anterior of the cell before a weaker one emerges at the
posterior (Supplementary Movie 3 shows the time-resolved animation). In this regard, the model
again reproduces the qualitative behavior observed in live physarum.

To further analyze the flow patterns that we observe (or our model predicts), we generate
kymographs of the measured (or calculated) longitudinal flow averaged over each lateral cross
section of the cell,

U(x, t) =

∫

Ωc

~uf · x̂ dy
∫

Ωc

dy
, (8)

where Ωc denotes the interior of the cell, x is the longitudinal coordinate, y is the coordinate
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orthogonal to the longitudinal axis, and x̂ is unit vector oriented towards the anterior of the cell.
Similarly, we compare kymographs of the observed and measured traction stresses by defining

S(x, t) =

∫

Ωc

~Ftrac · x̂ dy
∫

Ωc

dy
, (9)

which measures the average traction stress in the direction of motion at each cross section of the
cell body.

Figure 4 shows experimental measurements of U , together with results for the model cell. For
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Figure 4: Kymographs of mean longitudinal flow U . (a) Data recorded in migrating physarum. (b)
Values predicted by model simulation. Filled arrows indicate flow directed foward. Open arows
indicate regions of backward flow.

both our experiments and simulations, we observe flows in good agreement with those reported
previously [22]. A periodic pattern is clearly evident, where regions of forward and rearward flow
are generated at the back of the cell, and quickly propagate toward the front in an approximately
linear fashion. We refer to this pattern as a “phase wave,” and to its propagation speed as the
“phase velocity”, cφ. In previous experiments this phase velocity was reported as cφ = 12±1 µm/sec
[22]. Here, we measure higher phase velocities, cφ = 23.8 ± 12.0 µm/sec across our experiments,
and our model predicts 24 ≤ cφ ≤ 38 µm/sec (See Supplemental Information ).
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Figure 5: Kymographs of mean traction stress S. (a) Data recorded in migrating physarum. (b)
Values predicted by model simulation. Filled arrows indicate regions of stress directed forward.
Open arrows indicate stress directed backward.

Figure 5(a) shows a kymograph of traction stresses measured in the same experiment as Fig-
ure 4(a) (with average cortical stresses removed). The data displayed are qualitatively represen-
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tative of a large number of experiments. For comparison, Figure 5(b) shows a traction stress
kymograph for the model cell. In the kymographs, we see a distinct phase wave of adhesion stress
similar to the flow pattern in Figure 4. However, we note that in both experiments and our model,
the phase velocity of the flow patterns is approximately four times faster than that of the traction
stress patterns. The numerically calculated traction kymograph reproduces the main features of
the traction stresses observed in live physarum. However, model and experiment do not agree in all
respects. For example, for these parameters our model predicts the maximal forward stresses occur
at the anterior and posterior of the cell while this does not appear to be the case in experiments. Al-
tering parameters changes this aspect of the model predictions, but may cause other disagreements
with experiments. It is difficult to identify by visual inspection which adhesion parameters most

closely reproduce the spatiotemporal dynamics of the adhesion stress observed in experiments. In
Section 4.5, we develop a more quantitative analysis of the coordination of adhesion to compare
experiments and calculations.

4.3 Role of Flow

It is argued in [22] that the asymmetry in the motion of a fluid particle in such a flow pattern is
directly responsible for the net displacement of the cell. Figure 6(a) illustrates this argument by
showing particle paths in an idealized flow where regions of forward and backward flow propagate
through the cell body. A particle translates forward and then backward with the same speed over
one period of the wave. The particle is in a region of forward flow for more than half the period,
resulting in net forward displacement. We define the asymmetry in the flow to be the ratio of the
forward and backward displacement of such a particle path. Figure 6(b) shows the displacement of
the centroid of a physarum specimen. We define the centroid displacement asymmetry to be the
ratio of the forward and backward displacements of the centroid over one period. In Figure 6(c),
we plot the asymmetry in the flow as a function of the centroid displacement asymmetry, measured
in our experiments. If the flux of mass due to the intracellular flow wave were solely responsible
for the migration of the cell center of mass, then the data in Figure 6(c) would lie on the green
dashed line with slope 1. However, this line is in fact a poor fit to the data, while the best linear
fit (solid blue line) has a much lower slope of ≈ 0.16.

Examining Figure 6(c) more closely reveals a critical phenomenon. We observe that 45% of the
data points have a flow asymmetry less than unity, despite having a centroid asymmetry greater
than unity (lower right quadrant in the figure). Thus, for a significant fraction of our observations
the intracellular flow suggests a net backward translation of mass, even though the cell has moved
forwards. For comparison, in Figure 6(d), we show flow kymographs from two cells. Cell A (marked
with upward triangles in Figure 6(c)) predominantly exhibits a flow asymmetry less than one, while
Cell B (marked with downward triangles in Figure 6(c)) predominantly exhibits a flow asymmetry
greater than one. Both exhibit similar phase velocities of the flow wave. While intracellular flow
is likely to play a role in the migration of physarum, our experiments (and model predictions in
Section 4.4) indicate that intracellular flow kinematics alone cannot determine the migration of the
cell.

4.4 Adhesion Coordination and Crawling Speed

Figure 7 shows the centroid trajectories and flow kymographs for three cells generated with the
model using different forms adhesion coordination. Cell A utilizes a phase parameter of φ = 3π/2
and an adhesion coefficient of A = 100ǫ. Cell C utilizes the same adhesion coefficient, and a reversed
phase parameter of φ = π/2. Cell B was simulated with φ = 3π/2 and adhesion coefficient A = 0.
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Figure 6: (a) An illustration of particle paths associated with a constant phase wave. The forward
and backward particle displacements (Df and Db) are shown. Flow asymmetry is defined to be
Df/Db. (b) A time series of the centroid of a migrating physarum. The forward and backward
centroid displacements (Lf and Lb) are shown. Centroid displacement asymmetry is defined to
be Lf/Lb. (c) Experimentally measured values of flow and centroid displacement asymmetry over
118 periods (each data point) and 9 cells (distinguished by distinct markers). The best linear fit is
shown in blue. The line Df/Db = Lf/Lb in green for comparison. (d) Flow kymographs from the
cells marked A (upward triangles) and B (downward triangles) in (c), illustrating flow asymmetry
less than and greater than one respectively.

All three of these cells are driven with the same contraction pattern, but more importantly exhibit
very similar flow patterns which are all consistent with both our experiments and experiments of
others [22, 43]. However, while cell A migrates forward consistent with experimental observations,
cell B shows no net translation over the course of the simulation, and cell C migrates backwards.
The implication is that while hydrodynamic effects may generate stresses integral to motility, it is
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the coordination of the transmission of those stresses to the substrate that ultimately determines
motility. Furthermore, from Cell B we see that coordinated adhesion is critical to motility. A cell
migrating using just the nonspecific, uncoordinated adhesion (ǫ) fails to migrate.

Time [sec]

C
e

ll
 A

x
is

 [
µ

m
]

Mean Longitudinal Flow [µm/sec]

 

 

0 50 100 150 200 250 300
0  

100

200

300

400

500

−1.5

−1

−0.5

0

0.5

1

1.5

A

Time [sec]

C
e
ll
 A

x
is

 [
µ

m
]

Mean Longitudinal Flow [µm/sec]

 

 

0 50 100 150 200 250 300
0

100

200

300

400

500

−1.5

−1

−0.5

0

0.5

1

1.5

B

Time [sec]

C
e

ll
 A

x
is

 [
µ

m
]

Mean Longitudinal Flow [µm/sec]

 

 

0 50 100 150 200 250 300
0

100

200

300

400

500

−1.5

−1

−0.5

0

0.5

1

1.5

C

0 50 100 150 200 250 300
−40

−30

−20

−10

0

10

20

30

40

C
e
ll
 C

e
n

tr
o

id
 L

o
c
a
ti

o
n

 [
µ

m
]

Time [sec]

A

B

C

(a) (b)

Figure 7: Numerically calculated time sequence of cell center is shown in (a). The solid lines
indicate the centroids of individual cells, while the corresponding dashed lines indicates a best
(least squares) linear fit. Migration speeds reported are given by the slope of this fit. The flow
kymographs of U for each cell are shown in (b). Filled arrows indicate forward flow. Open arrows
indicate regions of backward flow.

For comparison, Figure 6(b) provides a time course of the center of a physarum specimen
migrating in the lab. Qualitatively, the predicted migration behavior of model cell A closely matches
that observed in our experiments. We see a distinct, periodic translation forward and backward,
with a pronounced asymmetry to the two translations resulting in a net forward displacement of the
cell. For the simulation shown, the net displacement of the model cell is approximately 6 µm per
period, which is is equivalent to an average migration velocity of ≈ 0.06 µm/sec. In the laboratory,
we measure physarum migrating at speeds of 0.169±0.041 µm/sec across the 10 cells which exhibit
peristaltic behavior. Thus, our model predicts physarum migration in reasonable agreement with
experiments, and suggests that coordination of adhesion and contraction is essential for efficient
locomotion.

We now explore the speeds of migration predicted by the model as a function of adhesion
strength and coordination. We perform simulations varying the phase parameter (φ) over eight
equally spaced values from 0 to 2π, and the coefficient of adhesion (A) over 6 orders of magnitude.
All parameter values give rise to similar periodic displacements (as shown in Figure 7). However,
depending on the phase and strength of adhesion, our model predicts various translation velocities
and directions of migration (Figure 8).

We observe that the migration velocity of the model cell is a non-monotonic function of adhesion
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Figure 8: Average cell crawling speed as a function of adhesion coefficient and adhesion phase.
Adhesion coefficient is reported in non-dimensional units [A/ǫ]. Dashed grey line indicates zero
migration velocity.

coordination and strength. Indeed, the cell speed is maximal at moderate values of coordinated
adhesion, while uncoordinated or strongly adherent cells display negligible migration. In the limit
A << ǫ, the coordinated adhesion is negligible compared to the uniform, uncoordinated adhesion
and the cell cannot move directionally despite generating periodic cell shape changes (see cell B in
Figure 7). In the limit of strong adhesion A >> ǫ, the cell is effectively stuck to the substrate and
cannot move even if this adhesion is highly coordinated. Experiments performed on highly adhesive
substrates coated with collagen and the polycation poly-L-Lysine [31] are qualitatively consistent
with the model predictions. Physarum amoebae migrating on these sticky substrates adopt a
tadpole shape, and create peristaltic contraction waves and intracellular streaming. However, they
barely move (see Supplementary Movie 4).

As each simulation is driven with active contractions of the same amplitude and form, we may
consider migration speed of the cell as a measure of efficiency. The cell translates most efficiently
with an active adhesion coefficient of A/ǫ ∼ 10–100, and a coordination phase of φ ∼ π–3π/2.
Thus, the model predicts an optimal parameter regime in which to drive motility. However, the
parameters A and φ are not measurable in our experiments. In the next section, we develop a
quantitative measure of the relative timing of flow and adhesion within physarum. This will be
used to determine if these model parameters are consistent with experiments.

4.5 Adhesion Correlation

We examine the time evolution of the strain energy exerted by live migrating physarum on their
substrate (Equation S.5), and compare it with the evolution of the average intracellular flow velocity.
The results show a distinct periodic pattern in both variables, with the flow wave preceding the
adhesion wave by approximately a quarter period (Figure 9, left panel). This behavior is robust
across the 9 reported experiments. To more precisely quantify this phase relationship between flow
and adhesion energy, we calculate the cross correlation of flow and adhesion energy, as well as
the autocorrelation of the flow wave (Figure 9, right panel). The distance between peaks of the
autocorrelation function is interpreted as the period of the flow wave oscillation (T). The position
of the first peak (restricted to times t > 0) of the cross correlation function indicates the relative
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timing of the flow and energy waves (θ). The ratio θ/T defines the relative phase (between 0 and
1), which we measured to be 0.34 ± 0.07 in our experiments.
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Figure 9: Experimentally measured flow (solid) and energy (dashed). Left panel shows average
flow velocity within the cell interior, as well as total strain energy of adhesion as a function of time.
Right panel shows auto and cross correlation of flow and energy, as well as the relative timing θ.
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Figure 10: Numerically calculated flow (solid) and energy (dashed). Left panel shows average flow
velocity within the cell interior, as well as total strain energy of adhesion as a function of time.
Right panel shows auto and cross correlation of flow and energy, as well as the period T .

We perform the same analysis for the model simulations. Figure 10 shows the average intra-
cellular fluid velocity and strain energy within the model adhesions, as well as the auto and cross
correlation of these two time sequences. The data shown is for a cell with φ = 3π/2 and A = 100ǫ,
which is the same parameter set used for the forward moving cell in Figure 7, as well as Figures 4
and 5. For these parameters, the model reproduces accurately the observed phase relationship
between flow and energy waves. We see a clear phase lag of approximately a quarter period.

Given the good agreement between model and experiments, we utilize the phase relationship
between flow and energy to identify plausible adhesion parameters in the model. The results are
shown in Figure 11(a), where we report the relative phase lag of the energy wave, in periods of
the wave, for all simulations shown in Figure 8. For reference, the relative phase observed in
experiments (0.34± 0.07) is illustrated with the solid and dashed grey lines. The relative phase of
adhesion energy appears to be highly sensitive to φ, and relatively insensitive to adhesion strength
(beyond the range A ≈ ǫ). Values of φ in the range 3π/2–2π (2π and 0 are equivalent) produce
a relative timing which is consistent with experimental measurements. Of these parameter values,
φ = 3π/2 is the only one which produces migration in the forward direction regardless of the
strength of coordinated adhesion. For cells using φ = 3π/2, the phase lag between flow and
strain energy remains in the range 0.21–0.33 when varying the adhesion strength over 6 orders of
magnitude. Specifically, in the case of highest migration velocity, we measure a phase lag of 0.25.
In Figure 11(b) we show the average adhesion timing θ/T (calculated for all values A > ǫ) and the
maximum signed migration velocity for each value of the coordination parameter φ. Again, we see
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that of the values of φ which are consistent with experiment, φ = 3π/2 produces the maximum
migration velocity.
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Figure 11: Panel (a) shows maximum cross correlation of elastic energy of adhesion and average
cytoplasmic flow. Adhesion coefficient is reported in non dimensional units [A/ǫ]. Horizontal grey
lines indicates experimentally measured phase of 0.34±0.07. Panel (b) shows the average adhesion
timing and maximum migration speed for each value of adhesion coordination φ. Vertical grey lines
indicates experimentally measured phase of 0.34± 0.07

4.6 Robustness

From the criteria discussed above, the spatiotemporal pattern of adhesion which is most consistent
with experimental evidence corresponds to a phase lag of φ ≈ 3π/2 and a strength of A ≈ 100ǫ.
Furthermore, these parameters predict nearly optimal migration velocity within the constraints of
the model. It is noteworthy that this optimal migration velocity is not sensitive to the strength of
adhesion. Returning to Figure 8, we see that the model predicts a migration velocity above 0.03
µm/sec (roughly 50% of maximal) over more than two decades of adhesion strength. Thus far, our
simulations consider only spatially uniform substrates. In relevant environments, the strength of
adhesive interactions between the cell and substrate is not homogenous, as numerous extracellular
and intracellular factors may affect such interactions. Therefore, we modify our model to quantify
the robustness of migration with respect to spatial variations in adhesion strength. We alter the
model of cell adhesions to the substrate in order to incorporate spatial heterogeneity. The existing
form of adhesion (eq. (7)) is replaced with

ζ(x, t) =
A

2
g(xlab, ylab)

(

cos

(

2π

ℓadh
x−

2π

T
t+ φ

)

+ 1

)

+ ǫ, (10)

where g(xlab, ylab) is a randomly constructed function of fixed laboratory coordinates. By construc-
tion, this function has mean of µr = 1 and standard deviation σr = 0.34 (for further details, see
Supplemental Information). This has the effect of spatially modulating the strength with which
the cell adheres to the substrate.
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Figure 12: (a) Open circles indicate outliers in data set. Filled red points indicate the migration
velocity calculated for a cell migrating across a homogeneous substrate. The inset shows a single
randomly generated example of the spatial heterogeneity g(x, y). (b) Dashed black lines indicate
time course of centroids of cells migrating across random substrate. Solid red line indicates cell
migrating across homogeneous substrate. φ = 3π/2 in all cases.

Using the randomly constructed function g to represent a heterogeneous substrate, we simulated
cells migrating across ten different substrates. We performed these simulations for the three values
of φ which generically resulted in forward migration, and values of coordinated adhesion that results
in the greatest migration velocity for each phase parameter. This means φ = π, 5π/4, and 3π/2,
with A = 20ǫ, 40ǫ, and 100ǫ, respectively. The results are summarized in the box plot of Fig-
ure 12(a). The spread of the data shows that migration speed is relatively insensitive to substrate
heterogeneity for the considered values of φ. Notice that the value φ = 3π/2, which is most consis-
tent with our live physarum experiments, produces a substantially lower spread in migration speed,
with half the data falling within ±2.5% of the median value. Thus, this spatiotemporal pattern of
adhesion coordination is highly robust with respect to local variations in the strength of substrate
adhesiveness.

Figure 12(b) shows the time evolution of the centroid of the 10 cells with random adhesion
strength for φ = 3π/2 (black), compared with the homogeneous substrate case (red). The inset
shows the full time course, while the main panel shows just the final 100 sec of migration. Over
time, the location of the cells migrating across random substrates begins to deviate as random
effects accumulate over time. However, these deviations are quite small compared to the scale
of cell migration. This result indicates that, for the set of model parameters that reproduce the
experimental measurements, the instantaneous speed of migration is remarkably insensitive to the
spatial heterogeneity of the substrate throughout the whole oscillation period.

5 Discussion

Migrating amoeboid cells such as physarum microplasmodia apply highly dynamic traction forces on
their surroundings, leading to large shape changes and fast intracellular streaming flows. However,
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there is a paucity of simultaneous measurements of traction forces and intracellular streaming,
which has made it difficult to develop mechanistic models that relate the forces driving amoeboid
motion and the cellular deformations realizing this motion.

In this work, we combine simultaneous measurements of cytoplasmic flow and the traction
stresses in migrating physarum microplasmodia, with detailed computational models of amoeboid
migration that resolve the mechanics of cellular deformation and substrate adhesion. Our mea-
surements reveal that physarum amoebae move by creating traveling waves of contractile traction
stresses with a well defined period of ∼ 100 sec. The traction stress waves are similar in character
to the previously observed waves of intracellular flow, but the flow waves consistently precede the
stress waves by ∼ 1/4 cycle. Inspired by this observation, we use our numerical model to investi-
gate the consequences of migration using traveling waves of coordinated contraction and adhesion.
Our investigations show that, by altering the timing of adhesion relative to the flow wave, the cell
is able to migrate with different velocities and in different directions. These findings transform
the previously established view that directional migration of physarum amoebae is caused by the
directionality of the flow waves [22].

By juxtaposing our modeling and experimental work, we have identified specific forms of gener-
ation and transmission of cellular forces which plausibly drive the migration of physarum amoebae.
Within the context of our adhesion model, our simulations and experiments reveal a distinct pat-
tern of spatiotemporal coordination between contraction and adhesion which reproduces the exper-
imentally measured cytoplasmic flows and traction stresses, and the scale of cell migration speed.
This coordination pattern consists of a phase lag of 3/4 cycle between adhesion and contraction
(φ ≈ 3π/2). In addition to validating the model, this result provides insight into the underlying
mechanism of amoeboid motility. The particular adhesion coordination pattern we highlight is
extremely robust to perturbations in adhesive interactions with the extracellular environment, and
results in nearly maximum migration speed within the context of the model. Interestingly, the
adhesion coordination pattern that produces maximum migration speed (φ = 5π/4) is less robust,
possibly because it does not properly reproduce the relative timing of flow and traction stress.
This insight into the potential compromises of different adhesion coordination would not have been
possible through experimental investigations alone. Our model allows us a direct control over the
coordination of adhesion that we are unable to control in a laboratory setting.

We note that our frictional adhesion model is rather independent of the precise nature of the
cell-substrate interactions. While this model could be justified as a time averaged effect of integrin-
like molecular binding, this assumption is not necessary to arrive at the precise mathematical form
that we use. Indeed, it is unclear how physarum exerts stresses on its surroundings. Previous models
have suggested that wave-like patterns of contraction may spontaneously arise from the coupling
of the mechanics and chemistry of contraction in physarum [21, 20]. It is plausible that a similar
mechanism may give rise to a wave-like modulation of the strength of adhesive interactions. Though
it is unlikely that microplasmodia migrate utilizing adhesive patterns as simple as our idealized wave
of adhesion, our modeling assumptions are consistent with a variety of possible mechanisms. More
experimental investigation into the specific nature of physarum-substrate interaction is required.

While somewhat unique, the motility of physarum microplasmodia shares fundamental char-
acteristics with other forms of amoeboid migration. Rythmic cellular contractions of period ∼ 100
sec are known to drive the motion of neutrophil-like and Dictyostelium amoeboid cells [42, 7]. In
particular, while intracellular flow kinematics do not fully determine the motility of physarum,
our results suggest that cellular contractions are used to generate intracellular flows and cell lo-
comotion. The use of pressure-driven flows of cytoplasm to generate translation has been widely
observed in motile cells [39, 14, 7]. This is in contrast to cell types which utilize the polarity of
actin filaments to generate polymerization-driven protrusions such as lamellapodia and filapodia
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[2]. Our experimental model does not generalize to this type of motility, but our modeling frame-
work could be adapted to account for network polarity and polymerization stresses. Furthermore,
the observed motility of physarum is consistent with a model of cell-ECM interaction that does not
require specific integrin-like binding molecules. It has been shown that neutrophils undergo amoe-
boid migration in three dimensional environments in the absence of specific binding molecules [17].
This contributes to the growing notion that friction mediated motility is biologically advantageous,
as it is robust to geometric and mechanical changes in the ECM [35, 14].

The form of amoeboid motility we observe in physarum also shares many characteristics with
locomotion in higher organisms. The traveling wave of contraction is similar to contraction patterns
observed in migrating gastropods, annelids, and dictyostelium slugs. In both experimental and
theoretical investigations of these organisms, it has been seen that the direction of contraction
wave propagation is not the critical factor in determining migration direction. Rather, migration
results from the timing of interactions between the organism and substrate [29, 6]. As we have
previously discussed, this same behavior is observed in our model.

While physarum locomotion shares this behavior with various gastropods and annelids, we note
that the amoeba moves on a vastly different scale than these organisms. The slugs observed in [29]
ranged from 0.7-28 cm in length, while physarum microplasmodia begin to migrate in this fashion
after reaching a size of approximately 100 µm. This seems to indicate that a motility mechanism
predicated on traveling waves of strain and appropriately timed adhesive interactions represents a
robust design principle; one which is viable across length scales from cellular to macro. Indeed,
the advantageous characteristics of physarum have not gone unnoticed by the robotics community,
where the organism has been the inspiration for biomimetic design [36, 40].
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[17] Lämmermann, T., Bader, B. L., Monkley, S. J., Worbs, T., Wedlich-Söldner, R., Hirsch, K.,
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S Supplemental Information

S.1 Experimental Materials and Methods

Cell preparation Physarum Plasmodia were grown from sporae on 1% agar gel (Granulated;
BD) using 150 × 15mm culture plates (BD), fed with oat flakes (QUAKER) and kept in a dark
humid environment at room temperature. Small portions of ∼ 1 × 1 mm2 were cut from the
plasmodium tips, transfered to a new agar plate and kept overnight until they developed a tubular
shape. The process was repeated to harvest a smaller portion of ∼ 0.2 × 0.2 mm2, resulting in a
single migrating amoeba with noticeable intracellular streaming.

Substrate fabrication Collagen-coated Polyacrylamide PA gels were prepared for traction force
microscopy as previously described [1], following well-established protocols [2, 3]. The gel was ∼ 1.5
mm thick and consisted of two layers; the bottom one contained no florescent beads, while the top
one was thin (∼ 10µm) and contained 0.5µm florescent beads (FluoSperes; Molecular Probes). The
gels were fabricated using 5% acrylamide and 0.3% bisacrylamide (Fisher BioReagents), resulting in
values of the Poisson ratio and Young’s modulus equal to 0.46 and 8.73 kPa respectively [4]. Single
amoebae were transfered from the agar culture plates and seeded on top of the polyacrylamide gel.
A 3 mm-thick cap made of 0.8 % agarose was placed over the amoebae immediately after. The
weight of the agar cap generated a pressure on the amoebae (≈ 30 Pa) which is comparable to
but smaller than the traction stresses generated by the cells, thus generating a gentle confinement.
Such confinement prevented the PA gel from drying out and rendered the intracellular flows easier
to visualize, while at the same time allowing the cell to generate measureable deformations in its
surroundings. A simple schematic of the gell–agar cap apparatus can be found in Figure S.1.

Microscopy A Leica DMI 6000B inverted microscope and a PC running Micro-Manager software
were used for image acquisition [5]. Time-lapse sequences were obtained at 16X by alternating
bright-field and fluorescence acquisitions every 12 sec. First, 10 images were acquired in the bright
field for intracellular flow quantification at a frame rate of 5 Hz. Then, a 40-image fluorescence z-
stack (∆z = 1µm) was acquired for traction force microscopy over 10 sec. This alternating sequence
was repeated until the cell moved out of the field of view, allowing us to obtain a quasi-simultaneous
quantification of intracellular streaming and traction stresses during physarum migration, given
that the timescale of this phenomenon is ∼ 100 sec [6]. Additionally, we performed a number of
experiments where we continuously acquired bright field images at 5 Hz to quantify intracellular
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Figure S.1: Schematic of a physarum specimen between an agar cap and Polyacrylamide gell
substrate.

streaming at high time resolution. An image set from an example cell (both bright field and
florescence z-stacks) is available online at [7].

Flow Quantification The cystoplasm of physarum amoebae is densely packed with vesicles
that can be used as flow tracers to quantify the intracellular streaming velocity by particle image
velocimetry (PIV) [6, 8]. A common feature of shuttle streaming in physarum is the occurrence of
narrow (∼ 20µm in diameter) channels, inside of which the flow speed is much higher than outside.
To accurately resolve these channels, we pre-process the raw image sequences using high-pass,
band-pass and low-pass temporal filters,

IHigh(t) =
1

6
I(t− 2)−

4

6
I(t− 1) + I(t)−

4

6
I(t+ 1) +

1

6
I(t+ 2), (S.1)

IBand(t) = −
1

2
I(t− 2) + I(t)−

1

2
I(t+ 2), (S.2)

ILow(t) =
1

4
I(t− 1) +

1

2
I(t) +

1

4
I(t+ 1), (S.3)

where I denotes the raw images and t is the acquisition time point. Then, we ran our in-house
PIV algorithm on each one of the filtered image sequences Ihigh, Iband and Ilow. At each point in
space and time, we asigned the velocity vector resulting from the filtered sequence that maximizes
the PIV signal-to-noise ratio. The PIV interrogation window size and spacing were respectively 32
and 8 pixels, yielding a spatial resolution of 6.5 µm.

Measurement of substrate deformation and determination of traction stresses The
three-dimensional deformation of the polyacrylamide substrate was measured at its top surface
on which the physarum amoebae were migrating, as described by del Álamo et al. [1]. Each
instantaneous fluorescence z-stack marking the positions of the beads in the gel was cross-correlated
with a reference z-stack in which the substrate was not deformed; the latter was typically obtained
by waiting until the cell moved out of the field of view. The comparison between the deformed and
undeformed (reference) images was carried out by dividing each instantaneous and reference z-stack
into interrogation boxes and optimizing the cross-correlation between each pair of interrogation
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boxes in three-dimensions, similar to PIV. We used interrogation boxes of 32× 32× 40 pixels with
a 50% overlap in x and y directions, leading to a spatial resolution of 13 µm.

Using these measurements as boundary conditions, we computed the three-dimensional defor-
mation field in the whole polyacrylamide substrate by solving the elasticity equation of equilibrium
for a linear, homogeneous, isotropic three-dimensional body,

(1− 2σ)∇~c+∇(∇ · ~c) = 0, (S.4)

where ~c is the deformation field and σ is the poisson ratio. The exact analytical solution to this
problem can be found elsewhere [9, 1].

The traction stress ~τ = (τxz, τyz, τzz) exerted by the cell on the substrate is then obtained from
the computed deformation field. The mechanical work exerted by the cell on the substrate, which
is also the strain energy stored in the deformed gel is

Eelas =
1

2

∫

S

~τ(z = h) · ~c(z = h)dS (S.5)

Removing Average Cortical Stress For each time point we calculate the “moving average”
stress field

~τavg(t) =
1

t2 − t1

∫ t2

t1

~τ(t′)dt′. (S.6)

Here, ~τ(t) is the instantaneous traction stress filed and t1 and t2 are the time points represent the
beginning of the previous cycle and the end of the following cycle (measured with respect to t). We
then calculate the dynamic instantaneous stress, defined as

~τdyn = ~τ(t)− ~τavg. (S.7)

The field ~τdyn is the quantity which we report in most of the body of this work.

S.2 Computational Model Details

S.2.1 Mixed Eulerian-Lagrangian Model

Our mathematical model is based on the Immersed Boundary (IB) method, which was originally
developed to simulate blood flow [10], but has since been adopted to address an array of fluid-
structure interaction problems in biology and engineering [11]. The key feature of the IB method
is that the equations of fluid mechanics are solved in a fixed Eulerian coordinate system (with
coordinate ~xlab and domain Ω), while the equations of the immersed solid structure are represented
in a moving Lagrangian coordinate system (with coordinate ~x and domain Γ). In the context of the
present work, the Eulerian fluid represents the viscous cytosol which permeates the cell interior,
while various Lagrangian structures will represent the various intracellular structures. Transforms
between the two coordinate systems are accomplished by the so called spread and interpolation
operators, which are both convolutions against a delta distribution kernel [12]. The spreading
operator, denoted by S, maps Lagrangian quantities to the Eulerian coordinate system via

~v = S ~V =

∫

Γ

~V δ
(
~X (~x, t)− ~xlab

)
d~x. (S.8)

Similarly, the interpolation operator, denoted by S∗, maps from Eulerian coordinates to Lagrangian,

~V = S∗~v =

∫

Ω
~v δ
(
~X (~x, t)− ~xlab

)
d~xlab. (S.9)
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We use the convention that quantities defined as a function of the Eulerian coordinate are denoted
with lower case letters, while functions of Lagrangian coordinate are denoted with upper case
letters. For example, the instantaneous location of a material point of the cytoskeleton is given by
~X(~x, t). Recall that the force balance equations which describe our model are

µ∆~uf −∇p+ ~fdrag + ~fmem = 0, (S.10)

∇ · ~uf = 0, (S.11)

~Fe + ~Fa + ~Fdrag + ~Fadh + ~F attach
net = 0, (S.12)

~Fsubs − ~Fadh = 0. (S.13)

We will now describe the various forces which appear in Equations (S.10) to (S.12). The details
of our framework and the methods that we use to discretize and simulate these equations can be
found in [13].

S.2.2 Cytoskeletal Forces

Drag Force The cytoskeletal network moves with its own velocity field (~Unet) which is distinct
from that of the viscous cytosol. The relative motion of these two materials gives rise to a drag
force which acts upon the cytoskeleton

~Fdrag = ξ
(
~Uf − ~Unet

)
, (S.14)

where ~Uf = S∗~uf is the fluid velocity evaluated on the cytoskeleton and ξ is a drag parameter
which describes the mechanical coupling of the network and sol. There is necessarily an equal and
opposite drag force which acts upon the fluid given by

~fdrag = −S ~Fdrag. (S.15)

Elastic Forces The elastic force ~F e within the cytoskeleton is generated by the deformation
of the cytoskeleton. We calculate ~F e using a discrete triangular network of nodes connected by
springs. The strain energy in the elastic link connecting nodes ~Xi and ~Xj is given by

eij =
kij dℓij

2

(
| ~Xi − ~Xj | − dℓij

dℓij

)2

, (S.16)

and we refer to this quantity as the link energy. Here, dℓij is the length of the link in its undeformed

state and the elastic parameter kij has units of force. The total elastic energy at a point ~Xi is

Ei =
1

2

∑

j

eij , (S.17)

where it is understood that eij is zero unless ~Xj is connected to ~Xi. We refer to this Ei as the
node energy. The factor of 1/2 which appears in (S.17) is included to ensure that summing the link
energies or node energies over the network results in same total discrete elastic energy:

E =
∑

i

Ei =
∑

i,j

eij . (S.18)
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From the form of (S.18) we compute the total force at a point ~Xi as

F̂i = −
∂E

∂ ~Xi

=
∑

j

−
∂eij

∂ ~Xi

, (S.19)

where the force exerted by the single elastic spring connecting nodes ~Xi and ~Xj is

−
∂eij

∂ ~Xi

= −kij

(
| ~Xi − ~Xj | − dℓij

dℓij

)
~Xi − ~Xj

| ~Xi − ~Xj |
. (S.20)

Finally, the force density at ~Xi is given by

~Fi =
F̂i

dAi
, (S.21)

where the area weight dAi at each point ~Xi is the sum of one third the area of each triangle with
vertex ~Xi. The elastic parameter for each link kij is chosen in such a way to that this network
reproduces (for small strain) a two-dimensional linear, isotropic elastic solid with a given Lamé
constant (λ2D)

kij =
8λ2D

3dℓij

(
dAi + dAj

2

)
. (S.22)

A detailed analysis of this procedure may be found in [13]. We then regard the stresses associated
with this two-dimensional network as the integral (in the direction orthogonal to the substrate) of
the stresses in a uniform three dimensional network (of height d = 20 µm) with the elastic modulus
λE listed in Table S.1.

Dimensional Reduction To illustrate, consider a simplified elastic force balance law (in three
dimensions) for the cytoskeleton. We disregard active stresses and lump everything but elastic
forces into a term we call ~Fbody.

~Fbody +∇ · σ = 0. (S.23)

Here, σ is the elastic stress tensor and is proportional to some Lamé constant λE . Written out in
component form, in the region 0 < z < d, we have

∂xσ
xx + ∂yσ

yx + ∂zσ
zx + F x

body = 0, (S.24)

∂xσ
xy + ∂yσ

yy + ∂zσ
zy + F x

body = 0, (S.25)

∂xσ
xz + ∂yσ

yz + ∂zσ
zz + F x

body = 0. (S.26)

We envision a surface force applied to the basal boundary of the cytoskeleton by adhesive structures
linked to the substrate. This leads to a boundary condition on the force balance law

σ · ẑ = ~Fbnd at z = 0. (S.27)

Under the assumption that there is no network displacement in the z-direction, we may integrate
in the z-direction to obtain

d×
(
∂xσ

xx + ∂yσ
yx + F

x

body

)
+ F x

bnd = 0, (S.28)

d×
(
∂xσ

xy + ∂yσ
yy + F

y

body

)
+ F y

bnd = 0, (S.29)
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where the notation ∗ denotes the average over the z-direction. Equations (S.28) and (S.29) are
equivalent to the two-dimensional vector equation

∇2D · (σ2D) + ~F 2D
body +

~F 2D
bnd = 0. (S.30)

Here, ∇2D is the two-dimensional divergence, σ2D is the two-dimensional stress, with units of force
per unit length, ~F 2D

body is a two-dimensional body force, and ~F 2D
bnd is simply the projection of ~F

onto the xy-plane. Note that in Equation (S.27), ~Fbnd represented a surface force applied to the
boundary of the cytoskeleton. However, in the two-dimensional averaged model, this boundary
force enters the force balance directly and is renamed to ~Fadh. Finally, if σ is proportional to λE ,
then the two-dimensional stress σ2D is proportional to

λ2D = d× λE , (S.31)

which also has units of force per unit length. For more details on this calculation, see [14]. A
completely analogous formula is used to determine a two-dimensional drag parameter ξ2D, given a
the value of ξ listed in Table S.1. The drag parameter is discussed more in Section S.4

Note that the cell interior is modeled as a poroelastic material. It has been suggested that a
poroelastic description of the cell interior is critical to properly capture cellular phenomenon driven
by hydrodynamic pressure [15, 16].

Active Force The active term ~Fa is the result of a prescribed traveling wave of contractile force

in the individual links of the discrete network. The form of this is

~Fa =
M

2

(
cos

(
2π

ℓcont
x0ij −

2π

T
t

)
+ 1

)
r̂ij , (S.32)

where x0ij is the x-coordinate of the center of the link (in reference configuration) and r̂ij is the
orientation unit vector of the link. This discretely approximates the divergence of the traveling wave
of isotropic (two-dimensional) stress, of amplitude C, given in Section 3. The model parameter M
and the amplitude of stress C are related by

C =
3M

2

dℓ

dA
, (S.33)

where dℓ is the average length of the triangulation edges, and dA is the average area of the faces
in the triangulation. For more details, see [14]. Because the value of this term is chosen to produce
the desired deformation amplitude, we simply report the force of contraction (M) in Table S.1.

Adhesion Forces We define a second Lagrangian structure which we refer to as the adhesive
complexes. We denote the location of these adhesion complexes by ~Xadh. We assume that each
material point of the adhesive complexes is attached with the corresponding material point of
the cytoskeleton via a Hookean elastic spring. The force density of this interaction acting on the

cytoskeleton is given by
~Fadh = kadh

(
~Xadh − ~X

)
. (S.34)

There is necessarily an equal and opposite force acting upon the adhesive complexes. The ad-
hesive complexes are also subject to a force density due to interaction with the substrate. The
precise nature of the proteins with which physarum adheres to the substrate is not known, though
some candidates have been identified [17]. Regardless, the period of the deformations observed in
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physarum is long (∼ 100 sec) compared to the timescale of the dynamics of a cell-substrate bond.
Over these long time scales and large ensembles of bonds, one can represent the dynamics of adhe-
sion via a viscous drag law [18]. Therefore, we choose to model the the adhesive complex/substrate
interaction via modulated viscous drag. The form of this interaction is given by

~Fsubs = ζ(~x, t)
(
~Usubs − ~Uadh

)
. (S.35)

The spatio-temporal form of ζ is a prescribed input of the model and is discussed in more detail in
Section 3.

Membrane and Cortex We represent the membrane and cortex together as a single one dimen-
sional structure which we refer to as the “membrane” for brevity. The membrane is described by
its own Lagrangian coordinate θ, with domain Γmem, and its position is given by ~Xmem(θ, t). We
also define analogous spread and interpolation operators associated with the membrane (Smem and
S∗

mem). We note here that because the membrane is a lower dimensional structure, ~Fmem has units
of force per unit length. This is in contrast to ~Fdrag and other force densities which act upon the
cytoskeletal network, which have units of force per unit area. The elastic force per unit length on
the membrane (~F e

mem) is assumed to be the result of tension within the membrane, which in turn
is a function of the local strain. The elastic tension is given by

T = kmem

∣∣∣∂ ~Xmem

∂θ

∣∣∣−
∣∣∣∂ ~X0

∂θ

∣∣∣
∣∣∣∂ ~X0

∂θ

∣∣∣
+ γmem. (S.36)

The first term in the tension penalizes deviations from a given reference configuration ~X0, while
the second term represents passive resting tension. The elastic force is calculated as the derivative
of the tension within the membrane

~F e
mem =

∂

∂θ
(Tτ) , (S.37)

where τ represents the unit tangent vector to the membrane. For a detailed description of the form
of the tension within the membrane, see [12]. As before, the model parameters kmem and γmem are
chosen to reproduces the integral (orthogonal the substrate) of the tension that would result from
a membrane with the elasticity (k) and resting tension (γ) which are listed in Table S.1. For details
of this calculation, see [14].

The underlying cortex of physarum is mechanically coupled to the bulk cytoskeleton [19]. We
model this coupling with a Hookean force law linking a material point on the membrane with the
corresponding point on the boundary of the cytoskeleton. We assume that initially at time t = 0,
the membrane configuration is equal to the reference configuration

~Xmem(θ, 0) = ~X0(θ). (S.38)

We further assume that this configuration coincides with the boundary of the elastic cytoskeletal
network. Therefore, each material point θ is associated with a material point ~x on the boundary
of the network and

~Xmem(θ, 0) = ~Xnet(~xθ, 0), for some ~xθ = ~xθ(θ). (S.39)

This generates a force density (per unit length) on the membrane, which is given by

~F attach
mem = κ

(
~Xnet(~xθ)− ~Xmem(θ)

)
. (S.40)
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There is necessarily an equal and opposite boundary force on the cytoskeletal network. We approx-
imate this with a force per unit area supported on the exterior points of the cytoskeletal network

(
[
~F attach
net

]
). The parameter κ is chosen to prevent the membrane and the network from deviating by

distances on the scale of the spacial discretization. The total force density acting on the membrane
is the sum of elastic effects and the attachment to the cytoskeleton.

~Fmem = ~F e
mem + ~F attach

mem . (S.41)

Finally, we identify the membrane as a boundary within the fluid domain. Because the mem-
brane is neutrally buoyant, all forces on the membrane are transmitted directly to the fluid. Again,
this is accomplished via a spreading operator:

~fmem = Smem
~Fmem. (S.42)

On this boundary, we impose a no-slip boundary condition by stipulating that the membrane must
move with the local fluid velocity [12].

Equations of Motion Derived from the force balance laws given by Equations (1) to (4), the
equations of motion for the Lagrangian structures are

∂ ~Xmem

∂t
= S∗

mem~uf , (S.43)

∂ ~Xnet

∂t
= S∗~uf +

1

ξ

(
~Fe + ~Fa + ~Fadh +

[
~F attach
net

])
, (S.44)

∂ ~Xadh

∂t
= −

~Fadh

ζ(~x, t)
. (S.45)

S.3 Model Parameters

We perform simulation of the model using the parameter values listed in Table S.1. Where possible,
parameter values are chosen to be consistent with measured or estimated values in the literature.
However, some model parameters are simply not experimentally measurable, and below we give a
brief discussion of our estimates for these parameters.

The wavelength and period of the cytoskeletal contraction (ℓcont and T ) are not directly mea-
surable, but the wavelength and period of the resulting deformation are relatively straightforward
to measure. We assume that the resulting deformation wave of the cell shape is directly correlated
with the underlying cytoskeletal contraction. We choose ℓcont = 1.6 mm (four body lengths) and
T = 100 sec, which is consistent with the wavelength and period of deformation reported in [6] and
in our own experiments.

The ratio of cytosol viscosity and drag coefficient (µ/ξ) is the Darcy permeability of the cy-
toskeleton. The permeability of the cytoskeleton has been estimated in the range of 10−5–10−3

µm2 in other cell types [20, 21]. However, these estimates were based on dense actin networks
(e.g. in lamellapodia), whereas Physarum pumps fluid through well formed flow channels relatively
void of cytoskeletal meshwork (see Figure 2(a)). We estimate a permeability of 33.3 µm2 in flow
channels, however we do not use this value in our simulations. We model the cell interior as a
uniform network with a single drag parameter of listed in Table S.1. This value is equivalent to a
permeability of κ = 3.28 µm2, and was derived by homogenizing a non-uniform domain with a flow
channel surrounded by a dense actin network. The details of this calculation are given in Section
S.4.
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The coefficient of specific adhesion A was chosen to range over values less than to much greater
than the coefficient of nonspecific adhesion ǫ. The value of ǫ listed in Table S.1 was chosen to
reproduce traction stresses of approximately the scale observed in the experiments.

Elastic moduli of living cells have been reported to vary over a vast range of values (10 Pa
– 40 kPa) depending on cell type and experimental setup [22, 23, 24]. The elastic moduli of the
cytoskeleton has been measured for physarum, but only for larger, more developed organisms; not
the microplasmodia we consider in this work [25]. For this reason, we choose a moderate value of
λE which falls well within the range of previously reported values. It has been previously observed
that the posterior end of the cell is comprised of a much more developed actin cytoskeleton, while
the anterior end of the cell exhibits much less dense intracellular structure [26]. For this reason, we
assume that the front 20% of the model cell has an elastic modulus half as large as the posterior
80%. Similarly, the strength of contraction in this anterior region is half as strong to model the
relatively lower capacity for contractile stress generation the less developed cytoskeleton.

Physarum plasmodia are known to be pressurized due to the contraction of the acto-myosin
network of the cortex. In our model, the resting tension (γ) in the membrane/cortex gives rise to a
resting fluid pressure within the cell. The value of γ listed in Table S.1 is chosen to produce a resting
pressure of approximately 500 Pa. Based on our experiments, we estimate the intracellular resting
pressure to be approximately the same size as the traction stresses (see Figure 2(b)). Micropipette
experiments on other cell types have shown that inhibiting the contractility of cortical mysin can
reduce the tension response of the membrane/cortex by more than 50% [27]. Without more reliable
measurements of the elastic properties of physarum cortex, we chose the elastic parameter k to be
slightly less than half the resting tension γ.

Table S.1: Model parameters for crawling simulation.

Parameter Numerical Value Description

Lx 400 µm Cell Length
Ly 66.6 µm Cell Width
µ 0.75 Pa sec Cytosol Viscosity
ξ 2.29× 1011 Pa sec/m2 Drag Coefficient
λE 781 Pa Cytoskeletal Elastic Modulus
M 120 pN Amplitude of Active Contraction
k 10−2 N/m Membrane/Cortex Elastic Stiffness
γ 1.6× 10−2 N/m Membrane Resting Tension
ǫ 2.29× 106 Pa sec/m Coefficient of Nonspecific Adhesion
A 4.58× 104 – 2.29× 1010 Pa sec/m Coefficient of Specific Adhesion
T 100 sec Contraction Period

ℓcont 1600 µm Contraction Wavelength

S.4 Permeability Bound

Permeability of cytoskeleton has been estimated in other cell types [20, 21]. However, these efforts
have often focused on dense actin networks (for example, in lamellapodia of migrating keratocytes)
and have produced low permeability values on the order of 10−5–10−3

µm2. We regard these
estimates as something of a lower bound on reasonable values for the permeability in our model,
because Physarum develops flow channels with relatively unformed cytoskeletal meshwork (see Fig.
2A). Under the assumption of a purely Newtonian cell interior (no cytoskeleton), it is possible
to estimate an effective permeability which we regard as an upper bound of reasonable values for
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our model. We note that the basal-dorsal thickness of physarum plasmodia in our preparation is
approximately 20 µm, which much less than the posterior-anterior length of the cell. Therefore, we
make a thin gap approximation to arrive at the expression

µ
∂2u

∂z
= −

∂p

∂x
, (S.46)

where z and x are the coordinates in the basal-dorsal and posterior-anterior directions respectively,
u is the fluid velocity in the x direction, and p is the intracellular pressure. Assuming that the
pressure is not a function of z, integrating, and imposing the no-slip boundary condition at z = 0
and z = 20 µm allows us to derive the Darcy relation for the z-averaged flow

µu = −κeffpx, (S.47)

where the permeability κeff = (20 µm)2/12 ≈ 33.3 µm2. This may be interpreted as the effective
permeability felt by the two-dimensional flow in the x-y plane. We note here that our model
assumes a spatially homogeneous drag parameter, while the actual cell interior is heterogeneous.
In fully formed flow channels, the permeability of the cell interior may range up to values suggested
by the Newtonian approximation, while regions of dense cytoskeleton may exhibit permeabilities
in line with those reported in lemellipodial actin networks. For this reason, we approximate a
homogenized permeability through the whole cell body. We assume a cell width of hout and that
along the centerline of the cell, there exists a flow channel of width hin. Within the flow channel,
viscous effects are relevant, and the average fluid velocity profile obeys the equation

µ
∂2u

∂y2
−

µ

κeff
u− px = 0. (S.48)

In the rest of the cell body, which is comprised of denser cortical actin meshwork, the fluid profile
is assumed to obey the equation

µu = κcortpx. (S.49)

We solve both equations with a matching condition at the flow channel wall (y = ±hin/2) for the
complete flow profile u(y). We then calculate the flux through a cross section of the cell due to the
given pressure gradient px by

Q =

∫ hout
2

−hout
2

u(y) dy. (S.50)

Alternately, we calculate the flux due to a flow profile which results when we assume the entire cell
interior is composed of a porous material with homogeneous permeability,

Q̃ =

∫ hout
2

−hout
2

ũ(y) dy = −

∫ hout
2

−hout
2

κtot
µ

px dy. (S.51)

Finally, we equate Q and Q̃ and solve for the unknown homogenized permeability κtot. We have
chosen the values of viscosity and cytoskeletal drag listed in Table S.1 to be consistent with a
homogenized permeability of κtot = 3.28 µm2. This resulted from assuming the parameter values
listed in Table S.2.
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Table S.2: Parameters for permeability homogenization.

Parameter Numerical Value Description

hout 66.6 µm Cell Width
hin 17 µm Flow Channel Width
κeff 33.3 µm2 Effective Permeability In Flow Channel
κcort 10−4

µm2 Cortical Permeability Outside Flow Channel

S.5 Random Substrate Generation

To generate random substrates for Section 4.6, we begin with a discretized Eulerian grid of sizeNx×
Ny. On this grid, we can represent Fourier modes with wave numbers kx ∈ [−⌊Nx/2⌋, ⌊Nx/2⌋],
and ky ∈ [−⌊Ny/2⌋, ⌊Ny/2⌋] in the x and y directions respectively. For each Fourier mode, we
draw an angle θ(kx, ky) out of a uniform probability distribution on the interval (0, 2π). These are
done independently, with the exception of the constraint that

θ(kx, ky) = θ(−kx, ky) = θ(kx,−ky). (S.52)

We then generate the function
ĥ(kx, ky) = eiθ(kx,ky). (S.53)

The constraint on θ ensures that this may be interpreted as the randomly generated Fourier rep-
resentation of a real valued function on our Eulerian grid. We then filter these Fourier modes via
multiplication with the function

f̂(kx, ky) =
1

(
1 +

√
k2x + k2y

)1.5 . (S.54)

After application of the filter, we define the function

ĝ(kx, ky) = βĥf̂ . (S.55)

Finally, we manually set the value
ĝ(0, 0) = µr, (S.56)

and perform an inverse Fourier transform to generate the spatial heterogeneity g(x, y). The pa-
rameter µr defines the mean of the function g(x, y), while β controls its standard deviation. In
practice, we found that a value of β = 0.2 resulted in a standard deviation of σr = 0.34 for our
simulations.

S.6 Phase Velocity of Numerical Flow

We show here that the phase velocity of the intracellular flow observed in our numerical simulations
does not depend meaningfully on the adhesion model. We calculate the phase velocity of the periodic
flow wave in each numerical simulation, as we vary the coefficient of coordinated adhesion and phase
parameter over the same ranges as in Section 4. The resulting values are illustrated in Figure S.2.
For all simulations, the phase velocity falls between 24 and 38 µm/sec.
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Figure S.2: Phase velocity of calculated intracellular flow as a function of adhesion strength.

S.7 Other Motility Modes

Below we illustrate the distinct motility modes that we observe in our experiments. Figure S.3(a)
shows the flow and traction stress kymograph from a cell which robustly exhibits the peristaltic
mode of motility. Figure S.3(b) shows the flow and traction stress kymograph from a cell which
robustly exhibits the amphistaltic mode of motility. Figure S.3(c) shows the flow and traction stress
kymograph from a cell which appears to switch from the amphistaltic to peristaltic mode during
our observation. All traction stress kymographs are generated using the measured traction stresses
with moving average removed.
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Figure S.3: (a) Flow and traction stress (with average removed) kymographs of physarum migrating
using the peristaltic mode. (b) Flow and traction stress (with average removed) kymographs of
physarum migrating using the amphistaltic mode. (c) Flow and traction stress (with average
removed) kymographs of physarum migrating using both the amphistaltic and peristaltic modes.
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