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The role of passive body dynamics on the kinematics of swimming micro-organisms in
complex fluids is investigated. Asymptotic analysis of small amplitude motions of a finite-
length undulatory swimmer in a Stokes-Oldroyd-B fluid is used to predict shape changes
that result as body elasticity and fluid elasticity are varied. Results from the analysis
are compared with numerical simulations, and the numerically simulated shape changes
agree with the analysis at both small and large amplitudes, even for strongly elastic flows.
We compute a stroke-induced swimming speed that accounts for the shape changes, but
not additional effects of fluid elasticity. Elasticity-induced shape changes lead to larger
amplitude strokes for sufficiently soft swimmers in a viscoelastic fluid, and these stroke
boosts can lead to swimming speed-ups. However, for the strokes we examine, we find that
additional effects of fluid elasticity generically result in a slow-down. Our high amplitude
strokes in strongly elastic flows lead to a qualitatively different regime in which highly
concentrated elastic stresses accumulate near swimmer bodies and dramatic slow-downs
are seen.
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1. Introduction

There has been an intense effort over the past 10 years to understand the effect of
fluid elasticity on micro-organism swimming. Experiments, analysis, and simulations
of low-Reynolds number swimming of microorganisms in complex fluids, in particular
viscoelastic fluids, has led to a variety of results – some complimentary, some apparently
conflicting – on the effect of fluid elasticity on swimming speed. We know that gait, body
stiffness, and nonlinear effects matter, but we still do not have a clear understanding of
how they interact during locomotion.
Early work quantifying the effect of fluid elasticity on swimming using a linear consti-

tutive law for the fluid and asymptotic analysis of small amplitude motions showed that
elasticity had no effect on swimming speed but increased swimming efficiency (Chaudhury
1979; Sturges 1981). However, in Lauga (2007a) a full analysis of the classical Taylor
swimming sheet for small amplitude undulatory motion showed that the nonlinearities of
the viscoelastic fluid model must be included in a computation of swimming speed, and
found that swimming speed is always hindered by fluid elasticity. Similar small amplitude
asymptotic analysis was done for waving filaments and helices (Fu et al. 2007, 2009) also
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predicting slow-downs due to fluid elasticity. Elfring and Goyal (2016) and Riley and
Lauga (2015) have demonstrated the importance of the details of the swimming gait
in understanding the effect of fluid elasticity on swimming speed, indeed showing that
elastic speed-ups are possible for some gaits, which is further highlighted by the analysis
of three-sphere swimmers (Curtis and Gaffney 2013).
Biological swimmers have been shown to change their gait in response to changes in

rheology (Shen and Arratia 2011; Gagnon et al. 2014; Qin et al. 2015), making it hard
to interpret the mechanisms responsible for observed changes in swimming performance.
In more controlled physical models of swimmers in different fluids a variety of results
have shown that fluid elasticity can boost swimming speed (Liu et al. 2011; Keim et al.
2012; Espinosa-Garcia et al. 2013) or retard swimming speed (Dasgupta et al. 2013;
God́ınez et al. 2015). Swimmers with large amplitude motions have been theoretically
investigated using numerical simulations, and have added significant information about
the response of swimmers to fluid elasticity with a variety of swimming gaits (Teran et al.
2010; Balmforth et al. 2010; Zhu et al. 2012; Spagnolie et al. 2013; Montenegro-Johnson
et al. 2013; Thomases and Guy 2014; Li et al. 2014; Li and Ardekani 2015; Salazar
et al. 2016). In addition, for recent reviews of swimming in complex fluids, see Elfring
and Lauga (2015) for a theoretical view, and see Sznitman and Arratia (2015) for an
experimental view. These many studies have focused on different types of swimmers, in
different fluid rheologies, and despite the wealth of results we still lack an understanding
of the underlying principles of swimming in complex fluids.
To try to isolate physical mechanisms that are significant in a variety of biologically

relevant problems, but simple enough to analyse, we focus here on undulatory swim-
mers in an Oldroyd-B fluid. Even in this more restrictive setting, we nevertheless still
find apparently contradictory results and a lack of mechanistic explanations for those
differences. Asymptotic analysis of infinitely long, prescribed shape, small-amplitude
swimmers has shown that swimming is hindered by the addition of elastic stresses (Lauga
2007a), although allowing for flexibility can lead to enhancements (Riley and Lauga
2014). Biological experiments have shown a viscoelastic slow-down for C. elegans (Shen
and Arratia 2011), while simulations of finite-length swimmers with large tail amplitudes
(Teran et al. 2010; Thomases and Guy 2014) give a non-monotonic boost as fluid elasticity
is varied. In Thomases and Guy (2014) we concluded that shape changes due to body
flexibility and fluid elasticity are important, but those results did not explain the results
from a physical experiment which showed monotonic speed-ups due to fluid elasticity in
swimmers with large tail amplitudes (Espinosa-Garcia et al. 2013). Furthermore, recent
numerical simulations (Salazar et al. 2016) appear to contradict the speed-ups reported
in Teran et al. (2010); Thomases and Guy (2014).
The relevance of body elasticity in viscoelastic speed enhancements was identified

for small amplitude infinite length swimmers in Riley and Lauga (2014), where the
authors attribute the speed enhancements to a viscoelastic “suction” which results in an
amplitude boost. However, their analysis does not extend to finite-length large amplitude
swimmers where the role of elasticity-induced shape changes has not been addressed
directly. The disparity of the results in Teran et al. (2010); Thomases and Guy (2014);
Espinosa-Garcia et al. (2013); Salazar et al. (2016), all focusing on large amplitude, finite-
length, undulatory swimmers in Oldroyd-B fluids, indicates that something is missing in
our understanding of the problem.
There remains a gap between our understanding from analysis and what we see in

computational, biological, and physical experiments. Here we combine analysis with
numerical simulations of finite-length large amplitude swimmers to show how fluid
elasticity induces shape changes in finite-length flexible swimmers and how those shape
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changes can lead to speed boosts. We show how shape changes depend on both body
stiffness as well as fluid elasticity and analyse the effect that shape changes alone have
on swimming speed.

2. Effect of passive body dynamics

2.1. Methodology

We follow the computational framework in Thomases and Guy (2014); Guy and
Thomases (2015), where the swimmer is modeled as an inextensible flexible sheet of finite-
length L immersed in a 2D fluid. We describe the undulatory motion of the swimmer by
a curvature of the form

κ0(s, t) = (At(L− s)/L+Ahs/L) sin(2πt/T + πs), (2.1)

where s ∈ [0, L] is the body coordinate. Here At is the curvature amplitude at the “tail”
(s = 0) and Ah is the curvature amplitude at the “head” (s = L) of the swimmer.
We use the immersed boundary method to solve for the coupled motion of the fluid

and the swimmer (Fauci and Peskin 1988). Both inextensibility and shape are imposed
(approximately) by forces that are designed to penalize extension and deviation from the
prescribed target curvature. These forces are derived from the variation of bending and
extension (stretching) energy functionals. For example, the bending energy is

Eb = B/2

∫

Γ

(κ− κ0)
2
ds, (2.2)

where B is the bending stiffness, κ is the curvature of the sheet, and κ0 is the prescribed
target curvature. One can interpret the model as an active sheet with bending stiffness B
driven by an active body moment density Bκ0. We scale forces relative to viscous forces
so that for B ≫ 1, the realized shape of the swimmer is very close to the prescribed shape.
For B ∼ 1, the realized shape is the result of fluid-structure interaction; i.e. passive body
dynamics influence the resulting stroke.
The viscoelastic fluid is described by the Oldroyd-B model at zero Reynolds number

(Bird et al. 1980), regularized by stress diffusion (Sureshkumar and Beris 1995; Thomases
2011). The system of equations describing the fluid are

∆u−∇p+ ξ∇ · τp + f = 0, (2.3)

∇ · u = 0, (2.4)

De
(

∂τp/∂t+ u · ∇τp −∇u τp − τp ∇uT
)

+ τp = γ̇ +De ε△τp (2.5)

where u is the fluid velocity, p is the pressure, τp is the viscoelastic stress, γ̇ is the rate
of strain tensor, and f is the elastic force density generated by the swimmer. Here ξ is
the polymer to solvent viscosity ratio, De = λ/T, the Deborah number is the ratio of
elastic relaxation time to stroke period, and ε≪ 1 is the stress diffusion coefficient.
The system is solved in a 2D periodic domain of size [0, 2]×[0, 2],with L = 1, dt = 10−3,

and dx = 2−8. We fix ξ = 0.5, consistent with Teran et al. (2010), and ε = 0.0015 which
provides a regularization to control large stress gradient growth (Thomases 2011). We
enforce inextensibility with a dimensionless stiffness constant of 2500.

2.2. Varying body stiffness

To understand the role of body elasticity, we use our simulations to calculate the
Stokes-normalized swimming speed while varying B and De for a fixed period (T = 1).
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Figure 1: (a) Swimming speed (normalized by Newtonian swimming speed) as a function
of De for different bending stiffness B. Here we fix the period, T = 1. (b)-(d) Normalized
swimming speed as a function of De. Reproductions from the literature: (b) From
Espinosa-Garcia et al. (2013), a physical model of a swimmer with a flexible tail. (c) From
Teran et al. (2010), and Thomases and Guy (2014), two different numerical simulations
for a soft stroke with a large amplitude tail (d) From Thomases and Guy (2014), numerical
simulations for a stiff stroke with a large amplitude tail.

We use a stroke defined by equation (2.1) with At = 5, and Ah = 2. This gives a high-
amplitude stroke like in Teran et al. (2010); Thomases and Guy (2014). In figure 1(a)
we plot normalized swimming speed as a function of De for three characteristic stiffness
values of B = 0.1, 1.0, 10.0, which we refer to as very soft, moderately soft, and stiff,
respectively. For very soft swimmers we see a monotonic boost in swimming speed, with
a greater than 50% boost for high De.
This response is similar to what was reported in Espinosa-Garcia et al. (2013) using

a physical model of a swimmer with a flexible tail (figure 1(b)). For moderately soft

swimmers, we see a non-monotonic speed-up, including a smaller speed boost over the
Newtonian speed, followed by a slow-down at larger De. This type of non-monotonic
speed-up was first reported in Teran et al. (2010) and again in Thomases and Guy
(2014) for a soft stroke with high amplitude (figure 1(c)). Finally, for stiff swimmers we
see non-monotonic behavior but no boost over the Newtonian speed, again followed by
a slow-down at larger De. This type of slow-down was reported in Thomases and Guy
(2014) for a stiff kicker (figure 1(d)).
In contrast to stiff, or rigid, swimmers, the dynamics of flexible swimmers involve an

additional time scale. In a viscous fluid, rigid swimmers move with a velocity proportional
to the beat frequency (the only time scale in the problem). The problem of a rigid
swimmer in a viscoelastic fluid has two time scales, the beat frequency and the relaxation
time, whose ratio is the dimensionless relaxation time De. The swimming speed of soft
swimmers depends nonlinearly on the frequency because the shape changes with the
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Figure 2: Dimensional swimming speed in a Newtonian fluid for stiff, B = 10.0, and
moderately soft, B = 1.0, swimmers over a range of frequencies T−1. Inset figures show
shapes of swimmer over a period at the highest computed frequency for both soft and
stiff swimmers.

frequency. Figure 2 shows the swimming speed in a Newtonian fluid for both a stiff

swimmer, B = 10.0 and a moderately soft swimmer B = 1.0 over a range of beating
frequencies. We see a linear response in the case of a stiff swimmer and a nonlinear
response for the moderately soft swimmer. Inset swimmer shapes show how the shape
changes as a function of the stiffness in the high frequency case.
To illustrate the significance of multiple time scales for flexible swimmers in viscoelastic

fluids we compute the Stokes-normalized swimming speed as a function of De varied two
ways: by varying the relaxation time for a fixed period, and by varying the period for a
fixed relaxation time. Both simulations are performed with the same bending stiffness,
B = 1.0, where passive body dynamics are significant. Results are shown in figure 3 (a)
for a swimmer with the same stroke from figure 1, and the two curves show remarkable
qualitative differences. For a rigid swimmer these would give equivalent results. Thus
this third time-scale, arising from body flexibility, needs to be explicitly included in any
discussion of swimming in elastic fluids. A more complete picture of how the swimming
speed depends on both the relaxation time and period when the body is soft, is shown
in figure 3 (b). Contours of constant De = 1 − 5 are overlayed in black and the effect of
body stiffness is clearly evident as you see the swimming speed vary significantly along
any of the contours. The dashed lines denote the locations of the data in figure 3 (a).

3. Analysis of shape changes

The effect of body stiffness on swimming kinematics has been previously studied for
viscous fluids (Wiggins and Goldstein 1998; Lauga 2007b). Shape changes in viscoelastic
fluids have been examined (Fu et al. 2008), but the relationship between shape changes
and swimming speed has not been examined for finite-length swimmers. Here we review
the theory and compare it with numerical simulations.

3.1. Linear theory: Newtonian fluids

We begin by considering small amplitude displacements of a finite-length thin elastic
rod in a Newtonian fluid driven by prescribed curvature, κ0(s, t), (equivalently, prescribed
moments) along the body with free ends. The theoretical analysis is similar in 2D and
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Figure 3: (a) Normalized swimming speed as a function of De. Curves generated by
varying only relaxation time (for fixed period T = 1) or stroke period (for fixed relaxation
time λ = 0.5). Body stiffness is fixed: B = 1.0. (b) Normalized swimming speed as a
function of both λ and T, with contours overlayed for constant De values. Dashed lines
correspond to the locations of the data in 3 (a).

3D, however we will make note of the differences when we compare with the numerical
simulations in 2D. We proceed with the analysis in 3D for simplicity. The shape of the
rod is determined by the balance between elastic forces and viscous drag. The vertical
displacement, y(s, t) satisfies

ζ⊥yt = −B(yss − κ0)ss, (3.1)

yss − κ0 = 0, (yss − κ0)s = 0, at s = 0, L. (3.2)

Here ζ⊥ is the perpendicular drag coefficient and B is the bending stiffness of the rod.
Note that the use of new notation B, is intended to distinguish this (dimensional) bending
stiffness we use in the linear theory from our previously defined (non-dimensional)
bending stiffness, B which we use in our numerical simulations.
Nondimensionalizing equation (3.1) using the body length L and the period of the

driving force T results in the dimensionless parameter we call the body response time:

G =
T

B−1ζ⊥L4
=

period of motion

elasto-hydrodynamic beam relaxation time
. (3.3)

We note that G−1 could be called a body relaxation time. The same nondimensional
group has appeared previously, but has been interpreted differently. In Shelley and Ueda
(2000) a quantity similar to G was considered an “effective viscosity” of growing elastic

filaments. The Sperm number (Sp = G−1/4) is the ratio of the body length to the viscous
decay length (Wiggins and Goldstein 1998; Fu et al. 2007). This interpretation is natural
when considering filaments driven at one end rather than along the body as we do here.
We change variables from displacement to curvature deviation

c(s, t) = κ(s, t)− κ0(s, t)

to facilitate comparing with large amplitude simulations. For small displacements
yss(s, t) ≈ κ(s, t), and equation (3.1), (non-dimensionalized) becomes

ct = −Gcssss −
∂κ0
∂t

(3.4)

c = 0, cs = 0 at s = 0, 1. (3.5)
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For a given κ0, we use an orthogonal function expansion to solve the non-dimensional
equations for c(s, t). We let the driving curvature be given as

κ0(s, t) =

∞
∑

k=1

α∞
k e

2πiµktΨk(s), (3.6)

and solve the eigenvalue problem,

µΨ(s) = −Ψssss,

Ψ = 0, Ψs = 0 at s = 0, 1,

for eigenvalues µk and eigenfunctions Ψk(s). The expansion coefficients of the realized
curvature, κ, are then

αk = α∞
k

(

1−

(

1−
Gµk

2πi

)−1
)

. (3.7)

From this solution we can see that as the rod is stiffened (G → ∞), the resultant curvature
tends to the prescribed curvature, αk → α∞

k . We also see that for softer rods, i.e. smaller
values of the body response time G, the amplitude of the curvature decreases and there
is a phase lag relative to the prescribed shape.
As mentioned above, we use intrinsic coordinates and curvature deviations, to allow us

to consider large prescribed curvatures. However we note that equation (3.4) lacks terms
coming from geometric nonlinearities and inextensibility that may not be small when the
prescribed curvature is large (Goldstein and Langer 1995; Camalet and Jülicher 2000).
In sections 3.3 and 4.2 we compare our simulations to theoretical analysis using (3.4),
and in Appendix A we show that the influence of the additional terms is in fact small
for the amplitudes we consider.

3.2. Linear theory: viscoelastic fluids

We can modify the linear theory for elastic rods to include fluid elasticity. This is
similar to what was done in Fulford et al. (1998); Fu et al. (2008). In Fulford et al.
(1998) modifications to linear rod theory to include linear viscoelastic fluid effects were
presented, and the authors concluded that while fluid elasticity does not change swimming
speed, it reduces total work and thus can boost efficiency. However, it was pointed out
in Lauga (2007a) that it is essential to use a nonlinear elasticity model in these types of
calculations because the swimming speed itself is second order in amplitude, where the
nonlinear effects are relevant. We note that with these higher order terms Lauga (2007a)
shows that swimming speed is always hindered by fluid elasticity for the case considered
– infinite length low amplitude swimmer with sinusoidal undulations. In Fu et al. (2008)
the authors analyzed shape changes induced by fluid elasticity in a linearly elastic fluid.
Unlike swimming speed, shape changes due to fluid elasticity come in to the asymptotic
expansion at first order in amplitude, and hence it is reasonable to use a linearly elastic
fluid to look at shape changes. Fu et al. (2008) did not make conclusions about how these
shape changes affect swimming speed. Here we perform a similar analysis as in Fu et al.
(2008), but by applying the analysis to deviations in curvature we are able to study shape
changes in low and high amplitude finite length flexible rods. In Section 4 we discuss how
these shape changes affect swimming speed.
As in equation (3.1) we can write a force balance relation between the force on a fluid

and from the beam as

ffluid − B(yss − κ0)ss = 0,
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where the ffluid represents the normal force on the rod from the viscoelastic fluid. If we
define the fluid force to be based on the total deviatoric stress τ = γ̇ + τp then (upon
linearization) using equation (2.5):

De ḟfluid + ffluid = (1 + ξ)fvis +De ḟvis, (3.8)

where fvis is the viscous drag force. Note that given the form of the system in equations
(2.3)-(2.5), we have assumed a total viscosity of 1 + ξ. The swimmer motion is time-
periodic so we take the Fourier transform in time of equation (3.8) to solve for viscoelastic

modifications to the fluid drag. This yields, f̂fluid =
(

1+ξ+2πiDe

1+2πiDe

)

f̂vis.

As in the viscous theory, we can solve for modifications to the curvature from body
stiffness and use the modifications to the fluid drag to account for the fluid elasticity:

αk = α∞
k

(

1−

(

1−
Gµk

ζve2πi

)−1
)

, with ζve =
1 + ξ + 2πiDe

1 + 2πiDe
. (3.9)

The coefficients in equation (3.9) give an analytical expression for the modifications to
the rod shapes relative to the prescribed shapes as fluid and body elasticity are varied.

3.3. Elastic shape changes: theory and numerical comparison

The analysis in the previous sections made use of resistive force theory which relates
the drag force and velocity on a long thin cylindrical object. More generally, for small
amplitude the vertical displacement satisfies

yt =MFy, (3.10)

whereM is the mobility operator and F is the linearized bending force operator. Resistive
force theory makes the approximation M ≈ 1

ζ⊥
. Our analysis of shapes (equation (3.9))

contains the quantity Gµk, where G depends on the drag coefficient, ζ⊥, (equation (3.3)).
To use the more general linear theory in our analysis one can identify µk/ζ⊥ = µMF

k ,
where µMF

k denotes the kth eigenvalue of the operator MF. We relate Gµk to the
dimensionless bending stiffness, B used in our simulations, through

Gµk =
TB

L4ζ⊥
µk =

(

TB

L4

)(

µk

ζ⊥

)

= BµMF
k .

To compare the linear analysis with our two-dimensional simulations we numerically
approximate equation (3.10). For small deviations to the vertical displacement, M is the
integral operator which is the convolution of the vertical force with the fundamental solu-
tion to Stokes equations. We approximate M using the method of regularized Stokeslets
(Cortez 2001), which is a numerical method based on a regularized Greens function for
the Stokes equations. We can also numerically approximate µF

k , the k
th eigenvalue of the

bending force operator F, using a second-order finite difference, and we find that with
point spacing △s = 0.002, the eigenvalues of F are within 1% of the eigenvalues of the
continuous operator. We give the eigenvalues for the first four nontrivial modes in table
1. Note that to compute µMF

k we assume viscosity one. Also in table 1, we give the first
four (mode dependent) drag coefficients computed as ζk = µF

k /µ
MF
k .

In order to compare the predicted shape changes given by equation (3.9) with our
numerical simulations we prescribe a curvature of the form

κ0(s, t) = A sin(2πt), (3.11)

in our model equations (2.3)–(2.1). The prescribed standing wave of constant curvature
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Mode (k) µF
k µMF

k ζk

1 −4.97× 102 −1.53 × 101 32.55

2 −3.77× 103 −8.79 × 101 42.94

3 −1.45× 104 −2.65 × 102 54.69

4 −3.96× 104 −5.93 × 102 66.84

Table 1: Eigenvalues of the discretized operators F and MF using △s = 0.002, and the
effective drag coefficient ζk = µF

k /µ
MF
k for the first four non-trivial modes.
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Figure 4: (a) Normalized amplitude of the first mode, |α1|/|α
∞
1 |, from equation (3.9), for

the flexor at low A = 0.5 and high A = 4.0 amplitude over a range of bending stiffness
B. Linear theory is shown in solid lines and simulation data are indicated by markers.
(b)-(c) Data from (a) renormalized by Newtonian (De = 0) data, as a function of both
B and De.

corresponds to a motion through circular arcs with peak curvature A. By symmetry, this
motion does not result in any horizontal translation of the body. We refer to these non-
translating “swimmers” as flexors. We consider both low and high amplitude curvatures,
A = 0.5 and A = 4.0. The shapes are shown inset in figure 4(a).
In figure 4 we plot the theoretical predictions from equation (3.9) (solid lines) along

with values computed from numerical simulations; low amplitude (A = 0.5) are indicated
by hollow markers, and high amplitude (A = 4.0) are indicated with filled markers. In
figure 4(a) we plot the normalized amplitude of the first mode (|α1|/|α

∞
1 |) to see how

the amplitude deviates from the prescribed amplitude as a function of bending stiffness
B. We see that generically the amplitude of the flexor decreases as the flexor is softened
for fixed De. For sufficiently soft flexors (B . 1) viscoelasticity increases the amplitude
monotonically with De, but for stiffer swimmers the amplitude changes nonmonotonically
with fluid elasticity.
In figures 4(b) and (c) we renormalize the data by the amplitude in a viscous fluid

to see the effects of viscoelasticity more clearly. Again we see that fluid elasticity can
increase the amplitude significantly for a soft flexor, but that effect is lost as the flexor is
stiffened. When we plot the amplitude as a function of De for the very soft, moderately

soft and stiff cases we see again that three qualitatively different regimes emerge. For
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very soft flexors the amplitude is monotonically increased by elasticity, for moderately

soft flexors the response is non-monotonic, and can decrease or increase the amplitude,
and for stiff flexors there is little change in the amplitude due to fluid elasticity. It is
notable that the linear theory does such a good job predicting shape changes for low
and high amplitude and for low and high Deborah number. In Appendix A we derive
the theory for both the limit of small amplitude and the limit of high stiffness. We see
in figures 4 (a) and (b) that the largest differences are for moderate stiffnesses at high
amplitude. We note that we are showing results only for the first mode. For higher modes
the trends are similar but the transition from stiff to soft behavior occurs at lower values
of B because the eigenvalues µk increase with k.

4. Analysis of swimming speed

In a viscous fluid, increasing the stroke amplitude will increase the swimming speed,
and we can infer from section 3 that soft swimmers in a viscoelastic fluid sometimes obtain
an amplitude boost over the corresponding swimmer in a Newtonian fluid. However
when comparing swimmers in a viscoelastic fluid to those in a viscous fluid, even with
an amplitude boost the viscoelastic swimmer may not swim faster than the viscous
swimmer due to additional fluid elastic forces that the swimmer will encounter. Thus
the effect of elasticity-induced shape changes is difficult to decouple from the overall
effect of fluid elasticity. Analytical expressions for swimming speed can be obtained in
certain limits, or for specialized swimmers, but even in these cases we see that the effect
of fluid elasticity depends on many factors. For example infinite-length small amplitude
undulatory swimmers show that a slow-down is generically expected for stiff swimmers
in a viscoelastic fluid (Lauga 2007a), but allowing for body flexibility, shape changes can
lead to speed boosts (Riley and Lauga 2014).

In regimes that are more challenging for analysis such as the large amplitude, finite
length swimmers considered here, it is more difficult to attribute speed boosts or slow-
downs to specific swimmer attributes. For large amplitude finite-length undulatory
swimmers, it was conjectured (Teran et al. 2010) that speed boosts were related to large
tail stresses, and in Thomases and Guy (2014) stroke asymmetries were correlated with
both slow-downs and speed-ups. Here we will compute a stroke-induced swimming speed

that isolates the effect of fluid elasticity on shape changes, and how those shape changes
affect swimming speed in a Newtonian fluid. We then compare that analysis with the full
nonlinear numerical simulations where the effect of shape changes is coupled with the
fluid elasticity.

4.1. Swimming speed: two-mode swimmer

To keep the analysis simple we define a gait whose swimming speed in a viscous fluid
we can compute analytically. We define a “two-mode swimmer” given by the curvature:

κ(s, t) = A1 cos(2πt/T + φ1)Ψ1(s) +A2 cos(2πt/T + φ2)Ψ2(s), (4.1)

where the Ψi(s) for i = 1, 2, are the first and second bending modes. The modulation
of a single mode results in a standing wave and will not translate in a Newtonian fluid.
We use a sum of the first two modes with a phase difference to generate a nonreciprocal
motion. Shapes of the first, second, and sum of the first and second modes are plotted
in figure 5 for both low and high amplitudes.

Using resistive force theory one can derive the (time-averaged) swimming speed for a
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Figure 5: Shapes for first, second, and sum of first two modes for “two-mode” swimmer
defined by equation (4.1). Snapshots of one period for low and high amplitude strokes.

given, small amplitude, motion:

〈U〉 =

(

ζ⊥
ζ‖

− 1

)

1

LT

∫ T

0

∫ L

0

ysyt dsdt, (4.2)

where U is the swimming speed, y(s, t) is the vertical displacement of the swimmer, and
ζ⊥ and ζ‖ are the perpendicular and parallel drag coefficients, respectively, (Wiggins and
Goldstein 1998; Lauga 2007b).
For small amplitudes, the shape of the swimmer (up to translation and rotation) is

given by integrating equation (4.1) twice in space to compute the swimming speed via
equation (4.2). The swimming speed (in a viscous fluid) for the two-mode swimmer is
proportional to the product of the amplitudes and the sine of the phase difference:

〈U〉 ∝ A1A2 sin(φ2 − φ1). (4.3)

With this expression and the theoretical prediction for shape changes, we define a stroke-
induced swimming speed which is the swimming speed in a Newtonian fluid that depends
on the shape changes due to fluid elasticity and body flexibility. Specifically, for a given De
and G, we compute αk from equation (3.9) (Aj = |αj |, and φj = arg(αj)) and the stroke-
induced swimming speed from equation (4.3). We parametrize the shape changes due to
changes in De using a parameter we call the stroke-Deborah number (Thomases and Guy
2014), StrokeDe. In other words, StrokeDe represents the value of De used in equation
(3.9) to compute the stroke-induced swimming speed via equation (4.3). Our analytical
expression for the shape changes is based on a linearly elastic fluid, but because the
nonlinear elastic effects and swimming speed are both second order in amplitude, we do
not expect the stroke-induced swimming speed to capture the true viscoelastic swimming
speed. An analytical expression for the swimming speed in a nonlinear viscoelastic fluid,
as was computed in Lauga (2007a), is not tractable in the finite length case, because
translational invariance, which facilitates the calculation for infinite length swimmers, is
lost.
We plot the stroke-induced swimming speed for the two-mode swimmer over a range of

StrokeDe, and as with the flexor, we see the emergence of three regimes dependent on the
body stiffness, see figure 6 (a). Shape changes boost the stroke-induced swimming speed
if the swimmer is very soft, a smaller boost is obtained for the moderately soft swimmer,
and additionally there is a non-monotonic response to increasing elasticity including a
regime where shape changes slow down the swimmer, and finally if the swimmer is stiff
there is a negligible effect.

4.2. Swimming speed: theory and numerical comparison

We simulate a two-mode swimmer of both low and high amplitude by prescribing a
curvature of the form given in equation (4.1) with A1 = 0.8A, A2 = 0.6A, φ2−φ1 = π/2,
for A = 0.5 (low), and 4.0 (high). These values come from projections of the stroke used
to generate figure 1. The Stokes-normalized swimming speeds for a very soft, moderately
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Figure 6: (a) Theoretically predicted stroke-induced swimming speed (computed using
equation (4.3)) normalized by the Newtonian stroke-induced swimming speed. (b) Stokes-
normalized swimming speed in simulations with the two-mode swimmer. (c) Ratio of
speed to stroke-induced speed for low and high amplitude strokes. (d) Ratio of high to
low amplitude swimming speed. (Dashed lines are for graphical interpretation).

soft, and stiff swimmer at both low (hollow markers) and high (filled markers) amplitude
are plotted in figure 6 (b). We note that the three regimes seen in figure 6 (a) still emerge
from these simulations, but for this two-mode swimmer the simulation swimming speeds
are always slower than the stroke-induced swimming speeds. The ratio of swimming
speed to stroke-induced swimming speed is shown in figure 6 (c). This quantity can be
interpreted as the effect of fluid elasticity that is not related to shape changes. It is
notable that these curves collapse onto a single curve for the low amplitude swimmers
at all stiffnesses as well as the high-amplitude swimmer in the very soft regime. This
additional elastic fluid effect on swimming speed is likely to be highly stroke dependent.

The additional effects of fluid elasticity are fundamentally different for the large
amplitude, large De regime. In figure 6 (d) we plot the ratio of swimming speeds for the
high-to-low amplitude strokes, and see that for De > 1 (for sufficiently stiff swimmers)
a significant difference in swimming speed arises. This difference is not related to shape
changes because, like the flexor, the elasticity-induced shape changes predicted by the
theory for the two-mode swimmer agree very well with the simulation results, for all De,
at low and high amplitudes; see figure 7. At low amplitude (not shown) the relative error
between theoretical and numerical predictions is less than 1%, and for high amplitude
the error at low De is at most 5% and at high De the error is at most 9%. These
results indicate that the theoretically predicted shape changes and their isolated effects
on swimming speed can be well approximated by the analytical results for the amplitudes
simulated and the range of De considered. A mechanistic understanding is lacking to
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Figure 7: (a) Amplitudes |α1|, |α2|, and sin(φ2−φ1), for the two-mode swimmer, equation
(4.1)). Linear theory is shown in solid lines (dependence on B, and De coming from
equation (3.9)) and simulation data are indicated by markers for high amplitude A = 4.0,
and De = 0.5 (a), De = 4.0 (b).

explain what causes the dramatic slow-downs of swimmers in the high amplitude, high
De regime.
We conjecture that the slow-downs in the high amplitude, high De regime must be

attributed in part to the large localized stresses that accumulate near the body (Teran
et al. 2010; Thomases and Guy 2014). To explore this conjecture, in figure 8 (a) we plot
the average elastic to viscous stress ratio, computed as the time average over one period
of ‖τp‖/‖∇u‖ where ‖ · ‖ is the Frobenius norm, over a range of body stiffness B for
both low (hollow markers) and high amplitude (filled markers) strokes for De = 0.5, 4.0.
There is a notable transition in the stress ratio in the high De, high amplitude swimmer
as the body is stiffened, while this stress ratio is flat for both low amplitude and low De
swimmers. Stiff swimmer shapes along with the elastic-viscous stress ratio are plotted on
a log-scale in figure 8 (b). The low amplitude strokes are surrounded by elastic stresses
that are at least two orders of magnitude smaller than the high amplitude strokes, but
even at large amplitude the low De swimmer still has relatively low stress near the body.
Lastly, we plot the tail amplitude, as one measure of the swimmer stroke, in figure 8
(c). We see that for sufficiently soft swimmers the “high amplitude” stroke has a lower
amplitude, which explains why in figure 6 the very soft high amplitude swimmer behaves
like the low amplitude swimmers. For the high amplitude strokes it is only in the large
amplitude and large De regime where significant stress accumulates near the swimmer.

5. Conclusions

In Thomases and Guy (2014) we showed that stroke related speed-ups depend on body
stiffness, and the analysis from this paper shows explicitly how the stroke changes depend
on body stiffness and fluid elasticity through two dimensionless “relaxation times”: the
fluid relaxation time, De and the body relaxation time, G−1.When we look at apparently
contradictory results from the literature, we see that calculating G will determine which
regime the swimmer falls into.
In Espinosa-Garcia et al. (2013) the Sperm number is reported to be between 0.5−2.5,

but even with the awareness that these are soft swimmers the authors “conjecture that
the effect [due to shape changes] is not significant”. We use their reported parameters†

† L = 25mm, cross-sectional radius a = 62.5µm, Young’s modulus E = 80 GPa, viscosity
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Figure 8: (a) Average elastic-viscous stress ratio in two-mode swimmer over a range of
bending stiffness B for both low and high amplitude strokes and low and high De. (b)
Color field of the magnitude of the elastic-viscous stress ratio around stiff swimmers
(B = 10) at low and high De and low and high amplitudes. (c) Tail amplitudes over a
range of bending stiffness B, measured as the maximum displacement at the tail over a
period, for both low and high amplitude strokes and low and high De.

and a characteristic frequency of 1s−1, and find G ≈ 0.43. We cannot directly conclude
that this value lies in the very soft regime (B ≈ 0.1) due to differences between 2D
and 3D as well as the way that the micro-swimmer is driven (it is a flexible tail with a
magnetically driven head). In Appendix B we repeat the calculation from section 4.1 to
compute an equivalent stroke-induced swimming speed for a flexible filament driven at
one end. This calculation shows that speed boosts still arise for sufficiently soft swimmers,
despite the difference in driving mechanism. The most significant boost in speed from
viscoelastic shape changes occurs for G ≈ 0.1, but for G ≈ 0.43 it would be reasonable to
conclude that the significant speed-ups observed in the experiment are related to shape
changes.
In Salazar et al. (2016) the parameter reported for what they consider to be a soft

swimmer is B = 2. However their swimmer length is L = 0.6 mm (with characteristic
length 1 mm) hence an equivalent dimensionless body response time Gmust be multiplied
by L−4 ≈ 7.7. This pushes their “soft” simulations into the stiff regime where there are no

µ = 2.7 Pa-s. For moment of inertia I = πa4/4, we get B = EI = 9.6× 10−7, ζ = 4πµ/ ln(L/a),

and thus G = BT

ζL4 = 9.6×10−7 ln(400)

4π·2.7(25×10−3)4
≈ 0.43.



Soft Swimmers 15

speed-ups from shape changes, also agreeing with their results. Furthermore, in Salazar
et al. (2016) it is conjectured that stress diffusion, used to regularize the simulations in
Teran et al. (2010); Thomases and Guy (2014), is the source of the speed-ups, but the
speed-ups we see are theoretically predicted, and realized in our simulations, even in the
low amplitude regime where no regularization is necessary.
In our analysis we quantify the effect of body and fluid elasticity-induced shape

changes on swimming speed. We see that the shape change analysis holds for the
amplitudes simulated and the range of De considered, and in this case we see an additional
elastic slow-down that is reminiscent of the type of slow-down predicted by asymptotic
analysis of infinite-length small amplitude undulatory swimmers (Lauga 2007a). It may
be tractable to apply asymptotic analysis (Riley and Lauga 2014; Elfring and Goyal 2016)
to determine the form of the elastic slow-down for low amplitude finite-length swimmers.
A fundamentally different regime arises for large amplitude swimmers in highly elastic
fluids. A different approach is needed to understand the mechanisms that cause large
localized stresses and their effect on swimming.

The authors would like to thank Henry Fu and Roberto Zenit for interesting discussions
and suggestions on this work, and Michael Shelley for suggesting the term “flexors”.
The authors would also like to thank the anonymous referees for suggesting useful
modifications to our original manuscript. The work of RDG was partially supported
by NSF grants DMS-1160438 and DMS-1226386.

Appendix A. Derivation of PDE for rod dynamics

In this appendix we give the derivation for the equation of motion for a thin filament
in a viscous fluid which includes terms arising from inextensibility and geometric non-
linearties. For more details on similar calculations see for example Goldstein and Langer
(1995); Camalet and Jülicher (2000).

A.1. Geometric Relations

Consider an inextensible thin rod whose centerline position is given by X(s, t), where s
is arclength coordinate. We suppose that the deformation of the rod is planar. Let τ̂ and
n̂ be the tangent and normal vectors, ψ be the tangent angle, and κ be the curvature.
We have the following relationships between these quantities:

ψs = κ, τ̂s = κn̂, n̂s = −κτ̂ , τ̂t = n̂ψt, n̂t = −τ̂ψt. (A 1)

A.2. Equation of Motion

Let F(s, t) = F⊥n̂ + F‖τ̂ be the force density along the rod. Using resistive force
theory, the motion of the rod is given by

Xt =
1

ζ⊥
F⊥n̂+

1

ζ‖
F‖τ̂ , (A 2)

where ζ⊥ and ζ‖ are the normal and tangential drag coefficients, respectively. Taking the
derivative of this equation with respect to arclength gives

∂tXs =

(

1

ζ⊥
∂sF⊥ +

1

ζ‖
F‖κ

)

n̂+

(

1

ζ‖
∂sF‖ −

1

ζ⊥
F⊥κ

)

τ̂ . (A 3)
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BecauseXs = τ̂ , the left side of the above equation can be expressed as ∂tXs = τ̂t = n̂ψt,
and thus the normal terms give ψt and the tangential terms must be zero:

ψt =
1

ζ⊥
∂sF⊥ +

1

ζ‖
F‖κ, (A 4)

1

ζ‖
∂sF‖ −

1

ζ⊥
F⊥κ = 0. (A 5)

Equation (A 5) represents a constraint on the forces that must be satisfied to maintain
inextensibility. The evolution equation for the curvature is obtained by differentiating
equation (A 4) with respect to arclength to obtain

κt =
1

ζ⊥
∂ssF⊥ +

1

ζ‖
∂s
(

F‖κ
)

. (A 6)

A.3. Expression for Elastic Forces

The elastic forces are obtained from the variation of an elastic energy functional. The
total elastic energy is the sum of a bending term from equation (2.2) with an energy
associated with inextensibility:

E =

∫ L

0

B

2
(κ− κ0)

2 +
Λ

2
Xs ·Xs ds, (A 7)

where Λ is a tension used to enforce inextensibility. The force comes from the variation
of the energy

F = −
δE

δX
. (A 8)

Using the natural free boundary conditions

κ = κ0, κs = ∂sκ0, Λ = 0, (A 9)

the force is

F =
∂

∂s

(

−B(κ− κ0)sn̂+ (Λ + Bκ(κ− κ0) τ̂

)

(A 10)

We define the total tension in the rod as

T = Λ+ Bκ(κ− κ0), (A 11)

and the expression for the force is

F =
∂

∂s

(

−B(κ− κ0)sn̂+ T τ̂

)

(A 12)

=
(

−B(κ− κ0)ss + κT
)

n̂+
(

Bκ(κ− κ0)s + Ts
)

τ̂ (A 13)

The normal and tangential force densities on the rod are thus

F⊥ = −B(κ− κ0)ss + κT (A 14)

F‖ = Bκ(κ− κ0)s + Ts. (A 15)
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With these forces, the evolution equation for the curvature (A 6) and the inextensibility
constraint which determines the tension (A 5) are

κt =
1

ζ⊥

(

−B(κ− κ0)ssss + (κT )ss
)

+
1

ζ‖

(

B(κ2(κ− κ0)s)s + (κTs)s
)

, (A 16)

1

ζ‖
Tss −

1

ζ⊥
κ2T +

1

ζ‖

(

Bκ(κ− κ0)s
)

s
+

1

ζ⊥
Bκ(κ− κ0)ss = 0. (A 17)

These equations together with the boundary conditions at the ends of the rod

κ = κ0, κs = ∂sκ0, T = 0, (A 18)

determine the motion.

A.4. Asymptotic Expansions

We examine the leading order behavior in two different limits: (1) small amplitude
motion in which κ → 0, and (2) high stiffness, B → ∞, in which κ → κ0. Note that for
soft bodies with large κ0 the realized amplitude, κ, is in fact small. Thus we expect the
largest discrepancy between the asymptotic solutions at large κ0 at intermediate stiffness.
In fact this is what we see in figure 4 for the flexor and figure 7 for the two-mode swimmer.

A.4.1. Small Amplitude

In the limit of small curvature, we see from equation (A 17) that the size of the tension
is like the square of the curvature. At leading order the tension is zero, and the equation
for the curvature is

κt = −
B

ζ⊥
(κ− κ0)ssss. (A 19)

Changing to curvature deviation, c = κ − κ0, and nondimensionalizing gives equation
(3.4) analyzed in the main text.

A.4.2. Large Stiffness

In the limit B → ∞, κ→ κ0. We introduce the variable

c = κ− κ0 (A 20)

to denote the deviation from the prescribed curvature. For increasing stiffness, c → 0.
Changing variables from κ to c and linearizing about small c gives

ct + ∂tκ0 =
1

ζ⊥

(

−Bcssss + (κ0T )ss
)

+
1

ζ‖

(

B(κ20cs)s + (κ0Ts)s
)

(A 21)

1

ζ‖
Tss −

1

ζ⊥
κ20T +

1

ζ‖
B (κ0cs)s +

1

ζ⊥
Bκ0css = 0, (A 22)

and the boundary conditions are

c = 0, cs = 0, T = 0. (A 23)

These equations contain many terms that are absent for small curvatures. However,
as demonstrated in the text by comparing with numerical results, the low curvature
equations appear to give a reasonable approximation at the amplitudes tested. Below we
show why the two approximations are similar.
For simplicity we consider the flexor in which κ0 is only a function of time. With this
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simplification, equations (A 21)-(A 22) become

ct + ∂tκ0 = −
B

ζ⊥
cssss +

Bκ20
ζ‖

css + κ0

(

1

ζ⊥
+

1

ζ‖

)

Tss (A 24)

1

ζ‖
Tss −

1

ζ⊥
κ20T + Bκ0

(

1

ζ‖
+

1

ζ⊥

)

css = 0. (A 25)

These equations can be solved by orthogonal function expansion. First we eliminate the
tension by solving the second equation. We express T as the series

T =
∞
∑

m=1

βm(t) sin (mπs) . (A 26)

We then write the function T as

T (s, t) = Q−1~β, (A 27)

where ~β represents the sequence of coefficients and Q−1 is the orthogonal operator which
maps these coefficients to T , i.e. Q is like the Fourier transform operator. Using this
expansion, the operator applied to T in equation (A 25) diagonalizes, and the solution is

T = Bκ0

(

1

ζ‖
+

1

ζ⊥

)

Q−1

(

1

ζ‖
M2 +

1

ζ⊥
κ20

)−1

Qcss, (A 28)

where M is a diagonal matrix with elements mπ on the diagonal. After using this
expression to eliminate T in equation (A 24), after some simplification, we get the
equation for the curvature deviation as

ct + ∂tκ0 = −
B

ζ⊥
cssss +

Bκ20
ζ‖

Q−1DQcss, (A 29)

where D is a diagonal matrix with elements on the diagonal

Dmm = 1−

(

1 +
ζ‖
ζ⊥

)2

(

1 +
ζ‖
ζ⊥

κ2

0

m2π2

) . (A 30)

Because ζ‖ < ζ⊥, the values of Dmm can be bounded as −3 6 Dmm 6 1.
Equation (A 29) contains one additional term involving the second derivative that is

not present in the corresponding low amplitude equation (3.4). Below we argue that the
additional term is small even when κ0 itself is not small. Our analysis in the main text
relied on performing an eigenfunction expansion using the eigenfunctions of the beam
equation. We use the same expansion here

c =

∞
∑

k=1

αk(t)Ψk(s), (A 31)

and we relate c to its expansion coefficients by

c(s, t) = P−1~α(t), (A 32)

where P−1 is the orthogonal operator that maps the expansion coefficients to c. We
can transform equation (A 29) into a system of differential equation for the expansion
coefficients as

d~α

dt
+ P∂tκ0 = −

B

ζ⊥
N4~α+

Bκ20
ζ‖

PQ−1DQP ′′~α (A 33)
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Figure 9: (a) Normalized amplitude of first mode for a high-amplitude flexor with
amplitude κ0 = 4 as a function of stiffness B for the leading order low amplitude
expansion and the leading order high stiffness expansion. The ratio of drag was set
to ζ‖/ζ⊥ = 0.75 for this computation. The results are relatively insensitive to this value.
(b) Magnitude of the difference of the two expansion coefficients.

where we define P ′′ so that P ′′~α = css, and −N4 is a diagonal matrix containing the
eigenvalues of the beam equation. That is, the kth diagonal entry of N , νk, is related to
the kth eigenvalue, µk, by µk = −ν4k. One expects that the contribution of P ′′ to the kth

equation to scale like ν2k . As argued above the norm of Q−1DQ is about 1, and so we
expect the additional terms relative to the bending terms to contribute ν−2

k . The smallest
eigenvalue is about ν41 ≈ 500, and thus we expect these additional terms to be small.

In figure 9 we compare the expansion coefficients of the first mode of the small ampli-
tude expansion and the high stiffness expansion for the high-amplitude flexor (κ0 = 4) for
a range of stiffnesses. In agreement with our numerical results, the qualitative behavior of
the two expansions is the same, and at high and low stiffnesses the quantitative behavior
is the same. The largest difference occurs for moderately soft bodies where the difference
is less than 25%.

Appendix B. Rod driven at one end

In this appendix we give the derivation for the shape-induced swimming speed of a thin
filament in a viscous or viscoelastic fluid which is driven by oscillations at one end. This
type of motion is akin to the experiments of Espinosa-Garcia et al. (2013), and we perform
the calculation to compute the swimming speed as a function of the dimensionless body
response time G and the fluid relaxation time De. We also show the range of G where a
viscoelastic speed-up is theoretically predicted for this type of motion.

B.1. Shape of the swimmer

The problem we consider is a flexible filament with one free end and one clamped end.
The motion is driven by prescribing sinusoidal oscillations in the angle at the clamped
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end. The shape of the filament satisfies

yt = −Gyssss (B 1)

y(0, t) = 0 (B 2)

ys(0, t) = cos(2πt) (B 3)

yss(1, t) = 0 (B 4)

ysss(1, t) = 0. (B 5)

We now change variables using

y = w + s cos(2πt) = w +Re(se2πit), (B 6)

so that w represents deviations from the infinitely stiff case of a straight rod. Letting w
be complex valued, the equation for w is then

wt = −Gwssss − 2πise2πit (B 7)

with homogeneous boundary conditions. This equation can be solved using an expansion
of eigenfunctions, Ψk(s), which satisfy

µΨ(s) = −Ψssss,

Ψ(0) = Ψ ′(0) = 0,

Ψ ′′(1) = Ψ ′′′(1) = 0.

We express the function s using an eigenfunction expansion

s =
∑

k

α∞
k Ψk(s), (B 8)

and look for a solution to the PDE of the form

w(s, t) = e2πit
∑

k

βkΨk(s). (B 9)

The transformation of the PDE yields

2πiβk = Gµkβk − 2πiα∞
k , (B 10)

which gives

βk =
−α∞

k

1− Gµk

2πi

. (B 11)

We can then write the shape as

y(s, t) = Re

{

∞
∑

k=1

(α∞
k + βk)Ψk(s)e

2πit

}

, (B 12)

= Re

{

∞
∑

k=1

α∞
k

(

1−

(

1−
Gµk

2πi

)−1
)

Ψk(s)e
2πit

}

. (B 13)

Notice that the factor multiplying α∞
k above is exactly the same as the one that appears

in the shape analysis of swimmers driven by active moments in (3.7). We can express the
shape as

y(s, t) = Re

{

∞
∑

k=1

αkΨk(s)e
2πit

}

, (B 14)
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Figure 10: (a) Shape induced Stokes-normalized swimming speed as a function of StrokeDe

for a range of G. (b) Shape induced Stokes-normalized swimming speed as a function of
G for low and high StrokeDe. (c) Shape induced swimming speed as a function of G for
low and high StrokeDe.

where αk is defined by (3.7). As in the main body of the paper, to add viscoelastic effects,
we simply use (3.9) in place of (3.7) to define the expansion coefficients. Although these
expressions are the same, we note that the eigenfunctions and eigenvalues are different
for this problem.

B.2. Expression for Swimming Speed

The expansion for the shape of the swimmer can be written as

y(s, t) =

∞
∑

k

Ak cos(2πt+ φk)Ψk(s), (B 15)

where

Ak = |αk| (B 16)

φk = arg(αk). (B 17)

To compute the swimming speed, we average in space and time the product

ysyt = −2π
∑

n

∑

m

AnAm cos(2πt+ φn) sin(2πt+ φm)Ψn(s)Ψ
′
m(s). (B 18)

Averaging the above expression by integration gives the swimming speed

〈U〉 ∝
∑

n

∑

m

AnAm sin(φn − φm)

∫ 1

0

Ψn(s)Ψ
′
m(s) ds. (B 19)

We use this expression with the first six modes to compute the shape-induced Stokes-
normalized swimming speed; see figure 10. As with the problem from the paper, for
sufficiently soft bodies, we see an almost monotonic speed-up from the shape changes. For
sufficiently stiff swimmers (G > 1) we see a monotonic slow down. There is a transition
range around 0.1 < G < 1. The location of this transition is evident in figure 10 (b)
where we show the swimming speed as a function of G for low and high StrokeDe. The
qualitative results from the paper do not change in the sufficiently soft regime, but this
problem has a different driving mechanism and hence there is a different effect in the
stiff regime. As we see in figure 10 (c) as the body is stiffened the swimming speed goes
to zero and viscoelasticity always slows the swimmer.
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