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Abstract

Blebs are pressure-driven protrusions that play an important role in cell migration, particularly in 3D
environments. A bleb is initiated when the cytoskeleton detaches from the cell membrane, resulting in the
pressure-driven flow of cytosol towards the area of detachment and local expansion of the cell membrane.
Recent experiments involving blebbing cells have led to conflicting hypotheses regarding the timescale of
intracellular pressure propagation. The interpretation of one set of experiments supports a poroelastic model
of the cytoplasm which leads to slow pressure equilibration when compared to the timescale of bleb expansion.
A different study concludes that pressure equilibrates faster than the timescale of bleb expansion. To address
this discrepancy, a dynamic computational model of the cell was developed that includes mechanics of and the
interactions between the cytoplasm, the actin cortex, the cell membrane, and the cytoskeleton. The model
results quantify the relationship between cytoplasmic rheology, pressure, and bleb expansion dynamics, and
provides a more detailed picture of intracellular pressure dynamics. This study shows the elastic response of
the cytoplasm relieves pressure and limits bleb size, and that both permeability and elasticity of the cytoplasm
determine bleb expansion time. Our model with a poroelastic cytoplasm shows that pressure disturbances
from bleb initiation propagate faster than the timescale of bleb expansion and also that pressure equilibrates
slower than the timescale of bleb expansion. The multiple timescales in intracellular pressure dynamics
explain the apparent discrepancy in the interpretation of experimental results.
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Introduction

Blebs are spherical membrane protrusions characterized by a separation of the cell membrane from
the actin cytoskeleton [1], and have been observed as leading-edge protrusions during cell migration over
flat surfaces [2–4], in confined channels [5], and in 3D environments [6, 7]. Bleb expansion is driven by
intracellular pressure generated by contractile stresses acting on the cytoskeleton. Blebs differ from other
types of protrusions, such as lamellipodia, in that their dynamics are primarily regulated by mechanical
rather than biochemical processes. Therefore, blebs provide a good system to probe intracellular mechanics.

In animal cells, the cortex is a thin layer of the cytoskeleton directly beneath the membrane [8]. It
is composed of a dense meshwork of actin filaments rich in myosin molecular motors and actin-binding
proteins [9]. Little is known about the spatial organization of actin in the cortex, and it could have different
mechanical properties from the internal cytoskeleton [10]. The cortex is attached to the membrane by linker
proteins such as ERM (ezrin, radixin and moesin) proteins [8]. Actomyosin contractility generates tension on
the cortex and leads to high intracellular pressure. Blebs are initiated by local cortical rupture or by a local
disruption in the proteins that link the membrane to the cortex [6]. In either scenario, pressure is locally
decreased at the at the bleb nucleation site, resulting in cytoplasmic flow that locally expands the membrane.
New cortex forms underneath the membrane in a bleb, and bleb retraction occurs after cortical actin and
myosin are recruited to the cell membrane. The intracellular pressure dynamics during bleb expansion are
determined by the rheological properties of the cytoplasm, and cytoplasmic elasticity and permeability have
been hypothesized to effect blebbing dynamics [11, 12].

∗Corresponding Author
Email addresses: wis6@case.edu (Wanda Strychalski), guy@math.ucdavis.edu (Robert D. Guy)

Preprint submitted to Biophysical Journal January 13, 2016



The interpretation of two recent experiments has led to different hypotheses regarding intracellular pres-
sure propagation in blebbing cells. In [11], constitutively blebbing cells were partially treated with drugs
that inhibit myosin, such as blebbistatin. Blebbing dynamics ceased in the treated part of the cell, but
continued as normal in the untreated part of the cell. Based on experiments in [11], the authors concluded
that pressure does not equilibrate throughout the cell because blebs in the untreated part of the cell were not
affected. The authors proposed a poroelastic model for the cytoplasm to support their experimental data.
In [12], the authors nucleated two blebs via cortical ablation with a laser. The second bleb was nucleated
shortly after the first one at different locations with respect to the first bleb. The second bleb size was
approximately 30% smaller than the size of the first bleb regardless of its location with respect to the first
bleb. The interpretation of their experiment results was that pressure equilibrated faster than the timescale
of bleb expansion. These interpretations appear to contradict each other and warrant further investigation
into the pressure dynamics in blebbing cells.

Mathematical modeling is one approach to investigate intracellular pressure and blebbing dynamics.
Previous mathematical models have examined various aspects of cellular blebbing. In [13–15], the authors
use an elastic shell model to determine how the mechanics of the membrane, cortex, and membrane/cortex
adhesion influence the shape of blebbing. A particle-based model was used to show that blebs are energet-
ically favorable when membrane area exceeds the cortex area in [16]. These models focused on obtaining
experimentally observed blebbing cell shapes, but not on the dynamics of blebbing. An agent-based model
of a blebbing cell was used to model cell motility [17, 18]. Although this model took into account blebbing
dynamics, the driving pressure was assumed to be uniform in space, and is not appropriate for investigating
questions relating to cytoplasmic rheology. Several recent models that take into account bleb dynamics with
cytoplasmic flow have been developed and used to explore cell migration in a confined channel [5, 19], circus
blebbing [20], and bleb expansion [21, 22]. All of these models treated the cytoplasm as a viscous fluid, and
would need to be extended in order to model more complex cytoplasmic rheology.

In our previous model of bleb expansion, the cytoplasm was treated as a viscous fluid with a permeable
cortex [22]. We found the timescale of bleb inflation was dominated by intracellular drag and not fluid
viscosity. In this model, the only source of intracellular drag was cytosol flowing throughout the permeable
cortex. The model predicted a value of the drag coefficient that can only be achieved with a cortical gap size
that is an order of magnitude smaller than observed experimentally. These results indicated that a viscous
fluid model of the cytoplasm is inadequate to study pressure dynamics in blebbing cells, and they point to
the importance of drag throughout the cytoplasm in bleb dynamics.

In [23] we extended our model from [22] to include a poroelastic description of the cytoplasm, and we
showed that poroelasticity significantly affected intracellular pressure dynamics. A poroelastic model of
cytoplasm was posited in [11] to explain experimental observations, but the model was only used to as part
of scaling arguments to estimate the length scale of pressure propagation across the cell. By contrast, our
model in [23] presents a computational framework to simulate dynamics of variables such as cell shape,
pressure, and cytoplasmic velocity in space and time in the changing geometry of the cell. In [23] we develop
the model and computational methods, but we did not thoroughly investigate the relationship between
cytoplasmic rheology and blebbing dynamics.

In this paper, we use our mathematical model developed in [23] to systematically investigate pressure and
bleb expansion dynamics. We compare the pressure dynamics in a blebbing cell with a viscous fluid cytoplasm
to the pressure dynamics in a cell with a poroelastic cytoplasm. Then we relate pressure dynamics to bleb
expansion time and quantify the effects of poroelastic parameters on bleb expansion time. We simulate
the two-bleb experiments similar to biological experiments from [12], and we find that pressure does not
equilibrate on the timescale of bleb expansion for biologically relevant values of cytoplasmic permeability.
We show that the experimental results from [12] are consistent with a poroelastic model of the cytoplasm and
conclude that pressure dynamics in blebbing cells are not determined by one single long or short timescale as
suggested in [11, 12], but by a combination of timescales that are determined by the rheological properties
of the cytoplasm.

Model Formulation

Our model of the cell is a combined fluid-structure system with a poroelastic cytoplasm, where the cyto-
plasm consists of a permeable, elastic cytoskeleton and liquid cytosol. Our model consists of the membrane,
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cortex, membrane-cortex adhesion, internal cytoskeleton, and liquid cytosol (see Fig. 1). The cell membrane
is modeled as a neutrally buoyant elastic structure that moves with the fluid, and the cortex and the cy-
toskeleton are modeled as permeable elastic materials. The cortex is modeled as a separate structure from
the internal cytoskeleton so that its mechanical properties, such as actomyosin contractility, can be altered
independently from the properties of the internal cytoskeletal network. Our model of the cytoskeleton rep-
resents the mechanical contributions from the internal components of the cytoskeleton, such as the internal
actin network, microtubules, and intermediate filaments. We model the cytoskeleton as a porous, isotropic
elastic material which is initially in an unstressed configuration. We do not include stress relaxation due to
cytoskeletal rearrangement in the model because bleb expansion occurs on a shorter timescale (5–30 s) than
actin turnover (> 1 min).

In this paper, we use a formulation of poroelasticity where the volume fraction of the network (in this
case the cytoskeleton) is negligible. It was shown in [23] that the formulation used here is equivalent to the
standard model of poroelastic media given by Biot [24]. The structures experience internal elastic stresses
and interact with each other directly through coupling forces and indirectly through the response of the
cytosolic fluid to the mechanics and motion of the structures. We use the framework of the immersed
boundary method to handle the coupling forces [25].

The model equations consist of force balances on the liquid cytosol, cell cortex, and cytoskeleton. Because
of the small length scale (a cell radius of 10 µm), inertial terms are negligible and the equations of motion
take the form of force balances. (Using a characteristic length of 10 µm, a characteristic velocity of 1 µm,
and the viscosity of water, the Reynolds number is 10−5.) The membrane is a neutrally buoyant structure
that moves with the fluid. In the standard formulation of the immersed boundary method, forces on such
immersed structures act directly on the surrounding fluid [25]. The force balance on the fluid includes
internal fluid forces (viscosity, pressure), membrane forces (elasticity, membrane-cortex adhesion), and drag
forces due to the relative motion of the cortex and cytoskeleton, which leads to the forced incompressible
Stokes equations:

µ∆u−∇p+ f mem
elastic + f

mem/cortex
adhesion + f cortex

drag + f cyto
drag = 0 (1)

∇ · u = 0,

where u represents the fluid velocity, p is the pressure, µ is the dynamic viscosity of the cytosol, and
f i’s represent forces densities arising from the structures. The drag force in the fluid equation due to the

Membrane
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= Cytosol

Figure 1: Bleb model schematic. Solid dots and white squares denote the cell membrane and cortex, respectively. The
cytoskeleton consists of points at the vertices of the triangular grid. A bleb is initiated by removing adhesive links between the
membrane and the cortex.
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cytoskeletal drag is

f cyto
drag =

µ

κ
(ucyto − u) , (2)

where κ is the permeability of the cytoplasm. The drag force on the cytoskeleton is equal and opposite to
the force applied to the fluid and has the form

F cyto
drag = −µ

κ
(U cyto −U) . (3)

Similarly the fluid drag force on the cortex is

F cortex
drag = −ξ (U cortex −U) , (4)

where ξ is the drag coefficient of the cortex. Here we use the convention that capital letters denote quantities
located on structures (membrane, cortex, and cytoskeleton) and use lower case letters denote quantities
relating to the fluid. We use a Lagrangian coordinate system to describe deforming elastic structure and a
fixed Eulerian coordinate system for modeling fluid variables. Force densities have different scalings in the
two coordinate systems (see Supporting Material for more details).

As in our previous models [22, 23], the drag force on the cortex is balanced by elastic forces within the
cortex and adhesion between the membrane and cytoskeleton. Similarly, the drag force on the cytoskeleton
is balanced by elasticity and adhesion between the cytoskeleton and the cortex. The force balances are given
by

F cortex
drag + F cortex

elastic + F
cortex/mem
adhesion + F

cortex/cyto
adhesion = 0, (5)

F cyto
drag + F cyto

elastic + F
cyto/cortex
adhesion = 0. (6)

The velocities of the porous cortex and cytoskeleton are determined by the above force balances and Eqs.
(3) and (4):

U cortex =
1

ξ

(
F cortex

elastic + F
cortex/mem
adhesion + F

cortex/cyto
adhesion

)
+ U , (7)

U cyto =
κ

µ

(
F cyto

elastic + F
cyto/cortex
adhesion

)
+ U . (8)

The cell membrane moves with the velocity of the cytosol, denoted by U . Constitutive laws for elasticity
and other modeling details are provided in the Supporting Material and [23].

Values for model parameters and sources (when available) are located in Table 1. The cortex is modeled
as an elastic object that resists stretching, and it includes a resting tension that pressurizes the cell. We
attribute the resting tension to actomyosin contraction of the cortex, represented by the parameter γcortex in
Table 1. We use a value of cortical tension consistent with experimental measurements from [12]. The value
of cortical stiffness in Table 1 is taken from [22], where we varied cortical and membrane stiffness over several
orders of magnitude and determined the effect of these parameters on bleb shape. This value is similar to
the cortical elastic modulus of the cortex reported in [12]. Membrane stiffness in Table 1 was chosen to be
small enough so that bleb growth was limited by cytoplasmic and not membrane elasticity; we use a larger
membrane stiffness value when the cytoplasm is modeled as a fluid.

We are particularly interested in quantifying the effects of cytoplasmic rheology on blebbing dynamics,
and in the values of parameters that affect the poroelasticity of the cytoplasm: the bulk elastic modulus G
and the permeability κ. Values for the bulk modulus of the cytoplasm vary in the literature, depending on
the cytoplasmic model, experimental procedure, and cell type. Reported values range from are 300-2000 Pa
in [12, 26, 27]. Permeability of the cytoplasm also varies over several orders of magnitude in the literature.
For example, the range of 10−5 − 10−4 µm2 was reported in blebbing cells in [11, 26]. Permeability in the
lamellipodium of a keratocyte was estimated to be 10−3 µm2 in [28]. Because of the variability in these
parameters, we simulate over a range of values for G and κ in the results section. We related the cortical
drag coefficient to pore size in [22], and use a value consistent with experimental measurements of cortical
gap size in [29] (details in Supporting Material). Other model parameters are reported and discussed in the
Supporting Material.
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Symbol Quantity Value Source
rmem Cell radius 10 µm [12]
γmem Membrane surface tension 40 pN/µm [12]
kmem Membrane stiffness coefficient 1 pN/µm
γcortex Cortical tension 400 pN/µm [12]
kcortex Cortical stiffness 100 pN/µm [22]

coefficient
G Cytoskeletal bulk modulus 500-1500 kPa [26]
µ Cytosolic viscosity 0.01 Pa-s [12, 26, 27]
ξ Cortical drag coefficient 10 pN-s/µm3 [22]
κ Cytoskeletal permeability 5 · 10−5 − 10−2 µm2 [26, 28]

Table 1: Model parameters.

Results

We begin with computational experiments of a cell with a single expanding bleb. To initiate a bleb,
membrane-cortex adhesion is removed in a small region of length 5.6 µm on the right side of the cell. Initially
the cell is pressurized due to high cortical tension. When the membrane-cortex adhesion is locally disrupted,
cortical tension is no longer transmitted to the membrane, resulting in decreased intracellular pressure at the
bleb nucleation site. The cytosol flows from high to low pressure, and the bleb expands. First we quantify
the effects of poroelasticity on pressure dynamics and bleb expansion time. Then we simulate two-bleb
experiments and measure bleb sizes over time and intracellular pressure. For the two-bleb simulations, the
nucleation site of the second bleb was taken to be the same size as for the one bleb simulations. We conclude
by showing that a poroelastic model of the cytoplasm is consistent with the experimental results of both
[11, 12].

Elastic response of cytoskeleton relieves pressure during blebbing and limits bleb size

We begin by comparing the intracellular pressure dynamics during bleb expansion using two different
rheological descriptions of the cytoplasm: the poroelastic model developed here and the viscous fluid model
used in our previous modeling [22]. Figure 2 shows snapshots of the spatial distribution of pressure at
different time points following the initiation of a single bleb on the right side of the cell for the two models of
cytoplasm. Bleb nucleation size and other model parameters are identical in the two simulations, with the
exception of the fluid viscosity. In the fluid model the fluid viscosity is ten times larger than in the poroelastic
model. The viscosity was elevated so that the bleb expansion occurs on roughly the same timescale in the
two models.

There are two notable differences in the pressure dynamics in the two models. First, the pressure gradient
in the poroelastic model propagates across the cell body over the timescale of bleb expansion, but in the fluid
model the pressure gradient remains localized near the bleb (Fig. 2a). In the fluid model, the only source of
intracellular drag is the cortex, which leads to step-like pressure profile where the pressure is almost constant
in the cell body and varies only in a small region near the bleb before approaching equilibrium (Fig. 2c).
In contrast, in the poroelastic model, there is intracellular drag throughout the cell body from the presence
of the cytoskeleton. Figure 2d shows a pressure gradient that extends across the length of the cell and is
sustained as the bleb expands. The pressure at the back of the cell remains close to its initial value for
approximately 1/2 s before decreasing and approaching a spatially uniform equilibrium value.

The second difference between the two models of the cytoplasm is that there is significantly more pressure
relieved by the inflation of the bleb in the poroelastic model. In the fluid model of the cytoplasm, the pressure
drops from an initial pressure of 45 Pa to a final pressure of 42 Pa (about 7%), while in the poroelastic
model the final pressure is about 29 Pa which constitutes a 36% drop. The additional pressure relief in the
poroelastic model results from the elastic compression of the cytoskeleton on the interior. The total volume
of the cell (area in 2D) is conserved, and so as the bleb expands, the interior of the cell is compressed.

The deformation of the cytoskeleton results in an outward expansive force which partially balances the
cortical contraction and the relieves pressure. The additional pressure relief results in the smaller bleb size
seen in Fig. 2b compared to Fig. 2a. We quantify the expansive pressure resulting from the compression of
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Figure 2: Membrane position and pressure in the bleb model at several time values for both the fluid cytoplasm (a) and
poroelastic cytoplasm (b). Horizontal pressure profile across the center of the cell (when the vertical axis equals 15 µm in
(a) and (b)). Pressure profile at several time values for the fluid model of the cytoplasm (c) and poroelastic model (d) when
permeability κ = 10−3 µm2 and G = 500 Pa. The shaded region indicates the initial pressure across the cell. The intermediate
time values for (c) are 1 and 2 s. The intermediate values for (d) are 2 and 4 s.

the elastic cytoskeleton for the data in Fig. 2b in Fig. S2 (Supporting Material). We found compression of
the cytoskeleton accounts for the majority of the pressure relief during bleb expansion.

In the model of [12], it was estimated that membrane surface tension alone could not balance high intra-
cellular pressure in blebbing cells, and the pressure relief provided by cytoplasmic elasticity was hypothesized
to be the key factor limiting bleb growth. We reduced the membrane stiffness from 100 pN/µm to 40 pN/µm,
and we observed uncontrolled bleb growth in the pure fluid cytoplasm model (Fig. 3a), while the bleb stops
growing and reaches a steady state size in the poroelastic model (Fig. 3b). The horizontal pressure pro-
files for the fluid cytoplasm shows significantly lower pressure in the bleb than in the cell body, which will
continue to drive bleb expansion (Fig. 3c). In the poroelastic model, the driving pressure decreases over
time, and eventually pressure in the bleb approaches the value of pressure in the cell body (Fig. 3d). For
a purely viscous fluid cytoplasm, membrane tension and membrane elasticity can limit bleb growth if they
are sufficiently strong, as illustrated previously in Fig. 2. We use the value of 1 pN/µm for the membrane
stiffness in the poroelastic model for the remainder of the manuscript to be in the regime where cytoplasmic
elasticity limits bleb growth. In the poroelastic model, we found that the membrane stiffness has a mild
effect on the final bleb size, but it does not affect the time scale of bleb expansion.

Pressure equilibration and bleb expansion occur on the same timescale, but pressure propagates across the
cell on a faster timescale.

In [11], the authors relate the timescale of bleb inflation to the time it takes other parts of the cell to feel
the pressure disturbance resulting from the bleb. Here we use our computational model to determine the
relationship between bleb expansion dynamics and pressure propagation across the cell.

To quantify bleb expansion dynamics, we measure bleb size over time. Bleb size is measured as follows.
We identify points that define the neck of the bleb (black circles in Fig. 4a), compute the midpoint of these
two points, and calculate the distance from the bleb neck midpoint to the point on the membrane that has
the largest displacement. Initially, this distance is nonzero and small (∼ 0.4 µm), and we therefore subtract
this initial distance from its value over time to obtain bleb size. Fig. 4b shows bleb size increasing and
approaching a steady state value of 3.49 µm after approximately 30 s.

To quantify intracellular pressure propagation over time, we examine the relative pressure difference
across the cell, which we define as the pressure at the rear of the cell minus the pressure at the front of the
cell divided by the initial pressure inside the cell (front and rear locations are the triangular points illustrated
in the last panel of Fig. 4a). Figure 4c shows the relative pressure difference across the cell when κ = 10−3
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Figure 3: Membrane position and pressure in the bleb model at several time values for both the fluid cytoplasm (top) and
poroelastic cytoplasm (bottom) when the membrane stiffness was decreased to 40 pN/µm. Horizontal pressure profile at several
time values for the fluid model of the cytoplasm (c) and poroelastic model (d) when permeability κ equals 10−3 µm2 and
G = 500 Pa. The shaded region indicated the initial pressure across the cell. The intermediate time values for (c) are 1 and 5
s. The intermediate values for (d) are 2 and 5 s.

µm2 and G = 500 Pa. The corresponding horizontal pressure profiles for several times values enumerated
by I-IV are shown in Fig. 4d. The graph of the relative pressure difference quickly rises to a peak value at
approximately 1/2 s (denoted by time I in Fig. 4c), then slowly decays. Comparing the relative pressure
difference to horizontal pressure profiles at several time values, we observe that the peak pressure difference
occurs right before pressure at the cell rear begins to decrease. We interpret this time to be when the cell
rear to feels the effects of pressure relief from bleb expansion at the front of the cell.

However, pressure equilibration occurs on a much longer timescale. By 20 s after bleb initiation (Fig.
4c, time IV), the relative pressure difference across the cell has dropped to approximately 0.02 and slowly
decays to zero beyond this time. The corresponding pressure profile in Fig. 4d shows a shallow gradient. At
the same time value, bleb size is within 4% of its steady state value. Altogether, bleb expansion and pressure
approach their equilibrium values on the same timescale (approximately 30 s for this parameter set).

These results point to more than one timescale in pressure dynamics in blebbing cells. On a relatively
short timescale, pressure disturbances are felt by other parts of the cell. For example, before time I in Fig.
4, pressure at the back of the cell stays close to its initial value. After this time, pressure at the back of
the cell slowly begins to lower as the bleb expands. We observe pressure slowly equilibrating on a longer
timescale of 10’s of seconds, and a shallow pressure gradient on these longer timescales. Figure 4d show a
very shallow pressure gradient 20 seconds after bleb nucleation.

Cytoplasmic permeability and elasticity establish the bleb expansion timescale

Next, we quantify the effects of varying both the permeability and stiffness of the cytoplasm on bleb
expansion time. We define bleb expansion time (and pressure equilibration) to be when bleb size achieves
90% of its steady state value. For the data in Fig. 4b, this occurs at t = 12.85 s, enumerated by III.

Figure 5a shows the bleb expansion time as a function of permeability for different elastic moduli. These
data show that bleb expansion can occur on biologically relevant timescales (5–30 s) for a wide range of
values of cytoplasmic permeability and stiffness. Figure 5b shows that the product of expansion time and
the elastic modulus collapses to a single curve (fit with Gt = 7.843κ−0.87). Thus the bleb timescale is
inversely proportional to the product of the permeability and elastic stiffness.

In [11] the authors propose a poroelastic model of the cytoplasm in which intracellular pressure effectively
diffuses through the cytoplasm with a diffusion coefficient proportional to both cytoplasmic permeability and
stiffness, D ∼ Gκ. They use scaling arguments to argue that the characteristic length of pressure propagation
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Figure 4: (a) Bleb size is measured as the distance from the midpoint of the bleb neck (defined by the black points) to the
point on the membrane with the largest horizontal coordinate, then subtracting the initial difference between these points
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the initial pressure over the first 25 seconds. (d) Horizontal pressure profiles at t = 0.63, 5, 12.85, and 20 s.
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at time T is proportional to
√
Gκ. Using the same scaling relationship D ∼ Gκ, and noting that a diffusion

coefficient has units length squared per time (L2/T ) and κ has units L2, the characteristic time for bleb
expansion time is T ∼ L2(Gκ)−1. Our result that bleb timescale is inversely proportional to both cytoplasmic
permeability and elasticity is consistent with the scaling arguments in [11]. The model in [11] was developed
to interpret experimental observations of bleb dynamics in cells with multiple blebs, which we model in the
next section.

Multiple bleb simulations

Information about the spatial profile of the intracellular pressure has been inferred using experiments
on cells with multiple blebs by examining the effect of one bleb on the dynamics other blebs at different
locations on the cell. Interpretations of two different experiments on cells with multiple blebs have led to
conflicting hypotheses regarding intracellular pressure equilibration. Charras et al. [11] used cells that were
continually blebbing all over the membrane surface. They locally treated regions of the cell with drugs
that disrupted blebbing and observed that for some of these treatments, bleb dynamics proceeded relatively
unchanged in the untreated regions. The authors argued that based on a poroelastic model of the cytoplasm,
the lengthscale for pressure changes occurring on the timescale of blebbing dynamics was longer than the
diameter of the cell, and therefore the spatial distribution of pressure was far from equilibrium during bleb
expansion. Tinevez et al. [12] put cells in a state of high tension and initiated two different blebs one after
the other at different locations of the cell by locally ablating the cortex. They observed that the second bleb
was about 30% smaller than the first bleb independent of its location with respect to the first one. Based
on these experiments, they argue that the pressure is equilibrated on the timescale of blebbing. For both
experiments, the relevant timescale for blebbing was estimated to be between 5–30 s. After this time, the
cortex reforms in the bleb, and it begins to retract.

In this section we use our model to perform a computational experiment similar to the two-bleb exper-
iments in [12] to address these conflicting ideas about pressure propagation and equilibration. Our results
show that the pressure is not equilibrated on a timescale of 5–30 s for relevant values of permeability, and
this lack of equilibration is essential to explain the results from [12]. Our results are in agreement with the
ideas from [11], but unlike [11], we show that even when the pressure is far from equilibrium, this does not
mean that the effects of blebbing are highly localized in space.

In our simulations, the first bleb was initiated at the right side of the cell. The second bleb was nucleated
at two different locations: near the first bleb (at an angle of 90◦ with respect to the first bleb) and across the
cell from the first bleb (at an angle of 180◦ with respect to the first bleb). The second bleb was initiated 5
seconds after the first. It was reported in [12] that the second bleb was initiated less than 30 s after the first.
The typical time delay between the two bleb initiation times was about 7 s (personal communication with
J. Roensch). We use a permeability of 10−4 µm2 and a bulk modulus of 500 Pa for these experiments to be
consistent with the values reported in [11, 26]. For these parameters, bleb expansion time was computed to
be approximately 100 s in Fig. 5. We consider other parameters in the next section.

Figures 6a-b show the spatial profile of pressure at several times for the two different placements of the
second bleb. These plots show that the spatial arrangement of the blebs affects the spatiotemporal dynamics
of intracellular pressure. When two blebs are relatively close, the pressure gradient across the cell is generally
larger (for example, compare pressure at 20 seconds in Fig. 6a to Fig. 6b).

Figure 6c shows the bleb sizes as a function of time for these experiments from the time the first bleb is
initiated at t = 0 s until 300 s. This plot shows that the size of the second bleb is always smaller than the
first, independent of the placement of the second bleb, even at times well beyond the expansion timescale of
100 s. Despite the differences in the intracellular pressure gradients resulting from the arrangements of the
two blebs, the time course of the expansion for the first and second blebs is insensitive to the placement of
the second bleb.

After the initial inflation of both blebs, our two bleb experiments show that the second bleb is roughly
20% smaller than the first, independent of the location of the second bleb. This result is consistent with
the results from [12]. However, this does not mean that the pressure is equilibrated, as claimed in [12].
We observe that the pressure is far from equilibrium on the bleb inflation timescale, consistent with the
predictions in [11]. One can observe in Figure 6c that on a long timescale (> 200 s) the two blebs approach
the same size as the pressure approaches the spatially uniform equilibrium.
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Pressure is the driving force of bleb expansion, and thus if the blebs feel the same pressure, they will be
the same size. Figure 6d shows that if the two blebs are nucleated at the same time, they will be the same
size, independent of the spatial arrangement of the two blebs. Thus, the small delay in the initiation of the
second bleb is a key to obtaining blebs of different sizes.
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Figure 6: Pressure and membrane position at several time values when the second bleb is initiated (a) close to the first bleb (at
a 90◦ angle), and (b) across the cell from the first bleb (at a 180◦ angle). Bleb size over time when the second bleb is initiated
5 seconds after the first one (c), and when both blebs are initiated at the same time (d). All parameters for these simulations
are identical. In particular, the bulk modulus of the cytoplasm is 500 Pa and permeability is 10−4 µm2.

Two timescales are relevant for bleb expansion dynamics and affected by poroelastic parameters

Here we repeat the two-bleb experiments for a range of permeabilities with fixed elastic stiffness to
determine how the results of the previous section depend on the timescale of pressure propagation. We use
a bulk modulus of 500 Pa and vary the permeability from 5 · 10−5–10−3 µm2. For these parameters the bleb
expansion time for a single bleb ranges from roughly 10–100 s (see Fig. 5). The first column of Fig. 7 shows
the sizes of the blebs in the two-bleb experiment as a function of time along with the size of a single bleb for
the same permeability. All sizes have normalized by the maximum size of the single bleb experiment. The
second column shows the ratio of the size of the second bleb to the first bleb as a function of time.

In the two bleb experiments, we observe two timescales, both of which are affected by the permeability.
Within the first few seconds after the second bleb is initiated, the ratio of the bleb sizes changes rapidly.
This period is followed by a much longer period characterized by slow change in both bleb sizes and their
size ratios. As in our single bleb experiments presented in Figure 4, the short time scale corresponds to the
time for pressure changes to propagate across the cell, and the long time scale corresponds to the time of
pressure equilibration.
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Figure 7: Quantifying bleb sizes as a function of cytoplasmic permeability for a second bleb initiated close to (90◦) and across
the cell (180◦) from the first bleb. I. Bleb size over time divided by the maximum bleb size of one single right bleb. II. Second
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At high permeabilities (5 · 10−4 and 10−3), we observe the first bleb steadily shrinks as the second bleb
expands on the long timescale. As the pressure approaches the spatially uniform equilibrium, the two blebs
approach the same size. For all permeabilities, we see that the size ratio is approaching one on the long
timescale. This long timescale on which we see the size ratios changing slowly corresponds to the slow
approach to equilibrium pressure. The timescale of the approach to equilibrium is well beyond the bleb
expansion timescale for the range of permeabilities used in our experiments.

Our results on pressure equilibration are consistent with the argument presented in [11] that the poroe-
lastic rheology of the cytoplasm is responsible for pressure being far from equilibrium on the bleb expansion
timescale. In [11], the authors argue that for poroelastic cytoplasm, pressure changes resulting from a bleb’s
expansion do not affect the pressure in other regions of the cell on the timescale of 5–30 s. However, we
observe that the two blebs influence each other on this shorter timescale. The size of the first bleb deviates
from the size of the single bleb within the first 5 s after the second bleb is initiated because the second
bleb relieves some of the driving pressure expanding the first bleb. Similarly, the second bleb experiences an
initial lower driving pressure because the first bleb relieves some pressure. This results in a smaller second
bleb size on the long-time approach to equilibrium.

Both the short and long timescales are relevant for understanding the size difference observed in the
two-bleb experiments of [12]. If pressure equilibrates on the timescale of bleb expansion as stated in [12],
both blebs would approach the same size on the timescale of 5–30 s. Alternatively, if pressure changes were
localized to the site where the bleb is initiated, as reported in [11], then the second bleb expansion dynamics
would be the same as those for the first bleb (and also the same as those for the single bleb). Although we
find that pressure equilibrates on a timescale comparable or longer to bleb expansion time, pressure changes
propagate on a timescale much shorter than bleb expansion.

Discussion

In spite of the many proposed rheological descriptions, dynamic models of blebbing cells have assumed
that the cytoplasm is a viscous fluid [13, 17, 19, 22]. These models ignored the elastic stresses within the
cytoskeleton and the friction between the fluid and the cytoskeleton. In our previous model, we modeled the
cytoplasm as a viscous fluid [22]. We showed that bleb growth was limited by membrane elasticity, and that
drag between the cytoskeleton and the cytosol was the force that set the timescale of bleb expansion. The
only component of the cytoskeleton in this model was the cortex. As a result, the cortical drag coefficient that
resulted in bleb expansion times of 5–30 s corresponded to a cortical pore size that was significantly smaller
than values measured from scanning electron micrographs [29]. The conclusion was that drag throughout
the cytoplasm contributes to blebbing dynamics, and this was the motivation to extend our model to include
drag throughout the cytoplasm.

By comparing our previous model of a blebbing cell with a viscous fluid cytoplasm to the model presented
here with a poroelastic model of the cytoplasm, we show that poroelasticity is important as a source of
intracellular drag and for pressure relief. The values for permeability in our computational model that
correspond to biological bleb expansion times agree with previously reported values of permeability, and
also are consistent with experimentally measured pore sizes of the cytoplasm [26]. These results support our
hypothesis that intracellular drag significantly contributes to bleb dynamics. Elastic stress in the cytoskeleton
is important for pressure relief. When the cytoplasm is compressed during bleb expansion, an elastic restoring
force leads to a significantly larger intracellular pressure decrease following bleb expansion. We found that
the decrease in pressure can limit bleb expansion, which is in agreement with [12].

Charras and others have proposed a poroelastic model of the cytoplasm [11, 26, 27, 30], where intracellular
pressure effectively diffuses through the poroelastic cytoplasm over a length proportional to

√
Dt, where D is

a diffusion constant proportional to both cytoplasmic permeability and stiffness. We compute bleb expansion
times with our model for a range of values for cytoplasmic permeability and elasticity, and found that (1) bleb
expansion times over much of this range matched the experimentally observed timescale for bleb expansion
of 5–30 s, and (2) bleb expansion time is inversely proportional to the product Gκ, which is in agreement
with the previously reported scaling relationship.

The poroelastic model has been supported through various experiments, such as pharmacological manip-
ulation of blebbing cells [11], rapid indentation of cells [27] and exposing cells to hyperosmotic solution to
measure effective pore size [26]. The results of these experiments are consistent with intracellular pressure
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diffusing through cytoplasm with an effective diffusion coefficient D = Gκ/µ [11, 26, 27, 30, 31]. The value
for the diffusion coefficient was calculated from experimental data to be D ≈ 50 µm2 s−1 [27]. The values
of D that we compute from the data in Fig. 5 are in good agreement with these values, ranging from 5 to
300 µm2 s−1. The lower value corresponds to a softer cytoplasm with lower permeability (G = 500 Pa and
κ = 1 · 10−4 µm2), while the higher value corresponds to a more stiff cytoplasm with higher permeability,
(G = 1500 Pa and κ = 2 · 10−3 µm2). Our model results are in good agreement with previous models and
experiments when comparing poroelastic parameters, bleb expansion times, and diffusion coefficients.

In [11], Charras et al. use a scaling argument to claim that in a poroelastic cytoplasm, pressure dis-
turbances from blebs on opposite sides of the cell are effectively isolated from each other on the timescale
of seconds. They compute a lengthscale for pressure diffusion of 15–30 µm, meaning that pressure can be
nonequilibrated on a timescales of 10 s. This claim was called into question by Tinevez et al. [12]. The au-
thors measured bleb size dynamics in two bleb experiments when the second bleb was initiated shortly after
the first bleb. After both blebs inflated, the second bleb was slightly smaller than the first bleb regardless of
whether it was initiated close or across the cell from the first bleb. The interpretation of these experiments
was that pressure equilibrated quickly across the cell, and in particular, faster than the timescale of bleb
expansion.

We use our computational model to simulate the experiments of Tinevez et al. to determine whether
pressure is equilibrated in the multi-bleb experiments. Our results show that pressure is not equilibrated in
the two bleb experiments for a range of values of cytoplasmic permeability. We find that non equilibrated
pressure and a short time delay in nucleating the second bleb are necessary to match the experimental results
from [12]. We measure bleb sizes and find that the second bleb is always smaller than the first bleb. Our
results are in agreement with [11], in that the timescale of pressure equilibration is beyond the timescale of
bleb inflation. However, we do not observe that pressure changes were highly localized in space, as claimed
in [11].

We observe three regimes of bleb size dynamics in multi-bleb experiments that depend on poroelastic
parameters. At low permeability, bleb expansion dynamics and pressure equilibrates on a longer timescale.
However, even at the value of κ = 5 · 10−5 µm2, which is small relative to other values of permeability given
in the literature [26], pressure relief from the second bleb causes the first bleb to be smaller in size than in
the case of a single bleb. In the limit of cytoplasmic permeability approaching zero, pressure will be isolated
as claimed in [11], but this regime corresponds to unphysical permeability values.

For larger values of cytoplasmic permeability, pressure propagates relatively quickly. Pressure relief from
the second bleb causes the first bleb size to decrease on the timescale of a single bleb’s expansion. We
also observe shrinking of the first bleb in two bleb experiments with a viscous fluid cytoplasm (Fig. S3 in
Supporting Material), which corresponds to the case of infinite permeability. Because the decrease in the first
bleb’s size as the second bleb expands has not been observed experimentally, we conclude that cytoplasmic
permeability is smaller than κ = 10−3 µm2.

For intermediate values of cytoplasmic permeability (2 − 5 · 10−4 µm2), we find that both blebs appear
to be fully inflated before slowly approaching the same size on a long timescale as pressure equilibrates. The
long timescale where the blebs approach the same size cannot be observed in experiments because cortical
reformation and bleb retraction occur in cells after approximately 30 s. In this parameter regime, pressure
is not equilibrated on a timescale of 30 s, which is in agreement with Charras et al. [11], and the second
bleb is smaller than the first bleb with size dynamics that are independent of its location, which agrees with
[12]. The results of both experiments are consistent with a poroelastic model of the cytoplasm. Additionally,
these values of cytoplasmic permeability are consistent with values reported in [11, 26].

In single bleb experiments, we showed that a pressure disturbance from bleb initiation propagates across
the cell on a relatively short timescale (< 1 s) before equilibrating on a longer timescale (∼ 10 s). These
timescales are evident in Fig. 4cd. The pressure disturbance propagates across the cell by time t = 0.63
s (indicated by I), which is approximately 5% of bleb expansion time (t = 12.85 s, denoted by III). The
pressure profiles at time II–IV show the pressure approaching equilibrium on the 10–20 s timescale. In our
two-bleb experiments, the second bleb is initiated on the shorter of these two timescales. This means that
pressure disturbances are propagated across the cell on a shorter timescale than the pressure equilibration
timescale, and the nucleation of the second bleb will effect the expansion dynamics of the first bleb on this
shorter timescale.

To understand the multiple timescales of pressure dynamics in a poroelastic medium, we consider a
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reduced model consisting of a cylinder of contractile poroelastic material held fixed at one end and open at
the other end. In the Supporting Material we show that the displacement of the network in the axial direction
satisfies a diffusion equation, and the resulting diffusion coefficient has the same form previously reported
by Charras and others [11, 26, 27, 30]. We express the solution for the displacement as an infinite series of
decaying sinusoidal functions of decreasing wavelength that scale with the poroelastic diffusion coefficient.
All decay rates scale with this effective diffusion coefficient. The longest wavelength solution decays most
slowly, and it dominates the long-time behavior of equilibration across the whole cell. Bleb initiation creates
localized, short wavelength changes in the pressure which propagate quickly across the cell. The long time
scale is identical to the timescale of pressure equilibration previously reported in [11]. In contrast to previous
work, we find that smaller wavelength terms in the solution are non-negligible on short timescales and lead
to fast propagation of local disturbances. For example, we find the pressure at one side of the cylinder
drops by as much as 5% on a timescale that is an order of magnitude smaller than the pressure equilibration
timescale. Therefore, multiple timescales contribute to the propagation of pressure disturbances, such as
blebs, across a poroelastic material.

Our work constitutes a major advance towards understanding the significance of cytoplasmic rheology in
protrusion dynamics because our dynamic model allows us to obtain pressure data over a range of timescales.
Using our model, we identified the significance of the fast timescale of pressure propagation in blebbing cells.
In the case of multi-bleb experiments, the short timescale of pressure propagation across the cell, the time
delay in initiating the second bleb, and the long timescale for pressure equilibration can explain the difference
in bleb sizes from the experiments in [12]. The advantage of our model is that we are able to isolate and
study intracellular pressure dynamics, which cannot be isolated in vivo. Other models of blebbing cells
have ignored the poroelasticity of the cytoplasm [5, 13, 16, 20–22], which could limit our understanding of
pressure-driven protrusions in migrating cells.

An in-depth knowledge of the rheology and pressure dynamics of the cytoplasm is important for un-
derstanding how cells migrate in 3D, especially for the case when cells do not use specific adhesion to the
substrate. Frictional contacts may be important for pushing through gaps in interstitial tissue [6, 32]. If a
pressure-driven protrusion, such a bleb, pushed into a gap in the extracellular matrix, the rheology of the
cytoplasm can be an important contributing factor for establishing traction forces exerted on the substrate.
In order to model cell migration in this context, our blebbing model would need to include events that occur
after the timescale of bleb inflation, such as cortical reformation (occurs after approximately 30 s) and bleb
retraction (occurs after about a minute). Future modeling efforts will involve incorporating these longer
timescale events in order to understand the coordination of the mechanical processes involved in 3D cell
migration.
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Supporting Material

Intracellular Pressure Dynamics in Blebbing Cells

Wanda Strychalski and Robert D. Guy

S1. Model Details

The membrane and cortex are represented by continuous one-dimensional curves immersed in
a two-dimensional fluid domain. The cytoskeleton is represented by a two-dimensional structure
immersed in the fluid. Our model is formulated using the immersed boundary (IB) method, where
structures are represented in a moving, Lagrangian coordinate system, while fluid variables are
located on a fixed, Eulerian coordinate system [1]. A surface force density on on an immersed
structure is communicated to the fluid coordinates as follows,

f = SF =

∫
Γ

F (s, t)δ(x−X(s, t)) ds, (S1.1)

where s ∈ Γ is the material coordinate and X(s, t) denotes the physical position of material point
s at time t. The interpolation operator is given by

U = S∗u =

∫
Ω

u(x, t)δ(x−X(s, t))dx, (S1.2)

where Ω represents the fluid domain.
The Lagrangian drag force density on the cortex due to the fluid is

F cortex
drag = ξ (S∗u−U cortex) , (S1.3)

where ξ is a drag coefficient inversely proportional to cortical permeability. Similarly, the drag force
density on the cytoskeleton is

F cyto
drag =

µ

κ
(S∗ u−U cyto) , (S1.4)

where κ is the permeability of the cytoskeleton.
The Lagrangian elastic force densities on the membrane and cortex are computed by

F i
elastic =

∂

∂s
(Ti τi) , (S1.5)

where Ti is tension and τi is the tangent vector to the curve Γi = Xi(s, t), i = mem, cortex. In
reference arc length coordinates, tension is given by

Ti = γi + ki

(∣∣∣∂Xi

∂s

∣∣∣− 1

)
, (S1.6)

which describes an elastic material with stiffness ki with an additional resting tension γi. Although
a pure bilipid membrane is inextensible, the cell membrane surface area can increase as a result
of unfurling and extocytosis. For simplicity, we include a stretching term in addition to a surface
tension term to take these effects into account and model the membrane as a linearly elastic material.

Membrane-cortex adhesion is modeled by elastic springs attaching the membrane to the cortex
with a force density given by

F
mem/cortex
adhesion = kadh

(
|Xmem −Xcortex|

) Xmem −Xcortex

|Xmem −Xcortex|
. (S1.7)

The adhesion force density on the membrane is the opposite of the corresponding force density on
the cortex, with the proper scaling to ensure that the two forces balance,∫

Ω

SF mem/cortex
adhesion dx+

∫
Ω

SF cortex/mem
adhesion dx = 0. (S1.8)
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Given the stiffness coefficient k
mem/cortex
adh in Table S1, the corresponding stiffness coefficient for the

cortex is obtained by k
cortex/mem
adh = k

mem/cortex
adh dsmem/dscortex, where dsi represents the arc length

differential in reference coordinates. Similarly, for cortex-cytoskeleton adhesion, given the parameter

k
cortex/cyto
adh in Table S1, we have k

cyto/cortex
adh = k

cortex/cyto
adh dscortex/dAcyto, where dAcyto represents

the reference area differential of the cytoskeleton.
The cytoskeleton is modeled as a porous neo-Hookean elastic structure. Elastic forces are com-

puted using the energy functional-based version of the IB method proposed in [2]. The elastic
properties are characterized by a strain energy W = W (A), where A = ∂X/∂s is the network
deformation gradient tensor, and X(s, t) is the current location of the cytoskeleton as a function of
its Lagrangian coordinate s. The strain energy of a neo-Hookean elastic material is

W (A) =
µE

2

(
tr(AAT )

J2/n
− n

)
+
G

2
(J − 1)

2
, (S1.9)

where µE denotes the elastic shear modulus, G = 2µE/n + λE is the elastic bulk modulus, λE is
the second Lamé constant, J = detA is the determinant of the deformation gradient tensor, and n
represents the spatial dimension of the problem. We choose λE = µE so that G = 2µE in 2D.

The Lagrangian elastic force density is given by the variational derivative of the energy: F cyto
elastic =

−δE/δX, where E is the total energy of the system E =
∫

Γ
Wds. Our model formulation with this

approach for computing elastic forces was shown to match the classical equations of poroelasticity
in [3].

The membrane moves with the fluid velocity, and the velocities of the cortex and cytoskeleton
are given by Eqs. (7) and (8),

dXmem

dt
= S∗u = U , (S1.10)

dXcortex

dt
= U cortex =

1

ξ

(
F cortex

elastic + F
cortex/mem
adhesion + F

cortex/cyto
adhesion

)
+U , (S1.11)

dXcyto

dt
= U cyto =

κ

µ

(
F cyto

elastic + F
cyto/cortex
adhesion

)
+U . (S1.12)

Discussion of model parameters

In [4] we explored the effects of altering membrane and cortex stiffness. These mechanical pa-
rameters primarily affect the shape of the resulting bleb rather than the dynamics of bleb expansion.
Increasing (decreasing) membrane stiffness and tension will result in smaller (larger) blebs. Altering
membrane stiffness does not significantly affect bleb expansion dynamics, but has a mild effect on
the final bleb size, i.e. decreasing membrane stiffness results in slightly larger steady state bleb size.
Increasing (decreasing) cortical tension will result in higher (lower) intracellular pressure and larger
(smaller) blebs. Decreasing cortical stiffness will result in unphysical bleb shapes.

The stiffness coefficient for adhesion between the membrane and cortex must be sufficiently stiff to
obtain a realistic bleb morphology. Decreasing this value will results in a broader (and less circular)
bleb because of separation of the cortex and membrane near the edge of the bleb neck. Increasing
the value above that used in the model has a negligible effect on bleb morphology. Similarly, the
value of the stiffness coefficient for adhesion between the cortex and cytoskeleton was chosen to be
large enough so that steady state bleb size was independent of its value.

We follow the analysis in [4] to relate cortical drag in the model to both volume fraction and
average pore size of the cortex. In [4], we showed that the permeability (κ) and drag coefficient (ξ)
were related by κ = µa/ξ, where a is the thickness of the cortex and µ is the viscosity of the cytosol.
Using the values a = 0.1 µm, µ = 0.01 Pa·s, and ξ = 10 pN/µm3, the permeability of the cortex
is κ = 10−4 µm2, which is in line with the values of cytoplasmic permeability explored in the main
text. Following [4] and assuming the typical radius of an actin bundle in the cortex is λ = 10 nm,
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Symbol Quantity Value
rcortex Cortex radius 9.99 µm

k
mem/cortex
adh Membrane/cortex adhesion 4000 pN/µm3

stiffness coefficient

k
cortex/cyto
adh Cortex/cytoskeleton adhesion 2.5 · 103 pN/µm3

stiffness coefficient

Table S1: Additional model parameters.

we estimate that this permeability corresponds to a cortical volume fraction of φ = 0.164 and an
average pore size 20.6 nm.

An average pore size of 20.6 nm is in agreement with the low end of estimates of 20 − 200
nm taken from scanning electron micrographs of the cortex from [5]. If we decreased the value of
cortical drag (increased cortical permeability), we would obtain a value for cortical pore size that
would better agree with experimental data from [5]. However, we note that using this value of
cortical permeability (10−4 µm2) results in a bleb expansion time of less than 1 s in the viscous
fluid model of the cytoplasm from [4]. Therefore, decreasing cortical drag would not significantly
affect bleb expansion dynamics in the poroelastic model because the forces from cytoplasmic drag
and elasticity are the dominant forces that determine bleb expansion dynamics.

S2. Numerical Methods

We use a fractional stepping approach that allows for the fluid and structure updates to proceed
sequentially as described in [3]. Given the current position of the structure, the system is advanced
in time as follows:

1. Compute elastic forces based on the current membrane, cortex, and cytoskeleton configuration
(Xn

i = Xi(s, t
n), where i denotes the structure: membrane, cortex, or cytoskeleton) using the

constitutive laws described in Section S1.

2. Spread the force densities onto nearby Eulerian points using Eq. (S1.1).

3. Solve the forced Stokes equations to obtain the fluid velocity u.

4. Interpolate the fluid velocity to the structure using Eq. (S1.2) to obtain U .

5. Compute the porous structure velocities by Eqs. (7) and (8), and update the structure by

X n+1
i = X n

i + ∆t

(
1

ζ

∑
F i +U

)
, (S2.1)

where ζ indicates the drag coefficient of the cortex or cytoskeleton, and the forces acting on
the respective structure denoted by

∑
F i are in Eqs. (7) and (8). The membrane is updated

by the fluid velocity.

For the simulations presented in this manuscript, we use periodic boundary conditions on the Eule-
rian domain and a Fourier-spectral method to solve the Stokes equations.

Because of the large pressure drop across the cell membrane, unphysical spurious velocity is
introduced when using standard approximate δ functions, such as Peskin’s approximate δ function
[6]. Therefore, we construct a more accurate approximation to the δ function directly in Fourier
space which results in more accurate solutions. Note that in Fourier space, the operator in Eq.
(S1.1) can be written as

f̂k =

∫
Γ

F (X(s)) exp (ik ·X) ds. (S2.2)

Because evaluating the discretized version of this integral is computationally expensive, we use the
nonuniform fast Fourier transform (NUFFT) described in [7] to approximate the Fourier transform
(FT) of the spread force density. We also use the acceleration techniques described in [7] in our
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Symbol Quantity Value
L Fluid computational domain size 30 µm
M Mesh size 64
∆x Fluid grid step size L
∆s Initial structure grid step size ∆x/2 (boundary) and ∆x (interior)
∆t Time step size 1 · 10−5 − 7 · 10−5 s
Mr Oversampled mesh size for NUFFT 2M
Msp NUFFT spread width 8
τ NUFFT parameter 12/M2

Table S2: Computational parameters.

algorithms for the spreading and interpolation operators. The computational parameters Mr, Msp,
and τ are used in the algorithm described in [7].

Before solving Stokes equation, we filter the forces from Eq. (S2.2) using a second-order raised
cosine filter [8],

σ(k) =
1

2

(
1 + cos

(
2πk

N

))
. (S2.3)

Filtering is necessary to remove the Gibbs phenomenon that would otherwise occur in the pressure
field.

Important parameters for the computational methods are listed in Table S2. We used an adaptive
mesh to model the cytoskeleton. The unstructured mesh is more refined near the boundary with
approximately 2 Lagrangian points per Eulerian grid cell and 1 Lagrangian point per Eulerian grid
cell in the interior (Fig. S1). We used distmesh to generate the unstructured mesh [9].

Xcyto(s, t)

 

Figure S1: Schematic for the unstructured grid representing the cytoskeleton and the Eulerian grid. The unstructured
grid has a spacing of approximately ∆x/2 near the boundary and ∆x in the interior.

S3. Dynamics of cytoskeletal compression

The elastic forces of the cytoskeleton are computed from the variation of the total energy as
described in Section S1. The term G/2(J − 1)2 in the strain energy density function, Eq. (S1.9),
accounts for the energy of volumetric change from compression and expansion. Local volume changes
can be quantified by the strain (J −1), and they give rise to an isotropic stress of strength G(J −1).
During blebbing, the cytoskeleton is compressed (J < 1), and one can identify −G(J − 1) as a
cytoskeletal pressure acting against compressive stresses during bleb expansion.

Figure S2a shows snapshots of this cytoskeletal pressure for the same simulation presented in
Fig. 2b in the main text. Shortly after after bleb initiation, a localized compression develops near
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the nucleation site, and then on a longer time scale a compression propagates across the cell and
approaches a steady state spatial profile. These dynamics of elastic stress are like those of the
pressure (shown in Fig. S2b).

At steady state the compression is approximately spatially uniform throughout much of the
cell away from the nucleation site. This uniform compression results in a uniform cytoskeleton
pressure that relieves intracellular pressure. Figs. S2bc show slices of the cytoskeletal pressure and
the intracellular pressure along the middle of the cell, respectively. By t = 8 s, at the side of the cell
away from the bleb, we see that the pressure has dropped by about 15 Pa, while the cytoskeletal
pressure has risen by about 13.5 Pa. Thus most of the pressure dropped is being balanced by the
compression of the cytoskeleton. The difference of 1.5 Pa is comparable to the pressure drop we
observed in the fluid model; see Fig. 2c in the main text.
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Figure S2: Membrane position and elastic pressure in the cytoskeleton −G(J − 1) at several time values in the bleb
model (a) when permeability κ = 10−3 µm2 and G = 500 Pa. The horizontal elastic pressure profile across the center
of the cell (when the vertical axis equals 15 µm in (a) at several time values and (b) corresponding horizontal pressure
profiles across the center of the cell.

S4. Two bleb simulations with a fluid cytoplasm

We simulate two bleb experiments where the cytoplasm is modeled as a viscous fluid (κ = ∞).
All parameters are the same as those given for the fluid model of the cytoplasm in the results section.
In particular, membrane stiffness was increased to 100 pN/µm to control bleb growth. Following the
computational setup for the two-bleb experiments in the results, the second bleb is initiated close
to the first bleb (at a 90◦ angle) and across the cell from the first bleb (at a 180◦ angle). Figure
S3 shows bleb size over time for both two bleb experiments. The first bleb expands, then shrinks
as pressure is relieved by the second bleb’s initiation and expansion. The first and second bleb size
time courses are very similar both configurations.

S5. Reduced model

Consider a cylindrical tube of length L filled with a low-volume-fraction, contractile poroelastic
network (see Fig. S4). At the bottom of the tube, the network is attached to an impermeable wall
where its velocity and displacement are zero. The top of the tube is free to deform, and its motion
is determined by a stress balance at the interface.
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Figure S3: Bleb size over time when the second bleb is initiated 5 seconds after the first one and the cytoplasm is
modeled as a viscous fluid. The second bleb is initiated close to the first bleb (at a 90◦ angle) and across the cell from
the first bleb (at a 180◦ angle)
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Figure S4: A cylindrical tube of length L filled with a low-volume-fraction, contractile poroelastic network fixed at
z = 0 and free to move at the other end.
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We assume that the deformation is only in the axial direction. Let q(z, t) denote the displacement
of the network. We assume small deformation so that the velocity of the network is qt and the elastic
stress is Gqz, where G is the bulk modulus. Because of incompressibility, the fluid velocity is zero,
and so the drag force on the network is simply −(µ/κ)qt. The displacement is zero at the attached
boundary (z = 0); on the free boundary (z = L) the elastic stress is balanced by the contractile
stress (σ). We assume that at time zero, the network is experiences no deformation. The system of
equations describing this problem is

−µ
κ
qt +Gqzz = 0 (S5.1)

q(0, t) = 0 (S5.2)

Gqz(L, t) + σ = 0 (S5.3)

q(z, 0) = 0. (S5.4)

The steady-state solution is qss = −(σ/G)z. At steady-state the network is compressed and the
elastic force balances the applied contraction; that is, and total stress (elastic plus contractile) is
uniformly zero.

We nondimensionalize the equations by scaling space by the tube size L, displacement by steady-
state value at the free end (Lσ/G), and time by the diffusion time scale (L2µ/(Gκ)). This gives the
parameter-free dimensionless system of equations

qt = qzz (S5.5)

q(0, t) = 0 (S5.6)

qz(1, t) = −1 (S5.7)

q(z, 0) = 0. (S5.8)

In dimensionless variables, the diffusion time scale is t = 1, which we interpret as the characteristic
timescale to approach equilibrium.

The steady-sate solution is qss(z) = −z. Let q(z, t) = w(z, t) + qss(z), and so w satisfies

wt = wzz (S5.9)

w(0, t) = 0 (S5.10)

wz(1, t) = 0 (S5.11)

w(z, 0) = z. (S5.12)

The solution can be written as

w(z, t) =

∞∑
k=0

Ak exp
(
−λ2

kt
)

sin (λkz) , (S5.13)

where

λk =
π(1 + 2k)

2
, (S5.14)

and

Ak = (−1)k
2

λ2
k

. (S5.15)

In the blebbing model, where the cortex and the membrane are attached, pressure balances the
cytoskeletal stresses placed on the membrane. Analogously we examine how the stresses of the free
boundary affect the stresses on the attached boundary in response to the displacement on the free
boundary. The stress applied to the wall at z = 0 is Fwall = qz(0, t) + 1 = wz(0, t). This function is
plotted in Fig. S5 (left). By time 1 (the diffusive time scale), the wall stress has dropped by almost
90% of its initial value. Figure S5 (right) shows the relative change of the wall stress over the first
0.1 time units. What is very interesting to note is that by time 0.1, the wall force has dropped
by about 5%. This means that, on a time scale which is an order of magnitude shorter than the
diffusive time scale, there is a significant change in stress on the opposite side of the tube.
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Figure S5: Left: Stress on the stationary wall over time. Right: Relative change of the wall stress over the first 0.1
of time.
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