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A computational model of finite-length undulatory swimmers is used to examine the physical
origin of the effect of elasticity on swimming speed. We explore two distinct target swimming
strokes, one derived from the motion of C. elegans, with large head undulations, and a contrasting
stroke with large tail undulations. We show that both favorable stroke asymmetry and swimmer
elasticity contribute to a speed-up, but a substantial boost results only when these two effects work
together. We reproduce conflicting results from the literature simply by changing relevant physical
parameters.

PACS numbers: 47.63.Gd,47.63.-b,47.50.-d,87.85.gj

Low Reynolds number swimming of microorganisms
in Newtonian fluids is an extensively studied classical
problem and the underlying physics is well understood
[1]. However, many biological fluids such as mucus are
mixtures of water and polymers and are more appropri-
ately described as viscoelastic fluids. Recently, there have
been many studies on locomotion in complex fluids [2–
16]. Both experiments and theory have exhibited that
viscoelasticity can lead to either an enhancement or re-
tardation of swimming, but a complete understanding of
this problem is lacking. Given the many different types
of materials that exhibit viscoelastic properties, and the
many different types of small scale organisms, it is un-
likely that there is a simple answer to what effects vis-
coelasticity has on swimming, and subclasses of problems
must be considered.

Here we focus on finite-length undulatory swimmers
with large-amplitude planar beat in an Oldroyd-B fluid.
Asymptotic analysis of infinitely long, small-amplitude
swimmers showed that swimming is hindered by the ad-
dition of elastic stresses [9]. Numerical simulation of
finite-length, large-amplitude swimmers showed that un-
der some conditions, the swimming speed may be en-
hanced by elasticity [13], with a peak in swimming speed
when the relaxation time of the fluid is similar to the
period of the undulation. However, experimental mea-
surements of the undulatory motion of C. elegans showed
that swimming is always slowed with increasing elastic-
ity [14], while an experiment using a physical model of a
swimmer showed that swimming speed was an increasing
function of the elasticity of the fluid [12].

In this letter we use computational modeling to ex-
amine the physical origin of the elastic speed-up/slow-
down in finite-length undulatory swimmers. Our data-
based model stroke comes from the motion of C. ele-

gans [14], whose stroke shows larger undulations at the
head. Others have studied strokes with larger undula-
tions at the tail [12, 13]. We contrast these two differ-
ent types of swimmers and show that stroke asymmetries
lead to stress distribution asymmetries which, when fa-

vorable, can contribute to an elastic speed-up. When the
swimmer is flexible, the body response to changing fluid
stresses provides an additional speed-up. We conclude
that a substantial speed-up, like those reported in the
literature [12, 13], can only occur when these two effects
work together. We reproduce several seemingly conflict-
ing results [12–14], and demonstrate that they are com-
plementary rather than contradictory.

The model.– We model the swimmer as an inextensible
flexible sheet of finite length L immersed in a 2D fluid.
We describe the undulatory motion of the swimmer by a
curvature function of the form

κ0(ℓ, t) = A(ℓ) cos
(

2πt/T + φ(ℓ)
)

, (1)

where ℓ ∈ [0, L] is the body coordinate (ℓ = 0 is the
head). We base our model parameters on C. Elegans

swimming in a Newtonian fluid [14]; by fitting to data,
we obtain L = 1.2 mm, T = 0.5 s, A(ℓ) = 5.3 − 3.1ℓ
mm−1, and φ(ℓ) = π(L − ℓ) mm−1 [27]. Changes in
curvature propagate as waves from the head, with the
largest curvature amplitude, to the tail. We call this type
of swimmer a “burrower,” in contrast to swimmers with
larger curvature amplitude at the tail, “kickers,” such as
in [12, 13]. The kicker stroke is related to the burrower
stroke by κkicker

0 (ℓ, t) = κburrower
0 (L − ℓ, t − t0), where t0

is a phase shift that keeps the head in phase with the
burrower.

We use the immersed boundary method to solve for the
coupled motion of the fluid and the swimmer [17]. Both
inextensibility and shape are imposed (approximately)
by forces that are designed to penalize extension and de-
viation from a prescribed target curvature. These forces
are derived from the variation of bending and extension
(stretching) energy functionals. For example, the bend-

ing energy is Eb = kb/2
∫

Γ
(κ − κ0)

2
dℓ, where kb is the

bending stiffness, κ is the curvature of the sheet, and κ0

is the prescribed target curvature. One can interpret the
model as an active sheet with bending stiffness kb driven
by an active body moment density kbκ0. We scale forces
relative to viscous forces so that for kb ≫ 1, the real-
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ized shape of the swimmer is very close to the prescribed
shape; we call these swimmers stiff and use kb = 40 in
our simulations. For kb ∼ 1, elastic forces and viscous
forces are of the same scale and the realized shape is the
result of fluid-structure interaction; we use kb = 2 and
call these swimmers soft.

The viscoelastic fluid is described by the Oldroyd-B
model at zero Reynolds number [18], regularized by poly-
mer stress diffusion [19, 20]. The system of equations
describing the fluid are

∆u −∇p + ξDe−1
∇ · τ + f = 0, and ∇ · u = 0, (2)

∇

τ +De−1(τ − I) = ε△τ , (3)

where u is the fluid velocity, p is the pressure, τ is the
viscoelastic stress, and f is the elastic force density gener-
ated by the swimmer. The upper convected time deriva-

tive is defined by
∇

τ≡ ∂τ/∂t+u ·∇τ −
(

∇u τ + τ ∇u
T
)

.
Here ξ is the ratio of polymer to solvent viscosity, De =
Tp/Tf is the ratio of the elastic relaxation time to the
characteristic flow time-scale, and ε ≪ 1 is the stress dif-
fusion coefficient. Based on the data which defined the
burrower stroke, we nondimensionalize with a character-
istic length scale of 1 mm, time scale of Tf = 1 s, and
stress scale µ/Tf , where µ is the viscosity of water. Other
model and numerical parameters are given in [28].

Results.– Fig. 1 shows the average Stokes-normalized
swimming speed as a function of the Deborah number for
soft and stiff kickers and burrowers. The time average is
taken over one period after the speed has equilibrated,
which we take as the greater of 20 periods or 20 times
the relaxation time. For all but the soft kicker, any elas-
ticity tends to slow down the swimmers, consistent with
the predictions of [9, 11]. Here we examine what allows
the soft kicker to overcome this elastic resistance, and in
doing so, we systematically demonstrate how changing
fluid elasticity and swimmer elasticity affects swimming
speed. From this we gain insight into the local maxi-
mum in swimming speed for De ∼ 1 (for all but the stiff
burrower). Finally we examine the swimming speed slow
down for De & 2.

First we study the effect of fluid elasticity by looking
at the polymer stress induced by the motion of soft kick-
ers and burrowers. We focus on De = 1 to gain insight
into the local maxima seen in Fig. 1. Fig. 2 (a) shows
the polymer stress energy, computed as the trace of the
polymer stress tensor, about the soft kicker and burrower
(head on right) at two times during a period for De = 1.
Two significant differences between the kicker and bur-
rower stresses are their scales and their spatial distribu-
tions. For the kicker, there is a concentration of stress at
the tail which persists over the period, whereas for the
burrower, the polymer stress concentrates along the en-
tire body of the swimmer and is about 3-4 times smaller
at its maximum.
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FIG. 1: (a)-(b): The ratio of average swimmer speed to that
of the Newtonian swimmer as a function of De, varying stroke
type and bending stiffness. (color online)

To analyze the effect these stresses have on motion, we
look at the swimmer horizontal center-of-mass position
over one period shown in Fig. 2 (b)-(c). With no elastic-
ity (De = 0) we see major differences in the translational
locomotion inherent to the kicker versus burrower stroke.
In particular, burrowers swim faster than kickers because
there is little to no recoil over the cycle of the stroke,
whereas kickers lose about 25% of progression to recoil.
Elasticity effects both progression and recoil but in dif-
ferent ways for kicker and burrower, due to the different
stress distributions for these strokes.

For the kicker, elasticity (0 < De . 3) enhances pro-
gression by as much as 20%, while recoil remains nearly
constant. The onset of enhanced progression for the
De = 1 kicker coincides with a local maxima in the aver-
age back stress (average stress to the left of the center of
mass), see Fig. 2 (a) (i). In other words, when the back
stress is greatest the swimmer moves forward. Similarly
when the front stress is greatest, the swimmer begins
to recoil (Fig. 2 (a) (ii)). The local maxima of back and
front stress are noted on Fig. 2 (b) (and (c)) with squares
and circles, respectively. The average back stress is more
than 5 times as large as the average front stress, and we
see an enhancement to progression as if the swimmer is
“kicking off” of the accumulated stresses. In [13] the au-
thors conjectured that the region of highly strained fluid
at the tail restricts backward slippage contributing to an
increase in speed. While we do see backward slippage, it
appears to be nearly constant as elasticity changes.

Like the kicker, the burrower’s back stress is maxi-
mized at the beginning of progression (Fig. 2 (a) (iii))
and the front stress is maximized at the beginning of
recoil (Fig. 2 (a) (iv)). Unlike the kicker, we see en-
hanced recoil as if the accumulated front stress must be
“burrowed through”. The differing response may be due
to the fact that for the burrower the polymer stress is
distributed much more evenly around the body, and in
particular, the burrower has, on average, half as much
back stress and twice as much front stress as the kicker.

Now turning to both soft and stiff swimmers at all
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FIG. 2: (a) Contour plots of the polymer stress energy at
two times during a period for De = 1, (i)-(ii) soft kicker, (iii)-
(iv) soft burrower (head on right). (b)-(c): The location of the
horizontal component of the swimmer center of mass is plotted
over one period at t = 10 for De = 0, 1; markers correspond to
local maxima in front (circles) and back (squares) stress. (d)-
(e): Back-front stress asymmetry ratio (time-averaged ratio
of back stress to front stress) for 0 ≤ De ≤ 5. (color online)

De, we utilize this back-front asymmetry in stresses to
quantify an “asymmetry ratio,” the time-averaged ratio
of back stress to front stress, plotted in Fig. 2 (d) - (e).
We see that the kickers overall have high (≥ 2) asymme-
try ratios which reach a maximum around De ∼ 1. This
back-front asymmetry maximum correlates well with the
maximum in swimming speed for kickers seen in Fig. 1
(a), and likely contributes to the speed boost seen for
De ∼ 1. For burrowers this ratio is close to one for all
De. This is consistent with the fact that the burrowers
do not see a speed boost. For both kickers and burrow-
ers this ratio decreases as the swimmer goes from soft to
stiff. The stiff kicker retains the De ∼ 1 local maxima,
and though decreased, it is still greater than 3. The stiff
burrower meanwhile always has a ratio less than 1 mean-
ing there is more front stress than back. Fluid elasticity
contributes to a speed boost when there is a high asym-
metry ratio, but this measure alone does not explain the
local maximum in speed ratio at De ∼ 1 for the soft bur-

rower nor the slow down at large De. Next we look at
how swimmer elasticity effects the swimming speed.
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FIG. 3: (a) Kicker shapes at times evenly spaced within a half-
period: stiff at De = 0, soft at De = 0, 1. (b) Non-normalized
average speed for stiff kicker and burrower for different De
(see markers) as a function of StrokeDe, where changes in this
parameter correspond with passive dynamic stroke changes
for soft swimmers indexed by De. (color online)

The viscoelastic boost for soft kickers depends crucially
on the elasticity of the swimmer and there are significant
deviations between target and achieved curvatures, vary-
ing with De, that can be as large as 40%. For the stiff
kicker deviations are at most 3%. Fig. 3 (a) shows the
kinematics of the swimmer body over a half-period for a
stiff kicker in a Newtonian fluid (De = 0) and soft kick-
ers at De = 0, 1. The stiff and soft strokes are noticeably
different, and the addition of elasticity tends to return
the stroke towards the more favorable stroke of the stiff
swimmer [29].

To isolate the effect of passive dynamics for soft swim-
mers we index the stroke changes with De by fitting each
soft swimmer’s curvature deviation to the solution of the
equation that describes a freely vibrating beam and use
the first 4 modes to capture these deviations. We then
prescribe this idealized curvature as the target curvature
for a stiff swimmer, and the so-called StrokeDe is the
parameter referring to the stroke change. Fig. 3 (b)
(solid curve) shows the non-normalized swimming speed
for a stiff kicker and burrower, in a Newtonian fluid, as
a function of this stroke parameter. Both the kicker and
burrower show dramatic speed-ups of 25% and 10%, re-
spectively, as a functions of stroke changes alone with
maxima coming from the De = 1 soft swimmer.

Fig. 3 (b) also shows how the swimming speed depends
on StrokeDe when elasticity is added to the fluid (De =
0.1, 1.0, 2.0). The kicker shows a non-monotonic response
to elasticity; a small amount of elasticity (De = 0.1) does
not boost the swimming speed but with De = 1, 2 there
is a fluid elasticity boost, strongest at StrokeDe ∼ 1 and
De ∼ 1 which diminishes for higher StrokeDe and De.
For the burrower, fluid elasticity monotonically hinders
swimming speed.

With this additional information we can revisit Fig.
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1 and examine the local maxima. For the soft kicker,
stroke changes induced by passive dynamics boost the
swimming speed and the high back-front asymmetry ra-
tio indicates a boost from fluid elasticity as well. Both of
these boosts are largest at De ∼ 1. Thus the soft kicker
has a “double-boost”, which may be necessary to get an
advantage from elasticity. The soft burrower gets a boost
from the passive dynamics, also largest at De ∼ 1, but
does not get a boost from the fluid elasticity. A cancel-
lation of these effects leads to a nearly constant speed
for small De with a slight peak at De = 1. The stiff
kicker sees no advantage from passive dynamics (as the
stroke is very close to the prescribed stroke) but does get
a boost from the back-front asymmetry of elastic stress
(again largest at De ∼ 1). This single boost also leads
to a nearly constant speed for small De with a peak at
De = 1. Finally, the stiff burrower has neither boost and
we see a monotonically decreasing swimming speed as a
function of De. With this explanation of the low De be-
havior of the speed ratio we next consider the large De
effect.
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FIG. 4: (a): The ratio of average swimmer speed to that of the
Newtonian swimmer as a function of De, varying stroke type,
bending stiffness on a short time scale. (b) Time evolution of
maximum polymer stress energy for 1 ≤ De ≤ 5, soft kicker.
(color online)

Fig. 1 shows that for De ≥ 2, for all swimmers, the
swimming speed is monotonically decreasing. We can re-
move this large De effect by looking at a short time-scale.
We take the average of the swimming speed after 10 peri-
ods, at which time the speed has effectively equilibrated
for De ≤ 1, but is still changing for larger De. Fig. 4
(a) shows the average speed ratio as a function of De
when the average is taken at this short time-scale. The
swimming speed is monotonically increasing in De for soft
kickers. Soft burrowers and stiff kickers have near con-
stant swimming speeds on short-time scales, while stiff
burrowers are slowed substantially.

On short time-scales there is little change in the size
of the polymer stress, the asymmetry ratio, and the pas-
sive dynamic stroke changes over 1 ≤ De ≤ 5 (data not
shown). These results imply that the early elastic effects
come from the passive dynamic stroke changes and the

polymer stress asymmetries. In Fig. 4 (b) we show the
evolution of the maximum of the polymer stress energy,
and at short times the size of the stress is similar for
1 ≤ De ≤ 5, but there is a 600% increase in stress from
De = 1 to De = 5 at equilibration (similar results hold
for the soft burrower). For stiff swimmers, the maximum
stress energy grows on the same time scale, although
it is between 2 (at De = 1) and 6 (at De = 5) times
larger overall. The increased resistance from these large
elastic stresses that develop on long time-scales swamps
any advantage gained from initial asymmetries in fluid
elasticity, or passive dynamic stroke changes, hindering
swimming speed for large De.

Discussion.– Our model of finite-length undulatory
swimmers shows that while swimming speed depends on
the type of stroke it also depends sensitively on both fluid
elasticity and swimmer elasticity. While fluid elasticity
generically slows swimmers down, a speed boost can be
gained for soft swimmers from passive dynamic stroke
changes and for kickers from favorable asymmetries in the
polymer stress distribution. Soft kickers get both boosts
which results in a viscoelastic speed-up. With only one
boost, stiff kickers and soft burrowers are always hin-
dered by fluid elasticity but only slightly for small De.
Large elastic stresses which develop on long time-scales
for large De slow down swimmers.

We have presented elastic speed-up results for a single
curvature gradient with a fixed amount of body elasticity.
By changing these two parameters one can obtain differ-
ent percent elastic speed-ups (well beyond 25%) with lo-
cal maxima occurring at a range of De. In fact for certain
parameters we see speed-up beyond De = 5, consistent
with the results reported in [12]. Returning to the other
conflicting results of [13] and [14], the stroke used here is
based on the data from [14], and we are able to recover
the results from [13] by simply changing the direction of
the wave. We note that although our Deborah number
is defined slightly differently from [13], there is no signif-
icance to the specific value of De where the speed-up is
maximized, because it depends sensitively on the curva-
ture gradient and the stiffness parameter.

In the model presented here, body stiffness and ap-
plied active moments are both proportional to the body
stiffness parameter kb. Alternately, one could change the
body stiffness and strength of driving moments indepen-
dently to isolate their effects on the resulting stroke. Real
biological systems are much more complicated in that the
driving forces change in response to mechanical, neuro-
logical, or chemical feedback from the environment. For
example, hyperactivated spermatozoan cells exhibit very
different flagellar waveforms and swimming kinematics
than nonactivated cells [21]. Hyperactivation results in
slower swimming in Newtonian fluids, but faster swim-
ming in viscoelastic fluids [22], and it is essential to fer-
tilization [23].

There are similarities between our results and those
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for helical swimmers. Like undulatory swimmers, asymp-
totics show that small pitch angle helical swimmers are
hindered by elasticity [8], but for sufficiently large angle,
fluid elasticity can increase the swimming speed with a
peak near De ∼ 1 [2, 15]. Unlike undulatory swimmers,
the speed-up was observed for infinitely long swimmers.
In [15], they observed stress asymmetries in the angu-
lar direction that appear related to the elastic speed-
up/slow-down, consistent with our observation of the role
of the back-front stress asymmetry.We note that the size
of the boost observed in physical experiments [2] was sub-
stantially greater than in the theoretical result of a rigid
helix [15]. Our results indicate that a passive elastic re-
sponse of the body can provide a significant additional
boost, and this may also be the case for helical swimmers,
but to our knowledge this has not been studied.
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