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Abstract

Many important biological functions depend on microorganisms’ ability to move in viscoelas-
tic fluids such as mucus and wet soil. The effects of fluid elasticity on motility remain poorly
understood, partly because, the swimmer strokes depend on the properties of the fluid medium,
which obfuscates the mechanisms responsible for observed behavioral changes. In this study, we
use experimental data on the gaits of Chlamydomonas reinhardtii swimming in Newtonian and
viscoelastic fluids as inputs to numerical simulations that decouple the swimmer gait and fluid
type in order to isolate the effect of fluid elasticity on swimming. In viscoelastic fluids, cells
employing the Newtonian gait swim faster but generate larger stresses and use more power, and
as a result the viscoelastic gait is more efficient. Furthermore, we show that fundamental prin-
ciples of swimming based on viscous fluid theory miss important flow dynamics: fluid elasticity
provides an elastic memory effect which increases both the forward and backward speeds, and
(unlike purely viscous fluids) larger fluid stress accumulates around flagella moving tangent to
the swimming direction, compared to the normal direction.

Keywords: micro-organism locomotion, complex fluids, Chlamydomonas reinhardtii, com-
putational biofluid dynamics
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1 Introduction

Swimming microorganisms are important to many industrial and natural processes including the
production of biofuels from algae, fermentation for vaccine and food production, and bio-mixing
in oceans. Recently, there has been a resurgence of interest in the motility of microorganisms for
technological applications that include micro- and nano-robotics [1, 2, 3], drug delivery [4, 5], and
cell manipulation [6, 7]. While most of our current understanding of microorganism swimming is
drawn from investigations in Newtonian fluids (e.g. water), many important biological processes
occur in fluids that contain polymers and/or other solids, which introduce non-Newtonian properties
to the fluid such as shear-thinning viscosity and elasticity. Examples include the swimming of
flagellated sperm cells in cervical mucus during fertilization [8, 9], motility of pathogens through
tissues and stomach lining [10], and burrowing of worms in wet soil [11]. Importantly, the fluid
rheological properties can significantly affect the motility kinematics of microorganisms [12, 13, 14,
15].

Locomotion of microorganisms in viscoelastic fluids has received much recent attention due to
its prevalence in biological processes [13, 16, 17, 18, 19, 20]. Recent results highlight the challenges
in understanding the effects of fluid elasticity on swimming. For example, simulations of 2D finite-
sized waving filaments [18, 20] and rotating helices [21] suggest that fluid elasticity may increase
propulsion speed. Similar trends are found in experiments with mechanically-actuated rotating
helices [22], magnetically driven physical models of undulatory swimmers [23], and E. coli in poly-
meric solutions [14, 24]. On the other hand, theoretical analysis of two-dimensional, infinitely long
waving-sheets and -filaments [13, 25, 17] as well as numerical simulations of idealized swimmers
in viscoelastic fluids [19] show a reduction in propulsion speed compared to purely viscous fluids.
These predictions are consistent with experiments with the undulating worm C. elegans [16] and
with the green alga C. reinhardtii [15]. Moreover, these experiments show that fluid elasticity
significantly modifies the organism’s stroke kinematics such as the worm’s swimming amplitude
and the alga’s flagellum beating frequency. The intricate relationship between fluid elasticity and
swimming speed is difficult to understand from just experimental data because it is challenging to
decouple fluid effects from the microorganism’s swimming stroke kinematics.

In this paper, we investigate the effects of fluid elasticity and flagellar kinematics on the motility
of the green alga C. reinhardtii using numerical simulations and experimental data. The eukaryotic
biflagellated alga C. reinhardtii is a model organism found in soil and fresh water [26]. It is widely
used in studies of ciliary kinematics and motility since its two flagella (∼ 10 µm in length) have the
same conserved “9+2” microtubule arrangement seen in eukaryotic axonemes and respiratory cilia
[27]. The algal cell swims using cyclical breast-stroke patterns with asymmetric power and recovery
strokes [28, 26], and generate far-field flows that have been recently characterized in experiments
[29, 30].

In [15] we investigated C. reinhardtii swimming and flagellar kinematics in fluids of different
viscosity and elasticity, and we showed that the flagellar beat changed both shape and frequency
in response to changes in fluid rheology. From our experimental data alone we cannot infer the
mechanism behind the observed changes in swimming speed in response to fluid rheology because
of the changes in gait. One way to address this difficulty is to perform numerical simulations of
swimming C. reinhardtii using experimentally derived swimming gaits (or strokes), which can then
be investigated in fluids of varying elasticity. Here, we focus on two particular strokes from [15]
that have the same beating frequency, but one from a cell in a Newtonian fluid and the other from
a cell in a viscoelastic fluid of the same viscosity. Thus the only differences between these data sets
are the elasticity of the fluid and the shape of the flagellar beat. We perform three dimensional
numerical simulations based on these two gaits, and we decouple the alga’s flagellar gait from the
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fluid rheology by varying them independently (see methods) in an effort to understand how fluid
elasticity affects swimming.

We find that, as the organism swims in viscoelastic fluids, elastic stress accumulates at the
distal tip of the flagella and the size of the elastic stress is larger during the return stroke than
during the power stroke. These elastic stresses result in an elastic memory effect that propels the
cell even when the flagella stop moving. This memory effect together with the larger accumulation
of elastic stresses in the return stroke leads to a decrease in net forward speed, a trend observed
in experiments [15]. We posit that the orientation of the flagella tips is the main contributor to
the temporal asymmetry in accumulation of elastic stresses in the fluid, which is supported by
simulations of a thin cylinder with different orientations moving in viscoelastic fluids. Surprisingly,
we find that in viscoelastic fluids a cylinder moving along its axis generates larger fluid (elastic)
stresses than a cylinder moving orthogonal to its axis; the opposite is true for viscous Newtonian
fluids.

2 Model: Stroke Kinematics and Fluid System

Experiments with C. reinhardtii in viscoelastic fluids were performed using dilute polymeric solu-
tions [15], which were prepared by dissolving small amounts of a high molecular weight, flexible
polymer (Polyacrylamide, 18 x 106 MW) to M1 buffer solution. The polymer concentration in
solution ranges from 5 to 80 ppm resulting in fluid relaxation times that range from 6 ms to 0.12
s, respectively. The low polymer concentration minimizes the effects of shear-thinning viscosity
while the polymer high molecular weight (MW) introduces elasticity in the fluid. Motile algae is
then suspended in viscoelastic (and Newtonian) fluids. A small volume of this suspension is then
stretched to form a thin film (thickness ∼ 20 µm) using a wire-frame device. The motion of freely
swimming C. reinhardtii and its swimming strokes are imaged in the thin film using an optical
microscope and a high speed camera. Results in Newtonian fluids (Fig. 1a and 5a) show the
well-known power and recovery strokes that are characteristic of swimming C. reinhardtii [28, 26].
Note that the beating form is mostly planar, inspected by measuring length of flagellum and cell
body rotation. Experiments in which flagellum length deviates by more than 10% of its original
size and/or significant body rotation is observed are discarded. More details on fluid preparation,
rheology, and experimental methods are available in [15].

We use a three-dimensional computational model of the C. reinhardtii cell swimming in both
Newtonian and viscoelastic fluids. Other theoretical studies of C. reinhardtii have been performed
using both idealized strokes [31, 32] and strokes based on experimental data [33], although the
focus was on Newtonian fluids while the present study focuses on viscoelasticity. Our approach and
method of fitting to data are similar to [33]. The swimmer body is ellipsoidal with two symmetric
flagella that execute a planar stroke in the mid-plane of the body. The kinematics of the stroke are
prescribed, independent of the fluid rheology, and they are based on our experimental measurements
of the flagellar kinematics in fluids with different rheologies [15]. Our model “Newtonian stroke” is
based on the kinematic data from about 7 cycles of a single representative swimmer in a Newtonian
fluid with viscosity 2.6 cP. The model “viscoelastic stroke” is based on the kinematic data from
about 7 cycles of a single representative swimmer in a polymeric solution with similar viscosity (2.5
cP) and relaxation time corresponding to a Deborah number De = λ/T = 2. The Deborah number
(De) is used to quantify the effects of elasticity and is defined as the ratio of the fluid relaxation
time λ to the period of the stroke T ; note that De= 0 for Newtonian fluids.

We generate a model planar stroke by fitting the experimental data of the positions of the
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flagella from each stroke pattern to a system of model functions of the form

Xi(t, s) = Mi(s) +Ai(s) cos
(

2πt/T + φi(s)
)

, i = 1, 2;

X3(t, s) = 0.
(1)

Here X1, X2 and X3 are the Cartesian components of the flagellum’s location X, t is time, and s is
the arclength coordinate on each flagellum. The Fourier transform of the experimental shape data
shows a strong peak at one frequency, and hence we fit the data using a single mode. The mean
value Mi(s), amplitude Ai(s) and phase φi(s) are generated using cubic spline interpolation. In
Fig. 1, we show both the raw data (consisting of almost 7 full cyles) and single period of the model
stroke sampled at a high time rate for each stroke, highlighting the power (in blue) and return (in
red) strokes. The experimental data and the values of Mi(s), Ai(s) and φi(s) used to construct
the splines are available from [34]. For more details about the fitting procedure see Supplemental
Information.
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Figure 1: Flagellar stroke patterns corresponding to swimmer in a Newtonian (top) and viscoelastic
(bottom) fluid. Experimental data on left, fit on right. Power stroke (blue) and return stroke (red)
are distinguished. The experimental data displayed consists of almost 7 full cycles for each cell,
and the model data shown is for one full cycle.

We use Lagrangian coordinates to describe the swimmer’s position, velocity, and forces, and
Eulerian coordinates to describe the fluid velocity, stress, and pressure. We use ideas from the
immersed boundary method to couple the Eulerian and Lagrangian variables [35]. The shape
of the swimmer is prescribed in a fixed body frame. In the lab frame, the position is given by
X = XP (s, t) +X0(t), where X0(t) is the translation of the origin in the body frame. The velocity
of the swimmer is ∂tX = Up + UT , where Up is the prescribed velocity in the body frame and
UT is the translational velocity of the swimmer. Given the current position of the swimmer and
the prescribed velocity in the lab frame, we simultaneously solve for the fluid velocity and the
translational velocity of the swimmer. The cell body is taken as an ellipsoid with diameters 10
µm, 10 µm, and 12 µm, the longer axis aligned with the swimming direction. The flagellum length
of C. reinhardtii is typically between 10 and 14 µm. Due to the variance of individuals used in
experiments, each experimental data set contains kinematics of a flagellum with a slightly different
length. In order to make a fair comparison in the model, we rescale the length of our model
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strokes so that each model stroke has identical flagellum length. We pick the average arc length
throughout a stroke period of our model viscoelastic stroke with De=2, which is 12.5 µm, as a
“standard length”, and then rescale all other model strokes so that each of them has the same
average arc length.

The fluid is described by the Stokes equations with the addition of a polymer stress tensor, τp,
to account for the viscoelastic stresses:

ηs∆u−∇p+∇ · τp + f = 0, (2)

∇ · u = 0, (3)

where u is the fluid velocity, p is the fluid pressure, and ηs, is the solvent viscosity. The external
force density, f , is used to enforce the prescribed shape of the swimmer.

As mentioned above, the experimentally derived “Newtonian” and “viscoelastic” strokes are
obtained in fluids of similar viscosity (2.6 vs 2.5 cP) and the main difference is the fluid elastic
stresses present in the viscoelastic experiments (De= 2). Here, we use the Oldroyd-B model [36]
which is a relatively simple nonlinear constitutive model widely used to simulate viscoelastic flows.
We note that the Oldroyd-B model has constant viscosity, while the fluids from our experiments
show a small amount of shear thinning as described in [15]. Our intention is not to match the
rheology from the experiments exactly, but rather isolate and investigate the effects of elasticity on
the swimming behavior of C. reinhardtii. The Oldroyd-B model can be derived from a description
of the polymers as dumbbells connected by linear springs. The fluid flow stretches the polymers
giving a memory of past deformations which then relaxes on some characteristic time scale. The
deformation of the polymers feeds back on the fluid through a macroscopic extra stress tensor,
or polymer stress tensor, given by an average of distribution of polymer configurations. In the
Oldroyd-B model the polymer stress tensor is related to a conformation tensor, σ, describing the
average distribution and orientation of polymers

τp =
ηp
λ
(σ − I), (4)

where ηp is the polymer viscosity and λ is the fluid relaxation time. The conformation tensor
evolves according to

∂tσ + u ·∇σ −
(

σ · ∇u+∇uT
· σ

)

= −
1

λ
(σ − I) + ε∆σ. (5)

A numerical regularization term, ε∆σ, is added [37, 38] where ε ∝ (∆x)2 for grid spacing ∆x; thus
in the limit ∆x → 0 this regularized model converges to the Oldroyd-B model. The elastic strain
energy density is the trace of the stress tensor, Tr(τp).

Full details of the model equations and numerical methods, including validation, are given in
the Appendix A.

3 Dissecting the Effects of Fluid Elasticity and Stroke

In biological experiments, the cell’s swimming stroke changes in response to changes in fluid rhe-
ology, which makes it difficult to interpret and use experimental data alone to understand the role
of fluid elasticity on swimming. Here, the relative roles of swimming stroke and fluid rheology
are isolated by varying them separately using simulations and experimental data. We begin by
extracting the cell’s swimming strokes from experiments in Newtonian and viscoelastic fluids (see
Fig. 1). Cells with these different swimming strokes are then investigated in fluids in which the
polymer relaxation time λ, and consequently the Deborah number De = λ/T , is systematically
varied with the stroke period T held fixed.
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3.1 Elastic Stress and Swimming Speed During a Single Stroke

Fluid elastic (polymeric) stresses are an important quantity that is difficult to obtain in experiments,
but can be resolved in simulations. In this section we use the viscoelastic stroke (Fig. 1 (d)) obtained
from experiments and vary the fluid relaxation time λ and consequently De in simulations. In Fig.
2 (a) we show snapshots of the fluid strain energy density in the central swimming plane at De = 2
(the Deborah number of the experiment from which this stroke was derived). The strain energy
density is the trace of the elastic stress tensor and it gives a measure of the size of the elastic stress.
It is notable that high stress is concentrated only near the distal tips of flagella, contrary to the
conjecture in [15] that high stress regions develop near both ends of the flagella as well as near
the body. The flagellar tips are traveling 3-4 times faster than the cell body (see Supplemental
Information), but this speed difference alone cannot account for the orders of magnitude difference
in elastic stress found near the flagellar tips and the cell body.
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Figure 2: (a) Snapshots of strain energy density in the central plane forDe = 2 using the viscoelastic
stroke; The time points for these images are marked in (b) and (c) with the labels 1-6. (b) Root
mean square of the strain energy density in the midplane as a function of time for different De
normalized by maximum values. (c) Maximum values of root mean square of the strain energy
density in the midplane, used to normalize (b). (d) Velocity over one stroke for different De. The
power and return boosts are marked for De = 2.

In Fig. 2 (b) we show the time course of the spatially averaged strain energy density throughout
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the entire stroke for different Deborah numbers. The elastic stress is generally lower during the
power stroke than during the return stroke for all Deborah numbers. The lowest stresses occur
near the middle of the power stroke, and the highest stresses occur towards the end of the return
stroke. The magnitude of the stress increases monotonically with Deborah number ((Fig. 2 (c)).

Next, we investigate the effects of accumulated stresses on the cell propulsion speed. The
velocity of the swimmer over the course of a complete stroke is shown in Fig. 2 (d) for different
Deborah numbers. We see that fluid elasticity boosts the speed of both the power and return
strokes and produces a phase shift in which the peak velocities occur later in time. The size of the
boosts and the extent of the phase shifts both increase with De. The speed of return stroke as the
cell moves backwards is boosted to a greater extent than the speed of the power stroke when the cell
is moving forwards. We conjecture that the accumulated fluid elastic stress is primarily responsible
for the speed boost, which is supported by the observation of larger elastic stress and larger speed
enhancements during the return stroke. An elastic slow-down in the net swimming speed results
from the fact that the return stroke experiences a stronger speed boost (going backwards) than the
power stroke (Fig. 2 (d)), and as De increases the size of the speed enhancements increases.

3.2 Comparing Newtonian and Viscoelastic Strokes

Next we compare the swimming performance of the viscoelastic stroke with that of the Newtonian
stroke (Fig. 1 (b)) using model fluids that range from De = 0 (Newtonian) to De = 2. The results
of the previous section (spatial-temporal stress distributions and effect of elasticity on swimming
speed) do not change qualitatively when the Newtonian stroke is used in place of the viscoelastic
stroke; see Supplemental Information. Here, we examine time-averaged quantities to assess the
swimming performance of the two strokes. The Newtonian stroke yields swimming speeds 60%
faster than those of the viscoelastic stroke (Fig. 3 (a)), but both speeds decrease with increasing
Deborah number at about the same rate which is evident after normalizing by the De = 0 (i.e.
Newtonian) swimming speed (Fig. 3 (b)). Also shown in this figure are experimental data from
[15], and although each De involves different kinematics, the speed decrease with De shows the
same trend as the model. By contrast, the power consumption (Fig. 3 (c)) increases much more
substantially with increasing elasticity for the Newtonian stroke, as compared to the viscoelastic
stroke. Comparing the results for De = 2 to those for De = 0, we see the Newtonian stroke uses
over twice as much power, while the increase from the viscoelastic stroke is only about 50%.

We compute the instantaneous power output by integrating F ·U over the swimmer body and
flagella where U is the pointwise velocity of the swimmer and F is the force density on the swimmer
body and flagella. The power consumption reported in Fig. 3 (c) is the average power in one period.
A similar mechanical measurement of the average power output per period was reported by [29]
to be about 5 fW based on two-dimensional measurements of the fluid flows in the swimmer’s
midplane with a resolution of 3 µm. We attribute our higher power estimate to the fact that it
involves the full three dimensional flow field with submicron spatial resolution. Our value of 110
fW for the average power consumption corresponds to about 2 × 106 ATP molecules per second
(using 54× 10−21 J/ATP [39]) or 106 ATP molecules per second per flagellum, which agrees with
the measured value of 0.97× 106 ATP/s [40].

Figure 3 (d) shows the swimming efficiency, quantified as the ratio of average speed to average
power (distance travelled per energy dissipated), for both strokes. We note that this measure of
efficiency is different from the typical measure for microorganism locomotion in viscous fluids which
is the ratio of the power needed to drag the body at the average swimming speed to the power
dissipated during swimming [41]. For viscoelastic fluids, the drag force is a nonlinear function of
the velocity and it depends on the time history of the motion. Thus, it is not clear that normalizing
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Figure 3: (a) Average speed for Newtonian and viscoelastic strokes. (b) Average speed normalized
by the De = 0 speed in experiments and in the model. (c) Average power output (see methods
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Average ratio of elastic stress to viscous stress. (f) Snapshot of the strain energy density induced
by the Newtonian stroke, at peak value. (g) Snapshot of the strain energy density induced by the
viscoelastic stroke in the same phase as (f).
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by the power needed for steady motion is appropriate, and so we use the dimensional distance per
energy dissipated. In a Newtonian fluid (De = 0) the two strokes have comparable efficiencies.
Both strokes result in lower efficiency as fluid elasticity increases, but the greater increase in power
needed to maintain the Newtonian stroke with increasing elasticity (Fig. 3(c)) leads to less efficient
swimming in a viscoelastic fluid.

We also find that the Newtonian stroke induces higher elastic stress, as shown in Figs. 3 (e)
– (g). These elevated stresses are responsible for the larger power needed by the swimmers using
the Newtonian stroke. In the presence of fluid elasticity, the cell requires more power to maintain
a fixed stroke, suggesting that the swimmer may change its stroke to the fluid properties based on
energy availability. In particular, we note from Fig. 3(c) that it requires a similar amount of power
to maintain the Newtonian stroke at De = 0 as the viscoelastic stroke at De = 2 (the stroke was
based on experiments at De = 2).

4 Mechanisms of Asymmetric Speed Enhancements

Our simulations revealed that the stress accumulated during the return stroke is higher than the
stress accumulated during power stroke. Similarly, elasticity led to a larger enhancement of the
swimming speed during the return stroke than during the power stroke. These observations moti-
vate two questions: (1) How are the accumulated stresses related to speed enhancements? (2) Why
is there an asymmetric stress response on power and return?

4.1 Speed Enhancements from Fluid Memory

In our computational model, if the shape of the swimmer is suddenly fixed, the cell stops moving
instantaneously in a Newtonian fluid (at zero Reynolds number) because motion of the fluid and
the translation of the cell are driven entirely by the changing shape of the flagella as all forces are
equilibrated instantaneously. In a viscoelastic fluid, however, once the flagella’s shape is suddenly
fixed, the swimmer continues to translate because as the accumulated elastic stresses relax they
drive a flow. In Fig. 4 (a) and (b) we show the resulting velocity fields from the accumulated
stress alone when the swimmer shape is suddenly fixed at its peak power and peak return strokes,
respectively, at De = 2 for the viscoelastic stroke. The swimmer continues to move in the direction
it was traveling when the stroke was frozen.

We quantify the effect of the accumulated elastic stress on the swimming speed by recording
the initial coasting velocity (the initial velocity of the swimmer after the stroke is frozen) as a
function of the stroke phase for a range of De, as shown in Fig. 4 (c). We find that increasing fluid
memory (larger De) leads to larger initial coasting velocities, and the peak initial coasting velocity
is 30− 35% higher during the return stroke at De = 2.

In Fig. 4(d), we plot the speed boost measured in our simulations (given by the difference
between Newtonian and viscoelastic peak power or return velocities, seen in Fig. 2(d)) together
with the peak values of initial coasting velocity as a function of De. These two quantities show a
similar dependence on De that strongly suggests that the accumulated stress is a significant factor
in the speed boost. Further, from Fig. 2 (d), we see that the peak power and return enhancements
occur with a time lag (phase shift) from the peak velocities in the Newtonian fluid, indicating that
as the stroke is beginning to slow down, fluid elasticity is continuing to accelerate the swimmer.
Both this effective acceleration, as well as the tendency of the swimmer to continue to move when
the flagellar motion is suddenly stopped, are the result of the accumulated elastic stress which
provides an elastic memory effect.
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Figure 4: Flow field and accumulated elastic stress after stroke is frozen for De = 2 for the
viscoelastic stroke; (a) power stroke, (b) return stroke. (c) Initial coasting velocity; (d) peak initial
coasting velocity and actual speed boost.

4.2 Flagellar Tip Orientation and Elastic Stress

It is well known that net translation in a Newtonian fluid at zero Reynolds number requires non-
reciprocal motion [42]. Much of our intuition regarding flagellated swimmers is based on the idea
of resistive force theory (RFT) [43, 44]. RFT relates the force and velocity on a segment of the
flagellum by treating it as a locally straight cylinder and ignoring the long range hydrodynamic
interactions. The fundamental idea behind this theory is that organisms generate net motion by
exploiting the fact that in a Newtonian fluid it requires less force to drag a long, thin cylinder along
its axis than perpendicular to its axis [45].

In Fig. 5 (a)(d) we plot the flagellum shapes from the Newtonian and viscoelastic strokes,
respectively, with the distal tip highlighted, and in Fig. 5 (b)(e) we plot the angle of the tip relative
to the swimming direction. It is clear that the tip orientation during the power stroke is less
aligned with the direction of motion than during the return stroke. This temporal asymmetry of
the orientation of this segment of the flagellum generates more force, and thus velocity, during the
power stroke than during the return stroke in a Newtonian fluid. Of course, the difference in shape of
the entire flagellum during the return stroke and power stroke is responsible for generating motion,
but we focus on the tip because that is where the large elastic stresses concentrate. Returning to
Fig. 2 we observed higher elastic stress is accumulated when the flagellar tip is oriented tangential
to the direction of motion in the return stroke than when oriented normal to the direction of motion
in the power stroke. This temporal asymmetry in elastic stress and the resultant speed boosts work
against the advantages obtained by the breast-stroke motion, and are contrary to the expectations
based on viscous fluid theory.

In order to gain insight into the effects of flagellar tip orientation in a viscoelastic fluid on
swimming, we simulate a thin cylindrical rod traveling at a constant velocity both tangential and
normal to its long axis and measure the elastic stress as a function of fluid elasticity. We use a rod
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length of 8 µm, and drag it at a constant velocity of 100 µm/s (characteristic lengths and speeds
of a free swimming alga) until the elastic stress is equilibrated. To characterize the strength of
elasticity, we define a dimensionless Weissenberg number for this problem as Wi = λU∞/L, where
λ is the polymer relaxation time, U∞ is the velocity of the rod, and L is the length of the rod.
The elastic strain energy density for a rod that is tangential and normal to a viscoelastic flow at
Wi = 7.5 is shown in Fig. 6 (a) and (b), respectively. A region of very high elastic stress is found
near the trailing tip of the rod moving in the tangential direction, while lower elastic stress is found
near the rod moving in the normal direction. In Fig. 6 (c) we examine how the elastic stress in each
orientation depend on Wi, and we find that the difference between the size of the elastic stresses
between the two rod orientations grows with increasing fluid elasticity.

Viscous stress and elastic stress have significantly different trends as the Weissenberg number
increases (Fig. 6 (d)). The viscous stress ratio (tangential to normal) is always less than one which
agrees qualitatively with what we expect from viscous fluid theory, but the elastic stress ratio
increases with Wi, and for sufficiently large Wi this ratio is larger than one. Thus the orientation
asymmetry between power and return strokes, which enables swimming in viscous fluids, can induce
higher fluid elastic stress and potentially hinder swimming in strongly elastic flows.

The orientation of the flagella during swimming changes continually throughout the stroke,
and because viscoelastic stress is not instantaneously equilibrated, the steady state relationship
between elastic stress and orientation does not completely explain elastic stress development during
swimming. In Fig. 6 (e) we show how the elastic stress grows in time starting from rest at Wi = 7.5,
and even on time scales below the relaxation time, the elastic stress is larger for rods moving in
the tangential direction compared to rods moving in the normal direction. We conjecture that
the difference in orientation of the tips of the flagella on power and return strokes contributes
substantially to the higher elastic stress observed during the return stroke, and the fact that this
effect is heightened for larger Wi also agrees well with the observed increase in peak elasticity as
De increases in Fig. 2(d). This conjecture is further supported by comparing tip motion in the
Newtonian and viscoelastic strokes in Fig. 5; the tip of the Newtonian stroke is more aligned to
the direction of motion, the amplitude of the motion is larger, and the resulting elastic stresses are
larger (Fig. 3).

5 Discussion

Swimming micro-organisms change their gait in response to changes in fluid rheology, which makes
it difficult to understand the effects of fluid elasticity on swimming based on experimental mea-
surements alone. Using our three-dimensional computational model with experimentally derived
kinematics of swimmers in fluids with rheologies that are comparable to those used in our experi-
ments, we separate the two effects and provide new insight into how fluid elasticity affects flagellated
swimmers. By fixing the stroke and varying the fluid elasticity, we observed both the power and
return stroke velocity increase with elasticity, but the speed on return stroke was boosted to a
greater extent leading to a net slow-down in swimming speed (Fig. 2(d)). This trend is different
from the experimental results from [15], in which the power stroke speed appeared to be retarded
by elasticity until very high Deborah number, and the return stroke was enhanced only for De > 2.
We attribute the difference in observations to the fact that in the experiments the stroke changes
as the fluid elasticity changes. Using the computational model, we showed that the viscoelastic
stroke itself leads to slower swimming compared to the Newtonian stroke in fluids with the same
rheology. Thus the changes from elasticity in speed during power and return stroke that we mea-
sured experimentally were the sum of two competing effects of a slow-down due to changing stroke
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and a speed-up from the development of elastic stress.
By comparing the swimming performances of a Newtonian and a viscoelastic stroke pattern in

different fluids, we address whether the changes in gait that occur with rheology offer any advantage.
We note that both strokes are similar to the predicted optimally efficient stroke in a Newtonian
fluid [46]. Cells using the Newtonian stroke swim faster in all fluids. However, this higher speed
comes at a cost as it requires more mechanical energy to maintain than the viscoelastic stroke as
fluid elasticity increases. Thus the viscoelastic stroke is more efficient (measured as distance per
energy dissipated) in fluids with high elasticity. It is notable that it requires a similar amount of
power to maintain the Newtonian stroke at De = 0 as the viscoelastic stroke at De = 2, as shown
in Fig. 3(b) (the stroke was based on experiments at De = 2). The value of the average power
we obtain in these two cases is on par with the energy usage by the organism as measured by
ATP consumption [40]. These results suggest that the viscoelastic gait may result from the power
limitations. The change to the gait in response to fluid elasticity yields more efficent swimming
in viscoelastic fluids, although we note that Chlamydomonas do not swim in viscoelastic fluids
in their natural environment. However, given the conserved internal structure of the eukaryotic
axoneme, these results may be related to why similarly flagellated cells such as spermatozoa exhibit
qualitatively different beat patterns in Newtonian and viscoelastic fluids [12].

It is difficult to measure the elastic stress in experiments [16, 22, 23], but it is essential to know
what the elastic stresses are to interpret experimental observations. In [15], based on measured
changes in flagellar kinematics with elasticity and previously measured flow fields from [29], we
conjectured that elastic stresses accumulated near both the distal and proximal ends of the flagella
and near the body, but our experiments alone did not give us the means to test this conjecture. One
of the major results of the present study is that the elastic stresses concentrate only near distal tips
of flagella at all phases of a swimming stroke, and the stress accumulated on return stroke is higher
than the stress accumulated during power stroke. These large tip stresses are reminiscent of those
reported in previous two-dimensional computational studies of undulatory swimmers [18, 20, 47, 48],
but to date the effects of localized elastic stress on swimming performances are poorly understood.

The initial coasting velocity provides a quantification of the effect of the large elastic stresses
on the swimming speed. We observed that initial coasting velocity and speed enhancement of the
power and return strokes follow the same increasing trend in fluid elasticity. These accumulated
stresses provide an elastic memory effect that continues to increase the speed even as the speed of
the stroke begins to decrease. This elastic memory effect together with the temporal asymmetry of
the larger stresses on the return stroke lead to an overall slow-down in swimming as the elasticity
is increased for a fixed stroke.

We conjecture that the asymmetry of the orientation of flagellar tips between the power and
return stroke leads to the higher elastic stress in the return stroke (Fig. 6), which is supported
by our simulations and analysis (see Supplemental Information) of a thin cylinder moving in vis-
coelastic fluids with different orientations. Our results reveal a fundamental difference between
viscous and elastic effects in the relationship between orientation and stress. In a Newtonian fluid,
the larger viscous stress associated with motion normal to the cylinder axis compared to motion
tangential to the cylinder axis is essential to gaining net displacement for flagellated swimmers.
In viscoelastic fluids, however, this stress asymmetry is reversed, which leads to the higher elastic
stress accumulation during the return stroke compared to the power stroke, causing a decrease in
overall swimming speed.

The orientation dependent elastic stress asymmetry is likely to be important in understanding
other micro-organism motility and flagellar motion in complex fluids. It is difficult, however, to
generalize from one organism to another as it has been shown that the effect of fluid elasticity on
swimming speed is gait dependent [20, 49, 50]. The particular motion studied here has similarities
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with pulmonary cilia which beat in a layered fluid comprised of the periciliary liquid surrounding
the base of the cilia and a mucus layer on top which is more viscous and strongly elastic [51, 52].
Cilia extend into the mucus layer during the power stroke, but recoil to stay within the watery
liquid layer during the return stroke. While it is not surprising that this asymmetry would be
beneficial for transport, our results suggest that ducking the more elastic mucus on return stroke
is essential to avoid large elastic stress that works against transport. Finally, we note that while
the present study focuses on purely elastic effects using the Oldroyd-B model, complex fluids often
display rate-dependent rheological properties which are not captured by the model. Nevertheless,
it is known that large stresses still accumulate in regions of high stretching (and gradients) even
in models with these additional nonlinearities [53, 54, 55, 56], and the qualitative results showing
both concentration of elastic stress at tips as well as asymmetric accumulation that depends on tip
orientation are not expected to change.
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Appendix A Numerical Method

In this section we describe our numerical formulation to solve the coupled swimmer-fluid system.
Our method is similar to [33] in that the kinematics of the flagellum are prescribed exactly, and
the force density and swimming speed are solved for simultaneously. However in [33] they use the
method of regularized Stokeslets [57] which is similar to boundary integral methods that require
the linearity of the Stokes equations and does not generalize to viscoelastic fluids. Because the
viscoelastic stress introduces additional body forces distributed throughout the fluid domain, the
equations of motion cannot be reduced to integral equations on the swimmer body alone. We use
the immersed boundary method [35] which has been used for simulations of flexible undulatory
swimmers in viscoelastic fluids [18, 20, 48, 47] as well as for simulating C. reinhardtii swimming in
Newtonian fluid [32]. We use Lagrangian coordinates to describe the swimmer’s position, velocity,
and forces, and Eulerian coordinates to describe the fluid velocity, stress, and pressure. We use the
framework of the immersed boundary method to compute the Eulerian and Lagrangian variables
[35]. Specifically, the force density on the swimmer is related to the force applied to the fluid by

f(x, t) = SF =

∫

swimmer

F(s, t)δ (x−X(s, t)) ds, (6)

where we use the notation S to denote the spreading operator, which maps Lagrangian variables
to Eulerian variables. Similarly, the adjoint operator S∗ maps the Eulerian fluid velocity to the
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velocity on the swimmer by

U(s, t) = S
∗u =

∫

fluid

u(x, t)δ (x−X(s, t)) dx. (7)

In the discretization of the transfer operators defined in equations (6)-(7), we use the the standard
4-point regularized delta function [35].

In each time step of the simulation we alternately advance the conformation tensor and the
fluid/body system. Given the current fluid velocity field (u), we evolve the conformation tensor
(σ) according to equation (5) from which we compute the polymer stress tensor (τp) from (4).
Given the updated polymer stress tensor and the prescribed velocity of the flagella and cell body
in the body frame (UP ), we then simultaneously solve for the fluid velocity (u) and pressure (p),
the translational velocity of the swimmer body (UT ), and fluid forces on the swimmer (F) which
satisfy

ηs∆u−∇p+ SF = −∇ · τp, (8)

∇ · u = 0, (9)

S
∗u−UT = UP , (10)
∫

swimmer

F ds = 0. (11)

Equation (10) determines that the swimmer moves with the local fluid velocity (i.e. there is no slip
on the body surface), and Eq. (11) requires that the net force on the swimmer be zero. To solve
eqns. (8)-(11), we eliminate the velocity and pressure, and first solve the much smaller system for
the body forces and translational velocity:

S
∗
L
−1

SF−UT = UP − S
∗
L
−1

∇ · τ p, (12)
∫

swimmer

F ds = 0. (13)

where L is the Stokes operator that maps a fluid velocity to the applied forces. After solving this
system for the translational velocity and the force on the swimmer, we use these quantities to
update the body position in the lab frame and the fluid velocity field to complete a time step.

The fluid domain is taken as a periodic cube with side lengths 40µm, which is discretized with
128 points in each direction. Each flagellum is discretized with 27 grid points along its central line,
and the body is discretized using a set of minimum energy interpolation points on the sphere [58],
where neighboring points are approximately equally spaced. We use the Fourier spectral method
to discretize the spatial operators. Equations (12)-(13) are solved using the conjugate gradient
method, which is preconditioned using the method of regularized Stokeslets [57] to approximate
the mobility operator S∗L−1S. Equation (5) for the conformation tensor is discretized in time
using a Crank-Nicholson-Adams-Bashforth scheme (AB for the nonlinear terms) , with the diffusion
coefficient ε = 8∆x2/T , where T is the stroke period and ∆x is the mesh spacing. We use a time
step ∆t = 1/60 ms, and fix the viscosity ratio ηp/ηs = 0.2.

We run all the simulations until the difference of average speeds between two successive periods
falls below 5%, at which time the elastic stress field is approximately periodic in time. The strain
energy, elastic stress and viscous stress averages are computed over the entire three dimensional
computational domain.

We validate the model by comparing the swimming velocities from our simulations with the ex-
periments on which the stroke was based. In Fig. 7 we plot the experimentally measured swimming
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Figure 7: Swimming velocities from simulations and experiments in Newtonian fluid for two different
viscosities, (a) 1 cP and (b) 2.6 cP. The kinematic data for viscosity 2.6 cP are those which are
used for the model Newtonian stroke.

velocities for cells swimming in Newtonian fluids of two different viscosities along with the velocities
produced by our simulations using strokes fit from the same data sets. The “Newtonian stroke”
used throughout this paper is based on the data corresponding to viscosity 2.6 cP. In the Supple-
mental Information we show a similar comparison between the experiment and the simulations at
De = 2.
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S1 Fitting stroke kinematics

The data for each stroke consists of the location of 32 nearly equally spaced points along the
flagellum in the swimmer’s body frame at 80 equally spaced points in time which amounts to
almost seven full strokes. Figure S1 (a)-(d) shows the amplitude of the Fourier transform of the
data at four fixed points equally distributed along the flagellum. Due to the strong single peak in
Fourier modes, we fit he experimental data of the positions of the flagella from each stroke pattern
to a system of model functions with the form of a traveling wave with a single frequency:

Xi(t, s) = Mi(s) +Ai(s) cos
(

2πt/T + φi(s)
)

, i = 1, 2. (1)

Here X1, and X2 are the Cartesian components of the flagellum’s location, T is the period of the
stroke, t is time, and s is the arc length coordinate on each flagellum. The mean Mi and phase φi

on each point are obtained from the Fourier transform of the location data directly. The amplitude
Ai at each point is computed by taking the root squared sum of all non-zero frequency modes such
that Ai =

√
∑

k>0
Ai(k)2, where Ai(k) stands for the amplitude of kth Fourier mode of Xi. In this

way amplitudes of the experimental data are conserved. Cubic spline interpolation with not-a-knot
boundary conditions is then performed on each of those discrete values of functions Mi, Ai, and
φi to obtain the functions throughout the arc length of the flagellum. In Fig. S2 we present the
similarity of the X1 and X2 components of our fit to the experimental data.

S2 Model of flagellum and elastic stress development

The flagella in our numerical computations are represented as a one dimensional curve and dis-
cretized with a single set of points along this curve. The numerical method endows this line of
discrete points with an effective thickness which is proportional to the grid spacing. It has been
shown that this model of a single line of discrete points with a regularized force is capable of cap-
turing the correct force-velocity relationship for thin cylinders [4]. The actual diameter of flagella

1
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Figure S2: (a)(b) Location of a flagellum in the Newtonian stroke from experiment (left) and our
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in C. reinhardtii is roughly 250 nm [2], about 50 times smaller than their length. In our numerical
model the points along the length of the flagellum are spaced 12.5/27 µm ≈ 462 nm apart, so that
our mesh spacing is on the same scale as the flagellar thickness.

Our simulations showed large elastic stresses concentrated at the tips of the flagella, and that
flow tangential to the long axis of the flagella resulted in greater elastic stress than flows normal
to the long axis. Given the spatial scales involved, it is not feasible to resolve the flows around
the tips of the flagella. Here we compare a computation in which the flow around the rod tip is
fully resolved with a model using a single line of points and show that the large stresses do occur
as a result of the flows near the tip in both models. We then demonstrate that the elastic stress
development near the tips is a consequence of the character of the flow around smooth objects
moving in viscoelastic fluids.

Resolved flows around cylinder tips We consider the flow around a stationary cylinder of
radius 1 with length 4π capped on each end by a hemisphere. The flow at infinity is taken to be of
unit speed in the horizontal direction, and the cylinder is oriented either horizontally or vertically
so that the flow is then tangential (Fig. S3(a,c)) or normal (Fig. S3(b,d)) to the long axis. We
discretize the cylinder with 40 points along the circumference so that the mesh spacing is about
0.157 times the radius. We consider the limit of vanishing polymer viscosity, ηp, so that the flow and
conformation tensor decouple. Given the prescribed background flow, we solve for the surface force
density on the cylinder using the Method of Regularized Stokeslets [7]. With these forces, we again
use the Method of Regularized Stokeslets to evaluate the velocity at points off the cylinder, and
integrate the velocity to find the streamlines. We compute the velocity gradients on the streamlines
using a second-order centered finite difference with point spacing 10−6. Along the streamlines we
integrate Eq. (5) from the main text (with ε = 0) to compute the conformation tensor, σ, for a
given relaxation time λ.

In Fig. S3(a) we show the trace of the strain tensor (Tr(σ−I)), which is the dimensionless strain
energy density, for a range of relaxation times (λ) along a streamline that passes the cylinder’s center
plane 0.5 units above the surface for flow tangential to the cylinder’s long axis. The dimensionless
strain energy density gives a measure of the magnitude of the elastic stress in the decoupling limit.
The largest elastic stress does not occur at the tip, but rather it occurs several radii downstream
from the tip, depending on the relaxation time. Further, the peak elastic stress is much larger
downstream of the cylinder than near the cylinder. In Fig. S3(b) we show a similar plot for a flow
moving normal to the cylinder’s long axis on the streamline passing 0.5 units from the tip. Again
the largest elastic stress occurs several units downstream of the tip. Comparing the tangential and
normal cases, the elastic stress is substantially larger for the tangential case than for the normal
case.

Comparing thin to resolved cylinders In Fig. S3(c) and (d) we perform a similar calculation
using a single line of points to represent the cylinder. For these simulations we discretize a rod of
length 15 with points spaced 1 unit apart so that the effective radius is similar to the fully resolved
case. The streamlines are chosen to pass 1 mesh point away from either the center plane or the tip.
Comparing the two models of the cylinder, the results are similar. In particular, the large elastic
stretching downstream of the tip and the larger elastic stress from tangential motion are present
in this model which does not resolve the flows around the tip.

In Fig. S4 we plot the max of the elastic strain energy density as a function the Weissenberg
number along the same streamlines used in Figure S3 for both fully resolved cylinders and for thin
cylinders. The Weissenberg number is defined as λU∞/L, where λ is the relaxation time, U∞ is
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the flow speed at infinity, and L is the length of the cylinder. This plot shows that the size of
the elastic stresses generated by tangential motion are larger than the size of the elastic stress for
normal motion, and the difference in the sizes of the stress increases with Weissenberg number.
These results are consistent with those reported in the paper. Further, the fully resolved and thin
models of the cylinder give the same behavior.

Elastic stress development in the wake of objects In Fig. S3 we see that the largest polymer
stress occurs in the wake of the cylinder for both the tangential and normal cases. In these regions
the flow is dominated by extension rather than rotation. Polymer stress is known to concentrate at
extensional points where the flow stretches along one axis while compressing along another. In the
Oldroyd-B model for viscoelastic fluids the polymer stress diverges at a critical strain rate for fixed
velocity fields [3, 12, 13], and diverges exponentially in time when the stress is allowed to feedback
on the flow [14]. The flow field around a sphere does not have an isolated steady extensional point,
and rather than diverging the polymer stress accumulates in the wake of the sphere with the largest
stress concentration occurring in the downstream wake some distance from the sphere. The flow of
a viscoelastic fluid around spheres (in both 2 and 3 dimensions) has received considerable attention
with a focus on how polymers effect drag around objects (see for example the book [10] which
contains a summary chapter with many references), but the viscoelastic flow around thin objects
in the tangential or normal orientation has not been studied.

Our numerical simulations reveal that there is apparently significantly stronger extension near
the tips of cylinders when the flow is tangential to the direction of motion rather than normal to
the direction of motion. We also see that this effect holds in a region in the downstream wake
of the cylinder, and is not very sensitive to the specific streamline chosen in that region. As a
consequence of these stronger extensional flows the stress is significantly larger in the wake of the
tangential cylinder.

We have made our argument based on a fixed background flow, i.e. the decoupled limit, ηp → 0.
Significant numerical difficulties arise when trying to resolve fully coupled (ηp 6= 0) viscoelastic flow
around smooth objects for sufficiently large Deborah number or Weissenberg number, even in two
space dimensions [1, 5, 6]. However, well resolved simulations can be done in the weak coupling
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limit. This approach has been used successfully to investigate flow around a sphere in 3D, which
exhibits large accumulation of stress in its wake [9]. The results from the simulations here of both
thin and resolved cylinders agree with those of the fully coupled model of thin cylinders from the
paper: tangential motion induces higher polymer stress in the wake of a cylinder compared to
normal motion.

S3 Additional Figures

Newtonian stroke in fluids of different Deborah number We use the Newtonian stroke
(Fig. 1 (b)) obtained from experiments and vary the fluid relaxation time λ and consequently De in
simulations. As shown, in Fig. S5, we see exactly the same qualitative results as with the viscoelastic
stroke (displayed in Fig. 2 of the main text): (1) higher elastic stress is accumulated during the
return stroke; (2) the overall elastic strain energy is increased with the increasing Deborah number
for a fixed stroke; (3) speeds at both power and return strokes are enhanced; and (4) the speed at
the return stroke is boosted to a greater extent than the speed of the power stroke.

Comparing simulation and experiment for Deborah number 2 We compare the swimming
velocity from our simulations with Oldroyd-B fluids using the viscoelastic stroke obtained from
experiments with fluids at De = 2 with the velocity measured in the experiments. The results are
shown in Fig. S6. We find significant overshoot of velocities at peak return and power strokes from
our simulations, compared with the experimental results. The differences between the simulation
and the experiment are likely the result of the fact that the Oldroyd-B model does not faithfully
capture the rheology from the experiments. Contrast this with Fig. 7 from the main text which
shows excellent agreement between experiments and simulations in a Newtonian fluid in which the
rheology of the fluid in the simulations and experiments are identical. In the viscoelastic case, the
simulations involve the Oldroyd-B model which does not exhibit shear-thinning, while the fluids
in the experiments do show a small amount of shear thinning. The estimation of the strain rate
near the flagella used in [11] is almost 10 times lower than what we observe near the flagella tips
in our simulations. Thus the effective fluid viscosity in the experiments is likely over-estimated.
Moreover the largest shear rates are at the flagellar tips, where the model shows the development of
large elastic stresses which are responsible for the speed enhancements. The total fluid viscosity in
this experiment was estimated to be 2.5 cP, and these simulations were performed with a viscosity
ratio ηp/ηs = 1.5 to match the viscosity ratio reported in this experiment. In the main text, all
simulations were run with viscosity ratio ηp/ηs = 0.2.

Streamlines and vector fields We plot vector fields along with their streamlines for the New-
tonian stroke in the Newtonian fluid and the viscoelastic stroke in the viscoelastic fluid in Fig.
S7 and Fig. S8 respectively. The magnitude of the velocity is indicated by the underlying color
field. Snapshots are taken at the same phases of the two strokes. Streamlines in the Newtonian
case in Fig. S7 are similar to those reported in [8]. While the streamlines for the Newtonian and
viscoelastic strokes are qualitatively similar, a few differences are observed. For example, in both
cases the velocity near the flagella tips is 3-4 times larger than the velocity near the body, but in the
Newtonian fluid the peak velocities are found centered on the flagella whereas in the viscoelastic
fluid they are offset. This difference is an effect of the accumulated elastic stresses.
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Body sizes The cell body in the model was chosen to be an ellipsoid with diameters 10 µm,
10 µm, and 12 µm, the longer axis aligned with the swimming direction. Here we reduce the
diameters proportionally by 10% and 20%, which results in a bodies of volumes approximately
27% and 49% smaller, respectively. We run simulations using the viscoelastic stroke in fluids
of different polymer relaxation time with the smaller body cells for the same lagella length and
kinematics. As shown in Fig. S9, we observe the same qualitative trends reported in the main
text in the swimming speed with different body sizes: both power and return strokes are enhanced
as Deborah number increases; the return stroke is boosted to a greater extent; there is a phase
lag with increasing Deborah number. Fig. S11 shows the swimming speed and peak forward and
backward speeds normalized by the larger body for three Deborah numbers. For the Newtonian
fluid (De = 0), the speed is proportional to the body radius, as expected. For viscoelastic fluids the
relationship between the speed body size is more complex. We observe a proportionally stronger
speed enhancement during the return stroke than during the power stroke as the body size is
decreased. Fig. S10 shows the velocity, power, and efficiency as a function of Deborah number for
the two smaller body sizes. These data show the same trends as swimmer with the larger body
size.

Polymer diffusion coefficients For simulations in the main text, the diffusion coefficient was
set to ǫ0 = 8∆x2/T , where ∆x is the mesh spacing and T is the period. Here we perform simulations
with the diffusion increased and decreased by a factor of 2. Table 1 shows the swimming speed and
average power dissipated, and as the diffusion increases, we see weaker elastic stress and thus higher
average speed and lower power consumption. The quantitative results are are weakly affected by
the numerical diffusion. An increase or decrease of diffusion by a factor of 2 affects the speed and
power by less than 10% at De = 1 and by less than 20% at De = 2. Fig. S12 shows that the
swimming velocity as a function of time over the whole stroke is not very sensitive to the choice of
diffusion coefficient.
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Diffusion 0.5ǫ0 ǫ0 1.5ǫ0 2ǫ0
De = 1 35µm/s 37µm/s 39µm/s 40µm/s

98fW 91fW 87fW 83fW

De = 2 26µm/s 32µm/s 35µm/s 35µm/s
114fW 110fW 102fW 94fW

Table 1: Average speed and power consumption as diffusion varies.
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