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Abstract

The true slime mold Physarum polycephalum exhibits a vast array of sophisticated manipu-
lations of its intracellular cytoplasm. Growing microplasmodia of Physarum have been observed
to adopt an elongated tadpole shape, then contract in a rhythmic, traveling wave pattern that
resembles peristaltic pumping. This contraction drives a fast flow of non-gelated cytoplasm along
the cell longitudinal axis. It has been hypothesized that this flow of cytoplasm is a driving fac-
tor in generating motility of the plasmodium. In this work, we use two different mathematical
models to investigate how peristaltic pumping within Physarum may be used to drive cellular
motility. We compare the relative phase of flow and deformation waves predicted by both models
to similar phase data collected from in vivo experiments using Physarum plasmodia. The first
is a PDE model based on a dimensional reduction of peristaltic pumping within a finite length
chamber. The second is a more sophisticated computational model which accounts for more
general shape changes, more complex cellular mechanics, and dynamically modulated adhesion
to the underlying substrate. This models allows us to directly compute cell crawling speed.
Both models suggest that a mechanical asymmetry in the cell is required to reproduce the ex-
perimental observations. Such a mechanical asymmetry is also shown to increase the potential
for cellular migration, as measured by both stress generation and migration velocity.



1 Introduction

Cell migration plays a critical role in a wide variety of biological processes such as wound healing,
the immune response, and morphogenesis. Amoeboid motility is a rapid type of cell migration
characterized by large shape changes as the cell extends and retracts various pseudopodia and
blebs [6]. Research on amoeboid motility has recently intensified in part because of a newfound
appreciation of the broad applicability of amoeboid motility types. This migration mode is robust
to changes in the extracellular environment and may be used to move across a surface or through
a 3-D environment [7]. Recent studies have suggested that the general mechanisms of amoeboid
motility may be independent of the specific molecular nature of cell-substrate adhesion [18]. Thus,
amoeboid migration allows cells to move in various geometries by contracting and pushing off the
surrounding environment. This work concerns a mathematical description of steaming cytoplasm in
Physarum polycephalum microplasmodia with a particular emphasis on a mechanistic explanation
on how steaming may contribute to amoeboid cell motility.

Physarum polycephalum is a slime mold that belongs to the supergroup Amoebozoa. In par-
ticular, Physarum belongs to the “acellular” or plasmodial slime mold subgroup. The organism is
multinucleated, and a single plasmodium may grow to macroscopic length scales. Due to its large
size, Physarum is relatively easy to study under a light microscope, and it has been used as a model
organism in cellular biology for several decades. Physarum was heavily studied in early investiga-
tions into the nature and movement of cytoplasm [11]. Due to the prevailence of large intracellular
flows, the streaming of cytoplasm within Physarum plasmodia has been the focus of numerous
cytology studies [12, 13, 16]. In addition to simple streaming of cytoplasm, the plasmodium of
physarum exhibits a vast array of cellular behaviors that have been studied in a variety of con-
texts. The emergence of contractile patterns has been studied in the context of coupled oscillators
[26, 36, 37, 38, 39, 42] and complex viscoelastic materials [3, 27, 30, 31, 40, 41]. The branching of
flow networks within physarum has even been studied as a model system of transportation networks
[4, 5].

Removing a small sample of the organism results in a so-called microplasmodium. The multi-
nucleated nature of Physarum means that these smaller scale plasmodia are capable of sustaining
biological function and may eventually grow back to the scale of the original. Initially after segre-
gation, microplasmodia adopt a round shape and begin to reorganize their disrupted cytoskeleton
[25]. As the microplasmodia grow to a critical size (approximately 100 µm across), a sharp tran-
sition occurs [17], in which the cell develops an elongated tadpole-like shape with a flow channel
of non-gelated cytoplasm along the cell longitudinal axis. An example of a microplasmodium with
this elongated shape is shown in fig. 1. The anterior of the cell (right) is noticeably more spread
out than the channel-like posterior (left). This structure at the “head” of the cell to lacks the well
defined cytoskeletal structure of the rest of the cell [34]. In particular, the single coherent channel
of non-gelated cyoplasm is not apparent at the anterior of the cell. Coincident with elongation
into this tadpole shape, the plasmodium begins to exibit a drastic increase in intracellular fluid
velocity, as a distinct pattern of cytoplasmic flow develops. Finally, the onset of this behavior has
been observed to coincide with a drastic increase in the locomotion speed of growing plasmodia.
It has naturally been hypothesized that the flow of cytoplasm is therefore a driving force in this
particular example of amoeboid cell motility. To date, one study has measured the precise spa-
tiotemporal form of the deformation of the plasmodia and the resulting flow of cytoplasm within
[23]. The authors hypothesized that the relative phase of the flow and deformation waves may
result in translation of the cell mass center. However, as yet, no there is no complete mechanical
explanation of how this cyotplasmic flow may generate motility.

We use two distinct modeling techniques to investigate the plausibility of the description of
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motility provided in [23]. First, we model a single microplasmodia as a peristaltic chamber of
cytoplasmic fluid. We quantify the phase relationships between contraction and flow that neces-
sarily result from driving cytoplasmic flow through traveling waves of contraction. These phase
relationships are qualitatively compared to those observed in [23]. Simultaneously, we quantify the
characteristic stresses associated with the flows predicted by our model. These stresses are found to
be of a biologically relevant scale, though rather small. Second, we perform a series of simulations
using a computational model of a crawling cell that allows us to explore more general mechanics and
shape changes, as well as predict cell migration velocities. This computation model incorporates
more complex intracellular rheology, the mechanical response of the cell membrane/cortex, and
spatiotemporal variation in adhesion strength. We show that the phase relationships observed in
[23] may be a product of a mechanical heterogeneity within the plasmodium, and this heterogeneity
is advantageous for locomotion. In particular, mechanical heterogeneity may result in increased
migration speeds.

50   m µ crawling direction

headtail

Figure 1: A typical tadpole-shaped Physarum microplasmodium. The anterior (“head”) and pos-
terior (“tail”) are indicated, as well as the direction of migration. Image courtesy of Shun Zhang
and Juan Carlos del Álamo.

2 Peristaltic Pumping in Physarum

In [23], the authors perform particle image velocimetry to measure the spatiotemporal flow of
cytoplasm within migrating Physarum microplasmodia. In these experiments, the authors observe
a periodic, pulsatile flow of cytoplasm forward and backward along the longitudinal axis of the
plasmodium body. A region of forward flow (directed toward the anterior end of the cell) develops
at the plasmodium posterior and propagates forward along the cell axis. This is followed by a region
of backward flow that also develops at the posterior of the cell and propagates to the anterior. Thus,
the spatiotemporal organization of the cytoplasmic flow is characterized by a phase wave profile.
A phase wave is a profile of the form f(kx − ωt), where f is some periodic function (such as a
sinusoid). For such waveforms, the wave profile will propagate through the domain with velocity
ω/k. The deformation of the cell in the direction perpendicular to the longitudinal axis of the cell
is also measured and shown to have a similar character. The first panel of fig. 2 is reproduced from
[23]. It shows flow and deformation of the cell body as a function of time and the longitudinal cell
body coordinate (called the Anterior-Posterior (AP) axis by the authors). The greyscale indicates
the cross-section averaged velocity of cytoplasm along the cell axis. The pitched lines of black pixels
incidate zero flow velocity and the slope of these lines may be interpreted as the phase velocity of
the flow wave. The open dots indicate the onset of contraction (or local maxima of deformation).
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Closed dots indicate the onset of expansion (local minima of deformation).
The pattern of traveling phase waves of both deformation and flow is characteristic of a phe-

nomenon called peristalsis. Peristalsis is a mechanism whereby waves of contraction propagate
along the exterior of a fluid-filled tube or chamber. When these waves of contraction result in net
transport of fluid along the axis of the tube, it is referred to as a peristaltic pump. Peristaltic
pumping is observed in numerous physiological contexts where tubular smooth muscle structures
are common such as in the gastrointestinal tract, the bile ducts, and the fallopian tubes. Peristalsis
also has applications in industrial processes, where a peristaltic pump can be used to move slurries
and corrosive materials without the liquid coming into contact with any mechanical parts of the
device. Analysis of the efficacy of peristaltic pumping is a classical problem in applied mathematics.
The bulk of existing studies only consider pumping in an infinitely long domain (or approximate one
using a periodic domain) [9, 10, 33]. It is not appropriate to represent a Physarum plasmodium as
an infinitely long tube and we are not concerned with quantifying the pumping of cytoplasm from
one reservoir to another. The limited studies which have considered peristaltic pumping in a finite
domain are mainly concerned with mixing properties in an inertial parameter regime [32]. Other
investigations have examined peristaltic contraction within Physarum, however the authors studied
fully developed, macroscopic organisms (not microplasmodia) and were primarily concerned with
efficiency of transport through a the branching network structure rather than migration [2]. As
yet, no theoretical work has addressed the possibility that peristaltic motion may be utilized by a
cell to “pump” itself across a substrate.

In [23], it is argued that the phase wave nature of the cytoplasmic flow is critical to generating
motility via the observed behavior. This argument is motivated by two key observations. First,
the direction that the phase wave travels is from the posterior to the anterior of the cell. The
anterograde propogation of the flow wave is argued to result in a net forward displacement of
fluid within the cell, and thus the center of mass is transported forward. This behavior is not
discussed at length in the present work, but has been explored in other experimental and modeling
investigations [20].

The second observation of [23] is that the flow wave is of the same period as the wave of
contraction on the cell exterior. The two waves have a well-defined phase relative to one another.
This can also be seen in the first panel of fig. 2. In the tail of the cell, the onset of contraction
consistently precedes the maximum flow velocity by about one quarter of the period of the wave.
This phase relationship is consistent throughout most of the cell. The noticeable exception to this
is at the front of the cell, where the maximum flow velocity precedes the onset of expansion. To
more clearly see this relationship, we extract the data gathered in [23] from the image in the first
panel of fig. 2 with the goal of calculating the relative phase of the deformation wave and flow wave.
At each point of the AP axis, we extract from the image the time of maximum flow velocity, as well
as the time of maximum cell width. The difference between these two times, divided by the period
of the wave, is interpreted as the relative phase of the two waves. This is done for three periods
of the wave, and the results are presented in the second panel of fig. 2 (the cell coordinate (x) is
non-dimensionalized). The black dashed line represents the averaged phase difference measured
from three periods and the filled window indicates the maximum and minimum values calculated.
The grey dash-dot lines highlight a phase difference of positive and negative π/2, which correspond
to deformation preceding and following the flow wave respectively.

According to the authors of [23], this phase relationship ensures that forward flow of cytoplasm
occurs at locations on the cell body that are (on average) wider than locations in which cytoplasm
is flowing backwards. This is implies a net forward flux of material, and thus a translation of the
cell. This explanation of motility is based purely on hydrodynamic phenomena and conservation
of mass. It does not include any discussion of how this phase relationship may come to be, the
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stresses generated by this behavior, or how those stresses may be transmitted to the substrate
to enact locomotion. In this work, we address these issues with mathematical models with the
aim of answering the following question: Is the observed relative phase of deformation and flow
advantageous for enacting cellular motility?
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Figure 2: Left Panel: Maximum flow along the cell axis as a function of time and location on
the Anterior-Posterior (AP) axis of the cell. Circles indicate temporal maxima and minima of the
deformation wave. Open circles indicate maxima or “onsets of contraction,” while filled circles
indicate minima or “onsets of expansion.” Reprinted from [23], with permission from Elsevier.
Right Panel: Relative phase of the flow and deformation waves as a function of cell body coordinate
(x). The space-time location of maxima and minima of the flow and deformation waves were
extracted from the data in the left panel. The phase difference between the two waves was then
calculated. This was performed for three full periods of the wave. Shaded region indicates the
maximum and minimum of the resulting values. The black dashed line indicates the average over
these three periods. The grey dash-dot lines indicate phase difference of ±π/2 (a quarter period)
for reference.

3 Analytical Model

We consider a two-dimensional flow field (in the xy-plane) of cytoplasm in a finite peristaltic
chamber. In the longitudinal coordinate, the domain spans the interval 0 < x < Lx. This domain
is mean to represent the “body” of the plasmodium, but not the “head” at the anterior end. The
head is mechanically distinct, and we do not wish to include it in this analysis. We discuss this point
more below. In the lateral coordinate the domain is defined by the region between deformable walls
described by −h(x, t) < y < h(x, t) (see fig. 3). We assume that the 2-D velocity field, ~u = 〈u, v〉,
is incompressible (divergence-free). We let Q(x, t) denote the flux of intracellular fluid through a
given cross section of the cell, which is given by

Q(x, t) =

∫ h

−h
u dy. (1)
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To derive a constitutive equation for the flux, we integrate the incompressibility constraint in the
lateral direction:

0 =

∫ h

−h
(ux + vy) dy

=
∂

∂x

∫ h

−h
u dy −

(
u|y=h − u|y=−h

)∂h
∂x

+

∫ h

−h
vy dy

≈ ∂

∂x

∫ h

−h
u dy +

∫ h

−h
vy dy

=
∂

∂x
Q(x, t) + v|y=h

y=−h

= Qx(x, t) + v(h(x, t), t)− v(−h(x, t), t)

= Qx(x, t) + 2ht(x, t).

The resulting partial differential equation (PDE) relates the flux (Q(x, t)) and the chamber half
width (h(x, t)).

Qx(x, t) + 2ht(x, t) = 0, for 0 < x < Lx, and t > 0. (2)

y

x

A

h
h0

Figure 3: A schematic representation of a peristaltic chamber. The chamber wall is described by
h(x, t). The resting location of the wall is denoted h0 and the amplitude of deformation from this
configuration is A.

To derive this PDE, we have made several simplifying assumptions. A no slip boundary con-
dition implies that the lateral component of fluid velocity is given by ht and −ht at the top and
bottom chamber walls. We have also assumed that |hx| << 1, in order to ignore boundary terms
from the Leibniz integration rule. This is equivalent to an assumption that the variation in chamber
width is small compared to compared to the length of the cell. Experiments indicate that during
peristaltic pumping, Physarum plasmodium widths vary approximately 20 µm, while the charac-
teristic cell length may be up to 1600 µm [23, 45]. Finally, our assumption that the 2-D velocity
field is incompressible is an approximation to an incompressible 3-D velocity field averaged in the
z-direction. In experiments, Physarum are seen to change area in the xy-plane by no more than
approximately 5% [45]. This implies that the planar flow field is nearly incompressible. Finally, we
note that eq. (2) requires no assumptions about the specific rheology of the cytoplasm within the
chamber. We have simply integrated the incompressibility constraint.

5



3.1 Chamber Deformations

We now prescribe a boundary deformation which mimics the peristaltic contractions observed to
propagate down the lateral sides of migrating Physarum specimens. Equation (2) may then solved
for the associated flux Q(x, t). Experimental measurements have shown that the cell membrane
deformations appear to be a phase wave, which propagates from the posterior to the anterior end
of the cell [23, 45]. These wave-like contractions travel with a distinct velocity, which we refer to as
the phase velocity. While the phase velocity of deformations is easily observable in vivo, it is not
obvious what functional form best reproduces the shape of the cell boundary seen in experiments.
For this reason, we will examine two idealized functional forms of the boundary deformation.

Unconstrained deformation (Open Head) First, we idealize the boundary deformation as
a simple sinusoid traveling from the tail of the cell (x = 0) to the head of the cell (x = 1). The
functional form of this deformation is given by

h(x, t) = h0 +A cos

(
k
x

Lx
− ωt

)
, (3)

with the stipulation that k 6= 0. The parameter k is the (non-dimensional) wave number of the
deformation, and the wavelength is given by λ = 2πLx/k. Similarly, ω is the frequency of the wave,
and the period is given by T = 2π/ω. The ratio ωLx/k gives the phase velocity (in units of length
per time).

We make the assumption that the domain is closed at the tail (x = 0). Physically, this cor-
responds to the assumption that fluid may not pass through the cell membrane at the posterior
end of the chamber. As a consequence, we impose a no flux condition (Q(0, t) = 0) at this end
of the domain and solve eq. (2) given the boundary deformation in eq. (3). We note here that no
assumptions have been made about the behavior of the model at the anterior end of the chamber
(x = Lx). Indeed, fluid is free to flow in and out of the “head,” resulting in a very clear asymmetry
in the domain. We will return to this idea in the following section.

Solving eq. (2) with the given deformation and boundary condition yields the flux of fluid within
the domain:

Q(x, t) =
2ALxω

k

(
cos

(
k
x

Lx
− ωt

)
− cos (ωt)

)
. (4)

For convenience, we define the displacement of the chamber wall as the difference between the
chamber half-width and the average chamber half-width

h̄(x, t) = h(x, t)− h0 = A cos

(
k
x

Lx
− ωt

)
. (5)

We may regard the displacement h̄ as the input of the model, while the resulting flux Q may be
thought of as the output.

Constrained Deformation (Closed Head) We now return to the previous discussion of what
boundary conditions are appropriate to impose on eq. (2). In the previous section, we have stipu-
lated a zero flux boundary condition at the left (x = 0) boundary of the chamber only. This allows
a free flow of fluid in and out of the right boundary (x = Lx). However, it is obvious that cyto-
plasm cannot flow freely through the anterior end of the cell membrane. We may therefore choose
to impose another no flux boundary condition at the right boundary. Doing so over-determines
the problem, which results in a constraint on the allowable deformations h(x, t). Zero flux through

6



both domain boundaries implies overall volume conservation of the chamber. Thus, for the model
to be solvable, the deformation must be consistent with volume conservation.

The space of deformations which satisfy this constraint is far too large to explore fully. Therefore
we make the following assumption: The chamber boundary has a “preferred” deformation which
is the same as in the previous section. However, there is a spatially uniform correction term which
serves to impose constant volume on the chamber,

h(x, t) = h0 +A cos

(
k
x

Lx
− ωt

)
+ C(t). (6)

A calculation shows that the correction term is given by

C(t) = −A
k

(
sin (k − ωt) + sin (ωt)

)
. (7)

Again, solving eq. (2) subject to the zero flux condition at the posterior end of the domain
yields a complete description of the flux

Q(x, t) =
2ωALx

k

(
cos

(
k
x

Lx
− ωt

)
− cos (ωt)

)
+

2Aωx

k

(
cos (ωt)− cos (k − ωt)

)
. (8)

Notice here that evaluating the flux at the right domain endpoint gives Q(Lx, t) = 0. Thus, the
no flux boundary condition is automatically satisfied at the right end of the domain, due to the
correction imposed on the deformation h. Again, we specifically call attention to the displacement
of the chamber wall

h̄(x, t) = h(x, t)− h0 = A cos

(
k
x

Lx
− ωt

)
− A

k
(sin (k − ωt) + sin (ωt)) , (9)

which we regard as the input which generates an output of flux given by eq. (8).

4 Phase Calculations

We return now to the phase differences between deformation and flux shown in fig. 2. One of the
goals of the model is to explain the behavior observed. The functional forms of displacement and
fluid flux for both the constrained and unconstrained deformation (eqs. (4), (5), (8) and (9)) may
be expressed as the real part of a complex oscillation of the form

h̄(x, t) = Re
[
F (x, k)eiωt

]
Q(x, t) = Re

[
G(x, k)eiωt

]
.

We interpret the complex argument of the function F (x, k) as the “phase” of the input oscillation
h̄ and the argument of G(x, k) as the phase of the output oscillation Q. We compute the relative
phase of the periodic displacements (eqs. (5) and (9)) with that of the periodic flux of fluid within
the cell (eqs. (4) and (8)) by

phase difference = Arg [G(x, k)]−Arg [F (x, k)] . (10)

Figure 4 shows phase differences predicted by the model as a function of non-dimensional body
coordinate (x/Lx) for several choices of wave number k. For a given location in the cell body, a
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positive phase difference implies that the flow wave precedes the deformation wave. The cell reaches
its widest slightly before (temporally) the flow wave reaches its maximum. Conversely, a negative
phase difference implies that the deformation wave precedes the flow wave.

In the first panel of fig. 4, we present model predictions for the case of the unconstrained defor-
mation for several wave numbers. We present results for wave numbers k ≤ 2π. This corresponds
to wavelengths greater than the length of the cell body. These are the relevant wave numbers, as
observations indicate the deformation wavelength may be 3 to 4 times the length of the cell [23, 45].
Regardless of the wave number of the deformation, we see a phase difference of π/2 at the posterior
of the cell. This corresponds to the flow wave preceding the wave of deformation by a quarter
period. Phase difference decreases as a function of cell coordinate, meaning that the deformation
wave “catches up” to the flow wave as they propagate forward in the domain. The rate at which
this occurs depends on wave number. Indeed, for k ≥ π, (deformation wavelength twice the cell
lenth) the deformation wave catches up to and eventually surpasses the flow wave. In the case
k = 2π (deformation wavelength equal to the cell body length), we see a complete reversal of the
phase difference throughout the cell. While the flow wave leads by a quarter period at the posterior
end of the domain, it is the deformation wave which leads by a quarter period at the anterior end.

For comparison, we present the same data for the closed head (constrained deformation) case in
right panel of fig. 4. Again, the deformation wave “catches up to” the flow wave as they move to the
anterior of the domain. This time, however, the behavior is a transition from π/2 to −π/2, which
is symmetric about the center of the domain. Regardless of wave number, the flow wave precedes
deformation in the posterior half of the domain. For smaller wave number (longer wavelength),
this transition becomes sharper. Phase difference is nearly constant at π/2 in the posterior half of
the domain, while it is nearly constant at −π/2 in the anterior half.
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Figure 4: Phase difference as a function of cell body coordinate (x) for several wave numbers. Left
panel shows results for the open head model. Right panel shows results for the closed head model.
The grey dash-dot lines indicate phase difference of ±π/2 (a quarter period) for reference.

We now focus on model predictions for wave number k = π/2, as that value corresponds to a
deformation wavelength four times the length of the cell body. This wavelength agrees (roughly)
with deformations observed in experiments. We compare this phase data to that observed by
[23]. Figure 5 shows the model predictions for this wave number as well as the phase differences
calculated from experimental data. Again, experiments show a phase difference of approximately
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π/2 throughout the majority of the domain, with a sharp transition to −π/2 approximately 80%
of the way from posterior to anterior. While our model reproduces aspects of this behavior, neither
case we consider totally captures the phase data observed by [23].

In the case of unconstrained deformation, our model predicts a phase difference of nearly π/2
throughout the domain, with decreasing phase difference toward the anterior end of the domain.
However, large scale qualitative aspects of the experimental data are missed. In particular, our
model does not reproduce the sudden transition from positive to negative phase difference which
occurs near the anterior end of the cell. Conversely, in the case of constrained deformation, our
model does indeed predict the sudden transition in phase difference from π/2 to −π/2. However, the
symmetry inherent in our model dictates that this transition occurs at the middle of the domain.
Again, this fails to capture the fact that experimental data shows a relatively consistent phase
difference of π/2 through a majority of the domain.
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Figure 5: Phase difference predicted by model and measured experimentally as a function of cell
body coordinate (x). The solid lines indicate model predictions for the open and closed head cases
respectively. Shaded region and black dashed line indicate values calculated from data in fig. 2
for comparison. The grey dash-dot lines indicate phase difference of ±π/2 (a quarter period) for
reference.

Ultimately, neither case of our model results in fluid flow which captures the phase information
that is reported in [23]. Indeed, it is very likely that this is due to the idealized forms of deformation
which we have analyzed. The unconstrained deformation assumes that the cell body is free to pump
fluid into the cell head (out the anterior end of the domain) at no penalty whatsoever. Conversely,
the constrained deformation allows for no fluid to be pumped out of the anterior end of the domain.
Neither of these cases faithfully describes the elastic nature of the head of Physarum plasmodia.
This compliant structure inflates and deflates over the course of the oscillatory flow. Pumping
fluid into this structure requires elastic deformation, and therefore must generate a penalty in the
form of pressure acting against the flow of cytoplasm. Our two model cases may be viewed as
two extreme assumptions about the compliance of this structure. The unconstrained deformation
assumes infinite compliance (zero elastic modulus), while the constrained deformation assumes
zero compliance (infinite elastic modulus). It seems plausible that a model incorporating finite
elasticity would “interpolate” between the phasing data depcited in fig. 5 and more accurately
reproduce experimental observations. We return to this idea again in Section 6.
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5 Stress Generation

We turn now to a discussion the second goal of our model. In order to migrate, it is necessary for
a single cell such as Physarum to generate stresses internally and transmit them to the underlying
substrate in a coordinated fashion. Using the previously calculated expressions for flux of fluid
through the cell body (eqs. (4) and (8)), we can calculate the viscous stress applied to the basal
surface of the peristaltic chamber. We do not claim that viscous stress due to flow is the only
mechanism by which Physarum plasmodia move, nor does this model attempt to describe how
these stresses may be transmitted from the interior of the cell to the underlying substrate. Rather,
we seek to roughly quantify the magnitude of stresses generated by the predicted fluid motion that
could be utilized to enact locomotion.

The viscous stress at the basal surface of the domain can be related to the flux of fluid and
deformation of the domain via the following relation (see Appendix for derivation)

σ(x, t) =
3µ

d

Q(x, t)

h(x, t)
=

3µ

dh0

Q(x, t)(
1 + 1

h0
h̄(x, t)

) , (11)

where µ is the viscosity of the cytoplasm in the cell and d is the basal-dorsal thickness of the
chamber. We now define the non-dimensional parameter

ε = A/h0. (12)

Due to the fact that h̄(x, t) ∝ A, and therefore 1
h0
h̄ ∝ ε << 1 (the nondimensional ampli-

tude of displacement is small), the stress can be approximated using an asymptotic expansion

of
(

1 + 1
h0
h̄(x, t)

)−1
σ(x, t) ≈ 3µ

dh0

(
Q(x, t)−Q(x, t)

h̄(x, t)

h0

)
. (13)

Using eq. (13), we calculate several physical quantities. The “total average stress”, 〈σ〉, is
calculated as the average (over the whole domain, and one period of the wave T = 2π/ω) of σ(x, t):

〈σ〉 =
1

LxT

∫ T

0

∫ Lx

0

3µ

dh0

(
Q(x, t)−Q(x, t)

h̄(x, t)

h0

)
dx dt. (14)

Over one full period of the wave, intracellular flow generates stresses directed towards the anterior,
as well as posterior end of the cell. Many of these stresses cancel each other out, and thus 〈σ〉
provides a measurement of the total unbalanced stresses generated by the wave which may be
utilized for directed motility.

We characterize the maximal scale of stresses generated by fluid flow over the course of the
wave by

σmax = max
t∈[0,T ]

(
1

Lx

∫ Lx

0

3µ

h0d
Q(x, t) dx

)
. (15)

We refer to the quantity σmax as the “maximal stress” (a slight abuse of nomenclature). Because the
nondimensional amplitude of displacement is small, the second term in eq. (13) is small compared
to the first. Therefore eq. (15) provides a good approximation to the maximal magnitude of stress
generated over the course of one period by only considering the first term.

Finally, we define the quantity R as the ratio of the “total average stress” to the “maximal
stress”

R =
〈σ〉
σmax

.
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If σmax quantifies the approximate scale of stresses generated by the flow wave, then R represents
the proportion of stresses that are not canceled over one full period and may be utilized to generate
directed motility. After the necessary calculations, we can express the three quantities of interest
as

σmax =Σεf(k), (16)

〈σ〉 =Σε2g(k), (17)

R =εr(k), (18)

where the functions f , g, and r depend only on the wave number (k) of the imposed deformation.
The characteristic stress scale of the problem is given by

Σ =
3µωLx

d
. (19)

Figure 6 shows normalized stress measurements (total average, maximum, and ratio) for both the
open head (unconstrained) and closed head (constrained) deformations.
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Figure 6: Normalized stresses associated with peristaltic pumping for the open and closed head
cases. Total average stress is indicated with a solid red line. Maximum average stress is indicated
with blue dashed line. The ratio of average to maximum is indicated with a green dash-dot line.

Figure 6 reveals two immediate trends. For all values of wave number considered, both maximum
stress and the ratio of stresses are greater in the case of the unconstrained deformation than the
case of constrained deformation. This implies that the asymmetry imposed by allowing fluid to flow
out of the anterior end of the domain increases the characteristic magnitude of stresses generated.
However, it also results in a larger percentage of those stresses remaining after one full period of
the wave. If we consider only wave number k = π/2 (which corresponds to deformations seen in
experiments), we can evaluate σmax, 〈σ〉 and R. Doing so results in the values listed in table 1. For
parameter values used to calculate Σ, see table A.1 in the appendix. Again, we see the same trend.
The unconstrained deformation increases the maximum stress generated by nearly a factor of four
relative to the constrained deformation. It also increases ratio R approximately 6 fold, and the

11



average directed stresses generated over one period of the wave (〈σ〉) are increased by approximately
a factor of 24. Thus, it appears that the asymmetry of the domain drastically increases the ability
of the cell to generate directed stresses which could hypothetically aid in locomotion.

Table 1: Basal viscous stresses associated with flow. All values calculated with k = π/2.

Constrained deformation Unconstrained deformation

σmax Maximum Average Stress 0.6150 Pa 2.333 Pa
〈σ〉 Total Average Stress 0.006159 Pa 0.1446 Pa

〈σ〉/σmax Ratio Of Stresses 0.01001 0.06198

6 Simulation of Crawling Cells

Stress calculations in section 5 indicate that allowing fluid to flow through the anterior end of the
domain is advantageous to stress generation, and potentially to enacting motility. However, the
phase calculations from section 4 indicate that pumping fluid freely through the anterior of the cell
domain does a poor job of reproducing the relative phase data observed in experiments. Conversely,
a domain with a “closed” head seems to capture more of the qualitative aspects of the experimental
data, but predicts drastically reduced stress generation, and by implication, drastically reduced
capacity to enact motility. Of course, the body of Physarum plasmodia are not perfectly described
by a peristaltic chamber with an open, or closed, head. In vivo, the plasmodium body gives way
to a compliant, structure that is mechanically distinct from the majority of the cell body, with a
much less well defined cytoskeleton [34]. As constructed, our model is incapable of accounting for
the elastic properties of the body, and so we use a computational model to to explore the role of
mechanical heterogeneity.

6.1 Numerical Model

Following our previous work in [20], we model a crawling Physarum plasmodium as an actively
contractile poroelastic medium surrounded by an impermeable lipid membrane, and adherent to the
substrate via dynamically modulated visco-elastic interactions. Figure 7 shows a cartoon depiction
of the relevant structures in the model. The cell interior volume is filled with incompressible
Newtonian fluid (which is depicted by the shaded region). The fluid permeates a zero-volume,
porous, neo-hookean elastic material (representing the cytoskeleton of the cell) which is depicted
as a network of red circles connected with dashed edges. The exterior boundary of the cytoskeletal
network is connected to an elastic membrane that is impermeable to the interstitial fluid (depicted
by blue diamonds connected with thicker dashed edges). Finally, each point of the cytoskeletal
network is connected to a corresponding adhesive point (depicted as brown x’s) via a hookean
elastic linkage (solid pink edges).

We estimate an upper bound on the Reynolds number of cytoplasmic flow in Physarum by
using a characteristic length scale equal to the cell length (L ≈ 400 µm), a characteristic velocity
take from the experiments of [23] (U ≈ 5 µm/sec), and the kinematic viscosity of water (ν ≈ 10−6

m2/sec). Doing so results in a Reynolds number of

Re =
UL

ν
≈ 2× 10−3. (20)

This calculation likely underestimates the viscosity of cytosol by a large margin. Therefore, we can
safely regard this as an upper limit for the Reynolds number of cytoplasmic flow, and conclude that
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inertial effects are negligible. For this reasons the equations governing the motion of cytoplasm are
the Stokes forced equation.

µ∆~u−∇p+ ~fdrag + ~fmemb = 0, (21)

∇ · ~u = 0. (22)

Here, ~fmemb is a singular force applied to the intracellular fluid by the cell membrane, and is com-
posed of internal elastic forces, surface tension, and elastic attachment to the internal cytoskeleton.
The term ~fdrag is the body force of drag due to relative motion of fluid and cytoskeleton. The
equation that governs the movement of the internal cytoskeleton is

~felas + ~fact + ~fmemb/cyt + ~fadh − ~fdrag = 0. (23)

The term ~felas is the passive elastic force within the cytoskeleton due to deformation, ~fact is a
prescribed active contractile force within the cytoskeleton, ~fmemb/cyt is an elastic force generated

by relative motion of the membrane and boundary of the cytoskeleton, and ~fadh is an elastic force
generated by relative motion of the cytoskeleton and the associated adhesive complexes. Finally,
the equation governing the motion of adhesive complexes relative to the substrate is

~fsubs − ~fadh = 0. (24)

Here, ~fsubs is a viscous force generated by relative motion of the adhesive complexes and the fixed
substrate. Constitutive relations for these forces, parameter values used, as well as specifics of the
discretization and simulation of these equations can be found in the Appendix and our previous
work [20, 35].

Viscous Cytosol
Cytoskeletal Network

Adhesive Points Membrane

ŷ

x̂

Figure 7: A schematic representation of a model crawling cell. The cell membrane is indicated
with blue diamonds. The poroelastic cell interior is indicated with red circles connected with
black dashed edges, while the interstitial fluid is depicted with blue shading. Adhesive points are
indicated with brown x’s, and connected to the elastic interior via pink edges.

This modeling framework provides two major advantages over the analytical model from sec-
tion 3. Because the model explicitly incorporates adhesion of the plasmodium to the underlying
substrate, we are able to capture actual crawling speeds of the cell, as opposed to simply quantifying

13



stresses that might contribute to crawling. Material points within the cell move in the lab frame,
and their velocity/position is an output of the simulation. Additionally, it provides direct control
over the mechanical properties of the cell domain in a spatially heterogeneous manner, allowing us
to create a more elastically compliant “head” at the anterior end of the cell. We choose the point
80% of the distance from the posterior to the anterior end of the cell. This is our line of delineation
between the “head” and “tail.” We then set all elastic parameters in the head to be some fixed
proportion of the corresponding elastic parameters in the tail. This proportion is referred to as the
“scale factor” and is denoted s. A scale factor of s = 1 represents a mechanically hemogeneous cell,
while a scale factor of s = 1/2 corresponds to a head which is twice as compliant as the tail.

The model is driven with a periodic traveling wave of contractile stress within the cytoskeleton.
This contractile stress is again a simple sinusoid propagating from tail to head with period and phase
velocity chosen to reproduce observed behavior from [23]. The functional form of the contraction
is given by

σcont =
Astress

2

(
1 + sin

(
kx− ωt

))
, (25)

where x is the non-dimensional longitudinal cell body coordinate. The value x = 0 corresponds
to the tail of the cell, while x = 1 is the head. We represent the dynamics of adhesion to the
underlying substrate via a viscous drag law. The force ~fsubs is of the form

~fsubs = −ζ(x, t)~uadh, (26)

where ~uadh is the velocity of the adhesion complexes (relative to the substrate), and ζ is a viscous
interaction coefficient. As in our previous work in [20], we investigate an idealized ζ of the form

ζ(x, t) =
Aadh

2

(
1 + cos

(
kx− ωt+ φ

))
+ ε. (27)

The wavelength and period of the adhesion modulation are assumed to be the same as those of
the contractile wave. The parameter φ represents the phase of the coordinated adhesion relative
to the wave of contraction strength (eq. (25)). The amplitude parameter Aadh is a measure of
the strength of active coordinated adhesion. The parameter ε represents non-specific adhesive
interactions between the substrate and the basal surface of the cell. We report the strength of
coordinated adhesion in non-dimensional units of [Aadh/ε].

6.2 Phase Calculations

Simulations are performed with parameters listed in table A.3 and last for three full periods of
the wave. The resulting velocity field ~u is averaged over each cross section of the cell to generate
kymographs. Figure 8 shows flow kymographs generated by our simulations with scale factors
s = 1, s = 3/4 and s = 1/2. The colormap indicates the averaged flow velocity in the longitudinal
direction as a function of time and cell body coordinate. The markers overlaying the colormap
indicate the time at which each cross section is at its widest (white) and narrowest (black). The
flow wave patterns depicted are qualitatively similar to those measured in vivo and illustrated in
fig. 2. However, the lines which depict the propagation of the deformation waves in fig. 8 are
visually distinct from each other. In all cases, the deformation wave precedes the flow wave by
approximately a quarter period at the posterior of the cell (cell coordinate x = 0), and follows the
flow wave by about a quarter period at the anterior of the cell (cell coordinate x = 1). However,
the location of the transition has an obvious dependence on scale factor. For scale factor s = 1,
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we see the transition occur at nearly the center of the cell. As the scale factor is decreased, the
qualitative shape of the transition changes slightly, but the location unmistakably shifts toward the
anterior of the cell. This more closely reproduces the trend seen in the data reported [23].
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Figure 8: Cross section averaged intracellular flow velocity and cell boundary deformation. The
colormap indicates average flow component along the cell longitudinal axis ([µm/sec]) as a function
of time ([sec]) and cell longitudinal coordinate ([n.d.]). The black lines indicate maximum cell
width, or the onset of contraction. The white lines indicated minimum cell width, or the onset of
expansion.

To more clearly illustrate this concept we extract the relative phase of flow and deformation
waves from our simulations and compare them to the phase extracted from fig. 2. The results
of this comparison are shown in fig. 9. The graph clearly illustrates the transition from positive
to negative phase difference shifting toward the front of the cell as the compliance of the head is
increased (decreasing scale factor). Consequently, larger portions of the cell domain exhibit positive
phase difference. In both respects, a more compliant head results in a more faithful reproduction
of the phase data extracted from the experiments of [23].
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Figure 9: The solid lines indicate the phase difference predicted by our numerical model for three
values of scale factor. Shaded region and black dashed line indicate values calculated from data in
fig. 2 for comparison. The grey dash-dot lines indicate phase difference of ±π/2 (a quarter period)
for reference.

15



6.3 Stress Calculations

We now address the actual stresses our numerical model applies to the substrate and the emergent
migration speed of the cell. One of the quantities calculated during simulation of our numerical
model is the stress applied to the underlying substrate σs(xlab, ylab, t). Here, the superscript “s” is
meant to denote “from simulation,” while the subscript “lab” indicates lab coordinates (as opposed
to cell body coordinates). From this we can calculate the spatial mean σs(t). Finally, we calculate
the “total average” stress 〈σs〉 by taking the mean in time, as well as the “maximum stress” σsmax

by taking the maximal value over the duration of the simulation.
The calculated values of 〈σs〉, σsmax and their ratio, are shown in table 2. When we compare these

values to those calculated from our analytical model (table 1), some similarities are immediately
evident. The values calculated for maximum and total average stress are of roughly the same scale
as those predicted by the analytical model. It is not immediately obvious that this should be the
case, as our analytical model only quantified the characteristic scale of viscous stresses associated
with the peristaltic flow and made no attempt to model how they may be transmitted to the
substrate. Conversely our numerical model calculates the actual stresses applied to the substrate
by a migrating model cell. The general agreement between these two models may be interpreted as
a validation of the approach we adopt in section 5. The one exception to this statement is that in
the case of the constrained deformation (closed head), the analytical model predicts total average
stresses nearly two orders of magnitude smaller. This is likely due to the the fact that in the
computational model, the cell body has an elastic response which gives an additional asymmetry
not present in the analytical model.

Table 2: Stresses applied to substrate in simulated crawling cells

Scale Factor = 1 Scale Factor = 3/4 Scale Factor = 1/2

σsmax Maximum Average Stress 1.2218 Pa 1.2857 Pa 1.5737 Pa
〈σs〉 Total Average Stress 0.4043 Pa 0.5497 Pa 0.7148 Pa

〈σs〉/σsmax Ratio Of Stresses 0.3309 0.4276 0.4542

Another trend immediately apparent is that as the scale factor decreases and the cell head
becomes more compliant, stress generation is improved. Not only does maximum stress increase as
the cell becomes more mechanically asymmetric, but so does the ratio of total average to maximum
stress. This means that a mechanically asymmetric cell generates larger characteristic stresses, and
a larger proportion of them remain uncanceled after a full period of the wave. Comparing scale
factor s = 1 to s = 1/2, we see that while maximum stress increases by approximately 30%, the
total average stress increases by nearly 100%. Again, this trend mirrors the predictions of the
analytical model in section 5.

6.4 Crawling Speed

Finally, one of the measurable outputs of our numerical model is the actual migration speed of the
model cell. In [20] we showed that two aspects of adhesion were critical to generating motility. Both
the strength (quantified by Aadh) and the coordination relative to the driving contraction (quantified
by φ) have a profound impact on migration. For φ = 3π/2 the numerical model predicts robust
migration speeds over a wide range of values of adhesive interaction (discussed at length in [20]).
In the limit that the cell is weekly or strongly adherent, the migration speed decreases to negligible
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values, and the coordination parameter φ does not matter. For this reason, we only present data
for φ = 3π/2 and moderate values of adhesion here.

Figure 10 shows the computed crawling speed of the cell for the three considered scale factors
over a wide range of adhesion strengths. The figure shows that, generically, decreasing scale factor
(more compliant cell head) corresponds to increased migration speed. This is true for nearly all
parameter values. For moderately adherent cells that exhibit fast migration speeds, scale factor
s = 1/2 results in as much as a 70% increase in migration speed. Again, it appears that the
mechanical asymmetry (decreased scale factor) is advantageous for generating motility.
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Figure 10: Crawling speed of model cell ([µm/sec]) as a function of adhesion strength and scale
factor.

7 Discussion

Small Physarum plasmodia exhibit peristaltic contractions of the cell membrane and a periodic
streaming flow of cytoplasm as they migrate [20, 23, 46], and these flows have been postulated
to be responsible for driving the motility [23]. We developed a simplified mathematical model
that treats the migrating Physarum plasmodium as a peristaltic chamber to explore the phase
relationship between flow and deformation and its role in motility. The model results reproduce
certain aspects of the observed phase relationship, and they strongly suggest that a mechanical
asymmetry in the form of a softer anterior is required to reproduce experimental observations.
To further explore the role a mechanically distinct head may play in generating the phase data
reported in [23], we used a computational model of a crawling cell. As the cell head is softened,
the model predicts phase data similar to those reported in [23] and the crawling speed increases.

We note here that the relative phases calculated from our two models are dissimilar in several
respects (even when comparing the “closed head” case of the first model to the numerical model with
scale factor 1). The differences in the models’ behavior is not surprising given that the analytical
model is driven by imposing a deformation, while the numerical model is driven by imposing a
wave of contractile stress. This is an important distinction, as the resulting deformation achieved
depends on the overall rheology of the model cell. In this respect, the numerical model is more
like the actual organism. Physarum produces the observed deformations by contracting the actin-
myosin cytoskeleton in a periodic fashion.
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Contraction waves within Physarum are the result of calcium oscillations which likely depend on
regulatory and signaling pathways that are not well studied. Data on the contractile stress has not
been reported, and measuring the calcium oscillations is a problem which is the subject of ongoing
investigation [46]. In the computational model the traveling sinusoidal contraction wave eq. (25)
was selected for simplicity. The period and wavelength were assumed to be the same as the flow
wave, and the strength was chosen to give deformations of approximately the amplitude reported
in [23]. The computational model qualitatively captures the observed phase relationships between
flow and deformation, and the results of this investigation would not be altered in any substantive
manner if the form of contraction was “tuned” to give deformations which more precisely match
experiments.

A major result of both models is the conclusion that introducing mechanical heterogeneity
(either by allowing unconstrained deformations that pump fluid into the head, or by softening the
elastic response of the cell anterior) not only affects the measured phase data, but actually increases
the ability for the cell to migrate. The characteristic scale of stresses generated increases when
asymmetry is introduced, as does the proportion of stresses which are directed, and not “canceled
out” over one period of the oscillation. In the case of our numerical model, we actually see a drastic
increase in migration velocity as the head is softened. However, this does not necessarily imply
that the flow/deformation relationship itself is responsible for motility.

In [20] we used the same numerical model used here to investigate the relationship that adhesion
has on migrating Physarum plasmodia. One conclusion of that work was that the coordination of
adhesion strength is a dominant factor determining locomotion. Indeed, cells driven by the same
contraction, and exhibiting nearly identical deformation and flow waves, could be made to migrate
in different directions depending on how the spatiotemporal form of adhesion was modulated. Given
this, it is possible that the flow waves observed in [23] and reproduced in this work are not directly
responsible for driving migration. Rather, the fluid may play a role in establishing the long-range
coordination of contraction and adhesion that is necessary for migration by transporting calcium
or other chemical signals and propagating mechanical signals via hydrodynamic pressure.
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Karin Hirsch, Markus Keller, Reinhold Förster, David R Critchley, Reinhard Fässler, and
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[42] A Tero, R Kobayashi, and Toshiyuki Nakagaki. A Coupled-Oscillator Model with a Conser-
vation Law for the Rhythmic Amoeboid Movements of Plasmodial Slime Molds. Physica D:
Nonlinear Phenomena, 205(1-4):125–135, 2005.

[43] O Thoumine, O Cardoso, and J J Meister. Changes in the Mechanical Properties of Fibroblasts
During Spreading: a Micromanipulation Study. European Biophysics Journal, 28(3):222–234,
1999.

[44] Jean-Yves Tinevez, Ulrike Schulze, Guillaume Salbreux, Julia Roensch, Jean François Joanny,
and Ewa Paluch. Role of cortical tension in bleb growth. Proceedings of the National Academy
of Sciences of the United States of America, 106(44):18581–18586, November 2009.

[45] Shun Zhang. Personal Communication. December 2013.

[46] Shun Zhang, Robert D Guy, Juan C Lasheras, and Juan C Del Àlamo. Self-organized mechano-
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A Appendix

A.1 Analytical Model Details

A.1.1 Calculating Viscous Stress

Figure A.1 shows an illustrative example of a 3-dimensional peristaltic chamber filled with fluid.
Within the chamber, we assume that inertial effects are negligible, and therefore the force density
balance on the fluid is given by Stokes equations:

µ∆~u−∇p = 0, (A.1)

∇ · ~u = 0. (A.2)

Here ~u = 〈u, v, w〉 is the fluid velocity field in the cell chamber, µ is the dynamic viscosity of the
fluid, and p is the hydrodynamic pressure. We note that in the experiments of [23] the characteristic
height (from the basal to dorsal surface of the cell) is roughly d ≈ 20 µm. This is slightly less than
the characteristic width of the fluid domain (2h0 ≈ 40 µm), and both are significantly less than the
length of the fluid domain (Lx ≈ 400 µm). Therefore, we make a thin gap approximation to the
momentum equation of Newtonian fluid [1]. This allows us to reduce the Stokes equation in the
x-direction to

µ
∂2u

∂z2
=
∂p

∂x
. (A.3)

The lubrication approximation also allows us to claim that p is not a function of z. Therefore,
eq. (A.3) is easily solvable. Integrating twice and imposing a no-slip boundary condition on the
basal and dorsal surfaces of the fluid domain (z = ±d/2), we solve for the flow profile as a function
of z:

u(z) =
px
8µ

(
d2 − 4z2

)
. (A.4)

This is simply the standard Poiseuille flow profile [29]. Now, we can utilize this flow profile to
evaluate the viscous stress applied by the flow to the basal surface of the cell

σ = µ
∂u

∂z

∣∣∣∣
z=− d

2

= −pxd
2
. (A.5)

Finally, note that most experiments performed on Physarum measure the intracellular velocity in
the xy-plane. Therefore, we make the simplifying assumption that the experimentally measured
velocity can be characterized by the average velocity over the height of the cell. We calculate this
mean velocity as

ū =
1

d

∫ d
2

−d
2

u(z) dz =
−pxd2

12µ
. (A.6)

For the remainder of this discussion, we will only be concerned with the two-dimensional, planar
flow within the cell chamber. Therefore, we will drop the “bar” notation and refer to the mean
velocity in the longitudinal direction as u. Similarly, v will denote the average velocity in the
lateral (y-) direction. However, this should be understood to imply that the flow has already been
averaged over the z-coordinate. We now relate the flux of fluid in the longitudinal direction to the
basal viscous stress. The flux Q is defined by

Q(x, t) =

∫ h

−h
u dy. (A.7)
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(a) Schematic of the peristaltic chamber.
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(b) Side view of peristaltic chamber with Poiseille flow pro-
file.

Figure A.1: A schematic of the geometry for our model. The chamber is assumed to be of uniform
thickness (d) in the z-direction. The longitudinal flow profile in this direction is assumed to be a
parabolic Poiseuille flow.

This quantity does not correspond to the traditional notion of volumetric flux. In our model, Q
has units of area per time, as opposed to volume per time. However, it is our chosen quantity of
interest and will be referred to as “flux” throughout this discussion.

We now directly calculate the flux from the longitudinal fluid velocity u. In order to do this,
we make use of our earlier approximations. Since the pressure is assumed to not be a function of
y, eq. (A.6) indicates that the velocity u is not either. This leads us to a uniform flow profile in
the y-direction. This assumption, coupled with eq. (A.6), leads to

u(x, y) = u(x) =
−pxd2

12µ
. (A.8)

Integrating to find the flux immediately gives

Q(x) =

∫ h

−h
u(x) dy = 2hu(x) =

−pxhd2
6µ

. (A.9)

It should be noted that our assumption of uniform flow in the y-direction is not particularly
critical to the above relationship. The uniform profile in y is obviously a crude approximation and
indeed does not even satisfy a no-slip boundary condition at y = ±h. We could perform another
lubrication approximation on the two-dimensional flow to account for variations in the y-direction.
This would yield that u has a Poiseuille flow profile in the y-direction. If the magnitude of this
Poiseuille flow is given by eq. (A.6), then we may write

u(x, y) =
−px(x)d2

12µ

(
1−

(y
h

)2)
. (A.10)

Integrating over a chamber cross section gives

Q(x) =

∫ h

−h
u(x, y) dy =

−pxhd2
9µ

. (A.11)

Thus we see that the precise assumption regarding the flow profile in the y-direction is not critical,
as its effect on the calculated flux simply amounts to an order one constant. This calculation is
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purely expository. For the entirety of this work, we will assume that the flow profile is uniform in
the y-direction, and thus the flux Q(x) is given by eq. (A.9). Combining eqs. (A.5) and (A.9), we
can relate the flux Q and boundary deformation h to the characteristic viscous stresses associated
with the flow

σ =
3µ

d

Q(x, t)

h(x, t)
. (A.12)

A.1.2 Parameters used for Analytical Model

Table A.1: Model parameters for peristaltic chamber

Symbol Description Value

Lx Cell Length 400 µm
h0 Average Cell Half-Width 20 µm
A Deformation Amplitude 5 µm
d Cell Thickness 20 µm
k Deformation Wave Number π/2
T Deformation Wave Period 100 sec
µ Cytosol Viscosity 16.66 Pa sec

All of the parameters were chose to match the data presented in [23], with the exception of one.
The viscosity of cytoplasm within Physarum plasmodia is not an easily quantifiable mechanical
parameter. Indeed, estimates may range over many orders of magnitude depending on experimental
procedure and cell preparation. However, our model does provide us a way to crudely estimate
cytoplasmic viscosity. Equation (A.8) allows us to perform this estimation, provided that we know
the characteristic flow velocity and pressure gradient. While we do not know the local pressure
gradient within the cell, we do know the characteristic length of the cell body (Lx). We also have
estimates for the characteristic pressure difference ([p]) from the anterior to posterior of the cell
[14]. Finally, it is relatively easy to extract a characteristic velocity scale from the data in [23].
The additional parameters needed to estimate µ are listed in table A.2.

Table A.2: Parameters used to calculate cytosol viscosity in Physarum.

Symbol Description Value

[p] Pressure difference across cell 1000 Pa
U Characteristic fluid velocity 5 µm/sec

Using the values listed in tables A.1 and A.2 and eq. (A.8), we approximate the viscosity of the
intracellular fluid as

µ ≈ [p]d2

12LxU
. (A.13)

This yields a viscosity of µ = 50/3 Pa sec ≈ 17 Pa sec. For comparison, this is roughly the viscosity
of honey, or approximately 17, 000 times the viscosity of water. As previously stated, measuring the
viscosity of cytoplasm is a difficult problem, partially due to the ambiguity of the material being
measured. Cytoplasm is a complex mixture of ions, proteins, and other compounds. Proteins such
as actin may polymerize (to form a gel-like network) or depolymerize spontaneously or in response
to various chemical signals. This means that the measured rheology of cytoplasm can vary wildly
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depending on timescale of interest, experimental methodology, environmental factors, or cell type
[22]. Values for cytoplasmic viscosity have been reported over several orders of magnitude [21],
ranging up to 104 Pa sec for fibroblasts [43]. Furthermore, our model has homogenized all of this
complex rheology into a single parameter. Therefore, while the computed value of µ is rather high
to describe cytosol, it is well within a reasonable range to describe the viscosity of cytoplasm.

A.2 Computational Model Details

A.2.1 Parameters for Numerical Model

Our mathematical model is based on the Immersed Boundary (IB) method, which was originally
developed to simulate blood flow [28], but has since been adopted to address an array of fluid-
structure interaction problems in biology and engineering [24]. The key feature of the IB method
is that the equations of fluid mechanics are solved in a fixed Eulerian coordinate system (with
coordinate ~xlab and domain Ω), while the equations of the immersed solid structure are represented
in a moving Lagrangian coordinate system (with coordinate ~x and domain Γ). The basic framework
of our methodology is outlined in [35]. A more detailed explanation for the specific simulations
used in this work are provided in [20] and its supplemental material.

In nearly all cases, constitutive equations and parameter values are chosen identical to those
used in [20]. Here, we provide values and verbal descriptions of the relevant parameters. The cell
boundary is defined by an elastic, impermeable membrane under surface tension. The membrane
elastic stiffness is denoted κ and the resting tension is γ. The resting tension γ is chosen to give a
resting pressure within the cell of approximately 500 Pa. This value was desired because of evidence
that the resting pressure within Physarum is of the same scale as traction stresses generated during
motility. The elastic stiffness κ was set to be γ/2 based on micropipette experiments (in other
cell types) that show inhibiting cortical myosin reduces membrane/cortex tension response by as
much as 50% [44] (see Supplemental Information of [20] for a more detailed discussion of membrane
parameters). The resting geometry is a straight channel with two semicircular caps (as depicted in
fig. 7). The overall cell length and width are Lx and Ly respectively.

The interior of the cell body is a poroelastic material composed of a permeable elastic network
(cytoskeleton) and viscous interstitial fluid (cytosol). The elastic modulus of the cytoskeletal net-
work is denoted λ, while the cytosol has viscosity µ. The strength of drag due to relative motion
of cytosol and cytoskeleton is proportional to the parameter ξ. The ratio µ/ξ may be interpreted
as the Darcy permeability of the network, and is the important parameter governing the flow of
cytosol. We estimate an “effective” Darcy permeability for the cell interior of approximately 33.3
µm2. This value is calculated by averaging two distinct flow environments over the cross section
of the cell. We assume that a cross section of the cell is comprised of a dense actin rich cytoplas-
mic gel, with a non-gelated flow channel in the center. We assume that the flow channel occupies
approximately 25% of the cell cross-sectional width, and exhibits viscous flow governed by Stokes
equation. The gelated regions on either side of the flow channel are governed by a Brinkman equa-
tion, with a Darcy permeability of 10−4 µm2 [8, 15]. Details of this averaging calculation can be
found in [19], as well as the Supplemental Information of [20]. The fluid viscosity is chosen to be
well within reported values for cytoplasmic viscosity, which vary wildly depending on cell type and
experimental methodology [21]. Once cytoplasmic viscosity has been chosen, the drag parameter
ξ is uniquely determined to keep the poroelastic medium consistent with the desired permeability.
Non-dimensionalization of the fluid equations shows that the ratio of viscous stresses to drag forces
can be characterized by the ratio of the length scale of the cell squared to the Darcy permeability
(ξL2/µ). Given our estimate of the Darcy permeability, this ratio is much less than 1, indicating
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that the fluid dynamics are drag dominated. This implies that our specific choice of fluid viscosity
does not affect the physics of the system dramatically.

We drive the simulation by imposing a wave of contractile stress within the network. The
strength of contractile stress Astress was chosen to produce cell deformations on the scale observed
in vivo. The wave number and frequency of the the contraction wave in Section 6 were chosen
identical to the wave number and frequency of the deformation wave in Section 3. We have
no data describing the actual contractions within Physarum which drive the observed peristaltic
deformations. However, in our numerical experiments, choosing these values for k and ω produced
peristaltic deformations with phase velocity consistent with experiments. The overall period of the
contraction and deformation is given by T = 2π/ω and reported in table A.3.

Finally, the elastic cytoskeleton is mechanically coupled to the substrate via adhesive complexes.
We model the interaction of the adhesive complexes via a viscous drag law with a spatiotemporal
variation in the viscous drag parameter (eq. (27)). The basal strength of viscous interaction ε
represents non-specific interactions between the dorsal surface of the cell and the substrate. The
parameter Aadh represents the strength of specific interactions between integrin-like ligands in the
cell membrane and the substrate. This parameter was varied over many orders of magnitude. We
report here only the values that resulted in non-trivial migration speed in simulations. Finally, the
phase of adhesion relative to coordination φ was chosen based on our previous results reported in
[20]. This value results in robust migration which allowed us to investigate the effects of altering
the elastic modulus of the cell.

Table A.3: Model parameters for crawling simulation.

Parameter Description Numerical Value

Lx Cell Length 400 µm
Ly Cell Width 66.6 µm
κ Cell Membrane Stiffness 10−2 N/m
γ Cell Membrane Resting Tension 6.1× 10−2 N/m
µ Cytosol Viscosity 0.75 Pa sec.
λ Cytoskeletal Elastic Modulus 781 Pa
ξ Cytosol/Cytoskeletal Drag Coefficient 2.29× 1011 Pa sec/m2

Astress Amplitude of Active Contraction 5.8 Pa
k Wave Number of Active Contraction π/2
T Period of Active Contraction 100 sec
ε Coefficient of Nonspecific Adhesion 2.29× 106 Pa sec/m

Aadh Coefficient of Specific Adhesion 2.29× 106 – 2.29× 1010 Pa sec/m
φ Relative Phase of Contraction and Specific Adhesion 3π/2
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