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Abstract. This paper presents a method for solving the linear semi-implicit immersed

boundary equations which avoids the severe time step restriction presented by explicit-

time methods. The Lagrangian variables are eliminated via a Schur complement to form

a purely Eulerian saddle point system, which is preconditioned by a projection operator

and then solved by a Krylov subspace method. From the viewpoint of projection meth-

ods, we derive an ideal preconditioner for the saddle point problem and compare the

efficiency of a number of simpler preconditioners that approximate this perfect one. For

low Reynolds number and high stiffness, one particular projection preconditioner yields

an efficiency improvement of the explicit IB method by a factor around thirty. Substan-

tial speed-ups over explicit-time method are achieved for Reynolds number below 100.

This speedup increases as the Eulerian grid size and/or the Reynolds number are further

reduced.
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1. Introduction

The Immersed Boundary (IB) method introduced by Peskin [19,20] has been a popular

approach for simulating fluid-structure interactions. Physical variables for the fluid are

discretized on an Eulerian grid while those for the immersed boundary are discretized on a

Lagrangian grid. The fluid satisfies the no-slip condition on the immersed boundary, which

means that the Lagrangian grid points move at a velocity interpolated from the Eulerian

grid. Deformations of the immersed boundary generate elastic forces which are transmitted

to the fluid through a forcing term added to the governing equations of fluid dynamics. In

this manner the IB method provides much flexibility in modeling the coupling between the

Eulerian and Lagrangian variables, since explicitly enforcing boundary conditions at the

fluid-structure interface is avoided.

∗Corresponding author. Email addresses: qinghai�math.utah.edu (QH. Zhang),

guy�math.udavis.edu (R.D. Guy), philipb�ornl.gov (B. Philip)

http://www.global-sci.org/nmtma 1 c©200x Global-Science Press



2 NM

The popularity of the IB method is partly due to its simplicity. In a typical explicit-time

method, the Eulerian velocity and pressure fields are updated for a fixed configuration

of the immersed structure, and then the position of the Lagrangian structure is updated

from the newly computed velocity field. This approach effectively decouples the Eulerian

and Lagrangian equations, and solvers are needed only for the Eulerian equations (i.e.,

the incompressible Stokes or Navier-Stokes equations), for which fast Cartesian grid so-

lution methods are available. The implementation is straightforward since it only entails

augmenting one’s favorite fluid solver with the IB forcing term. Nonetheless, when an

elastic boundary becomes stiff, explicit-time IB methods suffer from either instability or

restrictively small time steps.

To remedy the severe time step restriction of explicit IB methods, a number of implicit

and semi-implicit schemes have been developed. However, their implementation is much

more involved and is a subject of ongoing research; see for example [3, 4, 11, 13, 15–18,

22, 24] and references therein. These methods are centered at answering two essential

questions:

(A) How does stiffness affect the stability of the numerical solver?

(B) How to efficiently solve the discretized equations that are highly stiff?

Clearly these two questions are closely related. It had been commonly believed that

only fully implicit discretizations could produce an unconditionally stable IB method until

the work of Newren et. al. [17]. They showed that semi-implicit versions of backward Euler

and Crank-Nicolson schemes can be made stable so long as the spreading and interpolation

operators are evaluated at the same time instant and the same spatial location. When this

is satisfied, the total energy of the numerical system does not increase over time even if the

evaluation of the spreading and interpolation operators are lagged in time. This conclusion

not only answers question (A), but also partially answers question (B), since the lagged

evaluation of the spreading and interpolation operators opens up exciting possibilities of

unconditionally stable discretizations via linear systems.

Many implicit methods use a Schur complement approach to reduce the coupled Euler-

ian-Lagrangian equations to purely Lagrangian equations [3,4,16]. These methods achieve

a substantial speed-up over explicit methods when there are relatively few Lagrangian

mesh nodes. In addition, some methods require that the boundaries be smooth, closed

curves [13]. An open question is whether there exist robust, general-purpose implicit

methods that are more efficient than explicit methods, or whether specialized methods

must be developed for specific problems.

Newren et al. [18] studied the efficiency of a group of semi-implicit linear solvers based

on double Schur complement. Depending on the parameters of the tests, their semi-implicit

linear solvers were between two times slower and two times faster than the explicit IB

method. However, those results were obtained without preconditioning. With appropriate

preconditioning, we expect that this approach will offer a significant improvement over

explicit methods. In [11], we developed a geometric method for a model of the implicit IB

equations which included the viscous terms and immersed boundary terms, but it ignored
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the pressure and the incompressibility constraint. This multigrid method was an excellent

preconditioner for the model problem.

This paper addresses question (B) as a followup of our previous work in [11, 17, 18].

By eliminating the IB variables via a Schur complement, we formulate the IB equations as a

saddle point problem of the fluid variables. It is well-known that the efficiency of solving a

saddle point problem depends largely on preconditioning. As pointed out by Benzi, Golub,

and Liesen [2], there does not exist a “best” preconditioner for saddle point problems in a

general sense, and frequently efficient preconditioners are designed by accounting for the

physics of the specific problem. Indeed, general preconditioners based on purely algebraic

techniques such as the incomplete LU factorization are found to perform poorly in the

context of incompressible flows.

One possible way to form a preconditioner for the IB saddle point problem is through

projection methods which decouple the equations for the velocity and the pressure. This

decoupling allows us to use the multigrid method from [11] because the equation to solve

the velocity has the same form as that in the model problem for which the algorithm was

developed. Although projection methods are not efficient solvers for the IB equations [18],

they might lead to excellent preconditioners. It is not a new idea to first precondition a sad-

dle point problem with a projection preconditioner and then solve it by a Krylov subspace

method. For example, Griffith [9] has successfully applied a projection preconditioner in

solving the single-phase Navier-Stokes equations with general boundary conditions. How-

ever, as far as we know, this strategy has not been explored for IB methods.

Utilizing the stable discretization in [17], we derive an ideal † preconditioner for the IB

saddle point linear system from the viewpoint of projection methods. However, this prefect

preconditioner is prohibitively expensive to apply, and so, we perform efficiency studies

for a number of preconditioners that approximate this ideal one. Finding an effective

projection preconditioner for all regimes of Reynolds numbers proved to be difficult. By

truncating a matrix series, we find a projection preconditioner that leads to a substantial

efficiency improvement over the explicit IB method for low Reynolds number and high

stiffness.

The rest of this paper is organized as follows. In Section 2, we briefly review the IB

method, the adverse influence of stiffness on the stability of the explicit IB method, and

an implicit discretization scheme that is unconditionally stable. In Section 3, we formulate

a generic saddle point framework from the viewpoint of projection methods, derive the

ideal preconditioner, and approximate it by truncating a matrix series. Numerical tests

performed in Section 4 show that the proposed method with a simple preconditioner is

much more efficient than the explicit IB method in the case of stiff boundaries and large

viscosity. Section 5 finally concludes this paper.

†It is ideal in the sense that the preconditioned linear system always converges after two GMRES iterations.
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2. Analysis

In a bounded domain Ω ⊂ RD, we numerically solve the incompressible Navier-Stokes

equations with an immersed boundary Γ:

∇ ·u = 0, (2.1a)

∂ u

∂ t
+u · ∇u= f−∇p+µ∆u, (2.1b)

f(x, t) =

∫

Γ

F(s, t)δ(x−X(s, t))ds, (2.1c)

F(s, t) = A f (X(s, t), t) , (2.1d)

∂ X(s, t)

∂ t
= u (X(s, t), t) =

∫

Ω

u(x, t)δ(x−X(s, t))dx, (2.1e)

where t is time, x the location, u the velocity field, p the pressure, µ = 1/Re the kinematic

viscosity, and Re the Reynolds number. The IB Γ is parameterized by s and X(s, t)’s are

the Lagrangian points that discretize Γ. f(x, t) is the body force exerted on the fluid while

F(s, t) is the internal IB force along Γ. The force generator A f represents the constitutive

law of Γ and its form depends on specific applications. Three most common types are

tethering, stretching, and bending. In the case of stretching, we assume that the IB Γ

behaves like an elastic fiber [21] so that

F(s, t) =
∂

∂ s

�

T (s, t)τ(s, t)

�

, (2.2)

where the tangent vector τ is

τ(s, t) =
∂ X

∂ s

Â




∂ X

∂ s






, (2.3)

and the tension T (s, t) obeys the Hooke’s law

T (s, t) = γ

�




∂ X

∂ s





− L0

�

. (2.4)

Throughout this work it is assumed that the resting length L0 = 0 so that F(s, t) = γ ∂
2X

∂ s2 ,

i.e. the force generator is time-independent and has the linear form

A f = γ
∂ 2

∂ s2
, (2.5)

where γ is the stiffness coefficient.

For (2.1) to be well-posed, the initial condition of Γ, the initial condition and boundary

conditions for u are needed. The initial condition and the boundary conditions for pressure

are unnecessary up to an additive constant. Throughout this work, we assume periodic
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boundary conditions. Note that this is not restrictive for practical applications as a wall

boundary can be simulated by adding to a periodic domain an additional line of IB points.

The IB method couples the Eulerian grid and the Lagrangian grid through the following

spreading and interpolation operators

S(F(s, t)) =

∫

Γ

F(s, t)δ(x−X(s, t))ds, (2.6)

S∗(u(x, t)) =

∫

Ω

u(x, t)δ(x−X(s, t))dx. (2.7)

It follows that (2.1c) and (2.1e) can be rewritten as

f(x, t) = S
�

A f X
�

, (2.8)

∂ X(s, t)

∂ t
= S∗ (u (x, t)) . (2.9)

The two operators are adjoint in the sense that

〈S(F(s, t)),u(x, t)〉Ω =


F(s, t),S∗(u(x, t))

�

Γ ,

where the inner products are defined on L2(Ω) and L2(Γ), respectively. The total energy

of the system can then be expressed as

E[u,X] = 〈u,u〉Ω +
¬

−A f X,X
¶

Γ
. (2.10)

2.1. The adverse effect of stiffness on stability

An explicit temporal discretization of (2.1) without the convection term yields

∇ · un+1 = 0, (2.11a)

un+1 − un

∆t
= SnA f Xn−∇p+µ∆un+1, (2.11b)

Xn+1 = Xn+∆tS∗nun+1. (2.11c)

Here the word “explicit” refers to the treatment of the body force f = SA f X, despite the

fact that the diffusion term is treated implicitly in time.

Following Newren et al. [17], we have

¬

2un+1,un+1 − un
¶

Ω
= 2∆t
¬

un+1,µ∆un+1 −∇p+ SnA f Xn
¶

Ω
(2.12a)

= 2∆tµ
¬

un+1,∆un+1
¶

Ω
+ 2∆t
¬

un+1,SnA f Xn
¶

Ω
, (2.12b)

where we have used the fact that a scalar ψ and a divergence-free vector u on periodic

domains satisfy
∫

Ω

∇ · (ψu) = 0 ⇒


u,∇ψ
�

Ω = 0.
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Also,

¬

Xn+1 −Xn,−A f (X
n+1 +Xn)
¶

Γ

=∆t
¬

S∗nun+1,−A f (2Xn+∆tS∗nun+1)
¶

Γ

=2∆t
¬

S∗nun+1,−A f Xn
¶

Γ
+∆t2
¬

S∗nun+1,−A f S∗nun+1)
¶

Γ
. (2.13)

Hence the increase of the total energy within one time step for (2.11) is

E[un+1,Xn+1]− E[un,Xn]

=
¬

un+1 − un,un+1 + un
¶

Ω
+
¬

Xn+1,−A f Xn+1
¶

Γ
−
¬

Xn,−A f Xn
¶

Γ

=
¬

un+1 − un,−un+1 + un
¶

Ω
+
¬

un+1 − un, 2un+1
¶

Ω
+
¬

Xn+1 −Xn,−A f (X
n+1 +Xn)
¶

Γ

=−
¬

un+1 − un,un+1 − un
¶

Ω
+ 2∆tµ
¬

un+1,∆un+1
¶

Ω
+∆t2
¬

S∗nun+1,−A f S∗nun+1
¶

Γ
,

(2.14)

where we have applied the adjointness of S and S∗,

2∆t
¬

un+1,SnA f Xn
¶

Ω
+ 2∆t
¬

S∗nun+1,−A f Xn
¶

Γ
= 0. (2.15)

The first two terms in (2.14) are negative-definite. (2.5) implies the negative-definiteness

of A f , hence the last term is positive-definite. Asymptotically speaking, the last term is

much smaller than the other terms. However, when the immersed boundary is stiff, i.e. γ

is large, the magnitude of the last term might dominate the first two terms. Consequently,

the increase of the total energy during a time step might be positive. To maintain numeri-

cal stability, ∆t has to be small enough so that the total energy of the discrete system does

not increase over time. This explains the adverse effect of high stiffness on the stability of

explicit IB methods.

2.2. An implicit discretization

Applying the backward Euler method to the time integration of both velocity and the

IB points, we have the following implicit discretization [17] of (2.1):

∇ · un+1 = 0, (2.16a)

un+1 − un

∆t
= SnA f Xn+1 −∇p+µ∆un+1, (2.16b)

Xn+1 = Xn+∆tS∗nun+1. (2.16c)

Again, “implicit” refers to the treatment of the position of Lagrangian IB markers, not that

of the diffusion. Note that the only difference between (2.11) and (2.16) is the change of

Xn to Xn+1 in the momentum equation, which adds a new term to (2.12):

¬

2un+1,un+1 − un
¶

Ω
=2∆tµ
¬

un+1,∆un+1
¶

Ω
+ 2∆t
¬

un+1,SnA f Xn
¶

Ω

+ 2∆t2
¬

un+1, SnA f S∗nun+1
¶

Ω
(2.17)
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Figure 1: The staggered Eulerian grid. The pressure p is loated at the ell enters marked by ◦'s while
the veloity omponents u, v the edge enters marked by ×'s.

Applying (2.17), (2.15), and (2.13) to (2.10), the energy increase of one time step for

(2.16) is then

E[un+1,Xn+1]− E[un,Xn]

=
¬

un+1 − un,−un+1 + un
¶

Ω
+
¬

un+1 − un, 2un+1
¶

Ω
+
¬

Xn+1 −Xn,−A f (X
n+1+Xn)
¶

Γ

=−
¬

un+1 − un,un+1 − un
¶

Ω
+ 2∆tµ
¬

un+1,∆un+1
¶

Ω
−∆t2
¬

S∗nun+1,−A f S∗nun+1
¶

Γ
.

(2.18)

Note how the last term has become negative-definite due to the change of Xn to Xn+1.

Now that all terms in (2.18) are negative-definite, clearly the implicit IB method (2.16) is

total energy diminishing. Also, changing Sn and S∗n to Sn+1 and S∗n+1 does not affect this

statement.

Although first-order temporal discretizations are used for the exposition, we empha-

size that the analysis in this section generalizes in a straight-forward way to second-order

temporal discretizations such as the Crank-Nicolson scheme.

3. Algorithms

As discussed in Section 1, obtaining a discretization is one problem, how to solve the

resulting linear system efficiently is another. This section discusses the latter.

3.1. Spatial discretization on staggered grids

A staggered Eulerian grid is used to store discrete variables of the flow phase. Referring

to Figure 1, the discrete divergence D, the discrete gradient G, and the discrete Laplacian

L ‡ are defined as

(Du)i, j =
ui+ 1

2
, j − ui− 1

2
, j

h
+

vi, j+ 1

2
− vi, j− 1

2

h
, (3.1)

(Gp)i+ 1

2
, j =

pi+1, j − pi, j

h
, (Gp)i, j+ 1

2
=

pi, j+1 − pi, j

h
, (3.2)

‡We use boldface fonts for discrete operators acting on the quantities over the Eulerian grid and normal fonts

for those over the Lagrangian grid.
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(Lp)i, j =
pi+1, j + pi−1, j − 2pi, j

h2
+

pi, j+1 + pi, j−1 − 2pi, j

h2
, (3.3)

where h is the uniform spacing of the Eulerian grid. It follows that L= DG.

To numerically implement the spreading and interpolation operators (2.6) and (2.7),

we replace the delta function with a regularized discrete delta function presented in [19],

δh(x) = δh(x , y) = δh(x)δh(y), (3.4)

δh(x) =

(
1

4h

�

1+ cos πx

2h

�

|x | ≤ 2h,

0 |x |> 2h,
(3.5)

where δh(x) has a compact support of 4h, and this localizes the communication between

the Eulerian and the Lagrangian grids. As another important feature of δh(x), the La-

grangian IB force is entirely transmitted to the Eulerian grid. Equation (3.4) leads to a

discrete version of the spreading operators,

S(Fu)i+ 1

2
, j =
∑

k

Fu
k
δh(xi+ 1

2
, j −Xk)∆s, (3.6a)

S(F v)i, j+ 1

2
=
∑

k

F v
kδh(xi, j+ 1

2
−Xk)∆s, (3.6b)

and the interpolation operators,

S∗(u)k =
∑

i, j

ui+ 1

2
, jδh(xi+ 1

2
, j −Xk)h

2, (3.7a)

S∗(v)k =
∑

i, j

vi, j+ 1

2
δh(xi, j+ 1

2
−Xk)h

2. (3.7b)

Here F= (Fu, F v) and u = (u, v)T . ∆s is the spacing of the Lagrangian grids. The subscript

k denotes the index of the Lagrangian IB points. With cyclic indexing, the discrete force

generator is

(A f X)k =
γ

∆s2

�
Xk+1+Xk−1− 2Xk

�
(3.8)

Both (3.6) and (3.7) can be expressed as one equation if different components of the

velocity vector and the force vector collocate at the cell center. In contrast, on staggered

grids the actions of spreading and interpolation are different for the same IB because the

components of a vector to be spreaded and interpolated are at different locations. Con-

sequently, the corresponding matrices for the same operator are different for the vector

components.

Despite the additional complexity of the discrete spreading and interpolation operators,

we still strongly favor the staggered grid over the collocation grid because the projection

operator as in (3.10) satisfies the idempotent condition. Consequently, volume conserva-

tion on staggered grids is much better than that on cell-centered grids; this is confirmed by

our numerical results.
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3.2. A projection solver for the explicit discretization

In 1968, Chorin [6] introduced the projection method with first-order accuracy for the

incompressible Navier-Stokes equations. Since then, projection methods have been widely

used in computational science and engineering. Meanwhile many variants with second-

order accuracy have been developed; some successful examples are those of Kim and Moin

[14], Bell et al. [1], and E and Liu [7]. The first author of this paper also proposed a

fourth-order approximate projection methods on locally-refined periodic domains [25].

Chorin’s projection method first computes an auxiliary velocity field u∗ from the mo-

mentum equation by ignoring the pressure gradient term and then project u∗ onto the

divergence-free space to fulfill the incompressibility constraint. Apply this approach to the

explicit temporal discretization (2.11) and we have

u∗ − un

∆t
= µLu∗ + SnA f Xn, (3.9a)

un+1 = Pu∗, (3.9b)

Xn+1 = Xn+∆tS∗nun+1, (3.9c)

where the discrete projection operator

P = I−GL−1D (3.10)

extracts the solenoidal component un+1 from the vector field u∗. On staggered periodic

grids, the discrete operators defined in the previous section satisfy D = −GT , L = DG, so

that P is idempotent, i.e. P2 = P. By (3.9) and (3.10), the divergence-free velocity un+1

can be obtained by first solving an elliptic system for a scalar field φ and then subtracting

from the intermediate velocity u∗ a scaled gradient of φ:

Lφ =
1

∆t
Du∗, (3.11a)

un+1 = u∗ −∆tGφ; (3.11b)

hence the projection method can be regarded as a fractional-stepping method.

3.3. Projection Method Preconditioning

Projection methods provide a means of decoupling the equations for the velocity and

the pressure. In most cases, the velocity and pressure from the projection method are not

identical to the velocity and pressure that would result from solving the unsplit system.

In [9], Griffith showed that projection methods can be very effective preconditioners for

solving the unsplit system using Krylov methods. To understand how to use projection

methods to precondition the fully coupled system of equations, we begin with the unsplit

system of equations for the velocity and pressure:

un+1 − un

∆t
+Gp = µLun+1 + f, (3.12a)

Dun+1 = 0. (3.12b)
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This system of equation can be rearranged and expressed as the block matrix equation

�

BL ∆tG

−∆tD 0

��

un+1

p

�

=

�

N

0

�

, (3.13)

where

BL = I−µ∆tL, and N= un +∆tf.

Note that the divergence constraint has been scaled by−∆t to make the matrix symmetric.

Similar to the projection method algorithm, we introduce the change of variables

un+1 = u∗ −∆tGφ, (3.14a)

p = Yφ, (3.14b)

where the matrix Y maps φ to the pressure and is to be determined. By substituting

this change of variables into (3.13), we arrive at a system of equations for the auxiliary

variables �

BL −∆tBLG+∆tGY

−∆tD ∆t2DG

��

u∗

φ

�

=

�

N

0

�

. (3.15)

If it is possible to choose Y so that

−BLG+GY= 0, (3.16)

the change of variables results in a block-lower-triangular system

�

BL 0

−∆tD ∆t2DG

��

u∗

φ

�

=

�

N

0

�

, (3.17)

in which one can solve for u∗ and φ sequentially. The inverse of this matrix can be ex-

pressed as

�

BL 0

−∆tD ∆t2DG

�−1

=

�

I 0

0 1

∆t2 (DG)−1

��

I 0

∆tD I

��

B−1
L 0

0 I

�

. (3.18)

Reading these operators from right to left, they correspond to solving for u∗, taking the

divergence of u∗, and solving a Poisson equation for φ. Therefore, solving this system

for the auxiliary variables and then recovering the velocity and pressure using (3.14) is

algebraically equivalent to the projection method described in the previous section. Thus,

projection methods exactly solve the system (3.17) which approximates the system (3.15).

The difference between the solutions of the two systems depends on how closely (3.16)

can be satisfied by an appropriate choice of Y.

Perhaps the simplest choice is Y= I, which corresponds to the pressure update in early

projection methods. A better choice for Y is motivated by equation (3.16). If one assumes
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that BL commutes with G, then equation (3.16) is satisfied exactly with Y = BL
§. For

domains with periodic boundaries BL does commute with G [25, Lemma 4], in which case,

a projection method with Y= BL exactly solves the unsplit system (3.12).

For other boundary conditions, BL commutes with G at the interior points, but not at

points near the boundary. In this case the choice Y = BL only approximately satisfies (3.16),

and the projection method alone gives an approximate solution to (3.12). In [9], Griffith

showed that a projection method with Y= BL is a very effective preconditioner for solving

the unsplit system using a Krylov method for general boundary conditions. Combining

(3.18) and (3.14) the projection method preconditioner can be expressed algebraically as

Pproj =

�

I −∆tG

0 Y

�

︸ ︷︷ ︸

transform to original variables

�

I 0

0 1

∆t2 (DG)−1

��

I 0

∆tD I

��

B−1
L 0

0 I

�

︸ ︷︷ ︸

projection method algorithm

. (3.19)

We adapt this same idea to the implicit-time immersed boundary equations in the next

section.

3.4. Implicit-time Scheme

We begin with implicit-time scheme from equations (2.16) and use equation (2.16c) to

eliminate Xn+1 from equation (2.16b) to arrive at the system

∇ · un+1 = 0, (3.20a)

un+1 − un

∆t
=∆tSnA f S∗nun+1 −∇p+µ∆un+1+ SnA f Xn. (3.20b)

We replace the differential operators with their discrete counterparts and express the re-

sulting linear system as the matrix equation

A

�

un+1

p

�

=

�

B ∆tG

−∆tD 0

��

un+1

p

�

=

�

N

0

�

, (3.21)

where A is the saddle point matrix and

B= BL − J, J=∆t2SnA f S∗n. (3.22)

This linear system has exactly the same algebraic form as equation (3.13), except that the

operator B includes contributions from both the viscous terms and the immersed boundary

terms.

The operator B only differs from BL at grid points around the immersed boundary

which is a set of codimension one. Thus, it is reasonable to try as a preconditioner

Pproj =

�

I −∆tG

0 Y

��

I 0

0 1

∆t2 (DG)−1

��

I 0

∆tD I

��

B−1 0

0 I

�

, (3.23)

§We note that this is a slight abuse of notation because BL is an operator on vector fields, and Y is an operator

on scalar fields. However, BL is block-diagonal with the same operator on the diagonal. One can interpret the

scalar version as one of those blocks.
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which is equivalent to (3.19) with B in place of BL.

To determine the “ideal” form of Y, left-multiply Pproj to (3.21), and the matrix on the

left side of this equation becomes

Pproj

�

B ∆tG

−∆tD 0

�

=

�

I V

0 W

�

,

where V= −∆t
¦

B−1G+GL−1DB−1G
©

and

W= YL−1DB−1G. (3.24)

Ideally, the choice of Y should make W close to an identity matrix, which can be accom-

plished with the choice

Y =
�

DB−1G
�−1

DG. (3.25)

However, the construction of Y is prohibitively expensive, and the application of Y involves

solving two nontrivial linear systems. We are thus interested in an efficient approximation

of Y.

3.4.1. Series Approximations

Consider the following series expansion for B−1:

B−1 = (BL − J)−1 = B−1
L

�

I− JB−1
L

�−1
= B−1

L

∞∑

k=0

�

JB−1
L

�k
. (3.26)

Approximate B−1 with the very first term in the above expansion and we have

(BL − J)−1 ≈ B−1
L ,

which, together with (3.25), yields an approximation to the ideal Y,

Y≈ BL. (3.27)

Note that we have used the commutativity of BL and G on periodic domains.

Note that this form of Y is exactly the same as that used for projection method pre-

conditioning without the immersed boundary. In an effort to include some effect of the

immersed boundary, we consider the approximation to B−1 with the first two terms in the

expansion (3.26):

B−1 = (BL − J)−1 ≈ B−1
L + B−1

L JB−1
L = (I+ B−1

L J)B−1
L .

Substituting the above into (3.25)

�

DB−1G
�−1

DG ≈
�

D(I+ B−1
L J)B−1

L G
�−1

DG

= BL

�

I+ (DG)−1DB−1
L JG
�−1

≈ BL

�

I− (DG)−1DB−1
L JG
�

= BL − (DG)−1DJG.
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Our second approximation of the ideal Y is thus

Y≈ BL − (DG)−1DJG. (3.28)

In the above manipulations, we used the fact that BL commutes with D and G, and we

assumed that

(DG)−1DB−1

L JG

< 1. While this last assumption may not be valid for large

elastic stiffness, we are seeking an approximation to produce an effective preconditioner

which does not require convergence of these series.

3.4.2. Diagonal Approximations

We introduce two more choices for Y that include the immersed boundary by introducing

an scalar version of the operator B. The operator B acts on vector fields while the operator

Y acts on scalar fields. We will define BS = (Bu + Bv)/2 as scalar version of B, where Bu

and Bv are the diagonal blocks of B. By assuming that

B−1G≈ GB−1
S , (3.29)

equation (3.25) generates our approximation

Y ≈ BS. (3.30)

Finally, we approximate B−1 in equation (3.25) by B̂−1
S where B̂S = diag(BS). Our final

approximation to Y to explore is

Y≈
�

DB̂−1
S G
�−1

DG. (3.31)

3.4.3. Summary

Above we have presented a formula for the “ideal” form of pressure update Y for precondi-

tioning and four different approximations to it given by equations (3.27), (3.28), (3.30),

and (3.31). In the next section we test these five different choices for Y along with Y = I,

because this is sometimes used in projection methods. In summary, the choices of Y we

test are

Y(1): Y=
�

DB−1G
�−1

DG,

Y(2): Y= BL = I−µ∆tDG,

Y(3): Y= BL − (DG)−1DJG,

Y(4): Y= BS ,

Y(5): Y=
�

DB̂−1
S G
�−1

DG,

Y(6): Y= I.
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To solve the fully coupled system (3.21) we use GMRES with right preconditioning

with the projection method preconditioner defined by (3.23). The relative convergence

criteria is set to 10−8. Note that the application of the preconditioner involves inverting

the matrix B= I−µ∆tL−∆t2SnA f S∗n. For this step we use the multigrid method we devel-

oped in [11]. The only difference is that the smoother in this work uses block relaxation

instead of point relaxation for a better efficiency of damping high-frequency modes at the

IB [12]. Each block contains 5× 5 control volumes with an overlap of one control volume

in each direction. Within one full multigrid cycle, one presmooth and one postsmooth are

performed. Unlike the approach in [12], the smoothing is applied to pressure and differ-

ent components of the velocity field separately. Due to the staggered grids, the forms of

the prolongation operator and the restriction operator differ for pressure and each velocity

components [23]. For efficiency we approximate the application of B−1 and (DG)−1 by a

single F-cycle of multigrid, which is similar to the approach in [9].

4. Tests

A commonly used test problem for immersed boundary methods involves a circular

membrane under tension, which is initially stretched in one direction and is then allowed to

relax [4,13,15,16,22,24]. In this problem, stiffer structures result in faster fluid velocities,

and hence the physical time scale is set by the choice of elastic stiffness. However, for

efficiency comparison of the explicit method to the proposed method, it is more suitable to

use a test problem in which the physical time scale is set by the background flow, not by

the stiffness of the structure. In other words, the time step sizes of the test problem should

be solely constrained by the stiffness of the immersed structure. To this end, we choose

to simulate the forced double-gyre test [10] with the convection term dropped from the

governing equations. We nonetheless use Courant number as the measure of time-step

sizes so that our results are applicable to the case with the convection terms included. We

also restrict Courant numbers to be less than one in the tests since a typical explicit-time

discretization of the convection terms would have the same restriction on the time-step

sizes.

Out of the different choices of Y, it is found that Y(2) = BL is the best choice for

constructing the projection preconditioner.

4.1. Forced Double-Gyre Flow

Consider the double-gyre flow field given by

uss =

�

+ sin(2πx) cos(2πy)

− cos(2πx) sin(2πy)

�

. (4.1)

Following [10], an additional forcing of the background flow is added to the RHS of (2.1b)

as

fbg = −(1− e−t)µ∆uss, (4.2)
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Table 1: Errors and onvergene rates of the proposed method for the double gyre test. Re=1, γ = 5,
C r = 0.5. Sine no analyti solution is available, the onvergene rates are alulated by Rihardson

extrapolation with an error de�ned as the di�erene of the results on two adjaent grids. For example,

the olumn titled

1

32
�

1

64
represents the di�erene between the 322

grid and the 642
grids. To alulate

the onvergene rate of the IB points on two adjaent grids, we �rst onnet the IB points to form

two polygons and then ompute the volume of the exlusive disjuntion of the two polygons using

algorithms from omputational geometry. Note that this algorithm for evaluating the errors of IB points

is su�iently aurate beause (1) both the expeted and the atual onvergene rates of IB points are

one due to the �rst-order auray of the veloity, (2) the representation of 2D regular semi-analyti

sets with polygons is seond-order aurate.

h 1

16
− 1

32
rate 1

32
− 1

64
rate 1

64
− 1

128
rate 1

128
− 1

256

u L1 2.88e-2 1.00 1.44e-2 1.00 7.20e-3 1.00 3.60e-3

u L2 3.86e-2 1.00 1.93e-2 1.00 9.65e-3 1.00 4.83e-3

u L∞ 1.28e-1 0.73 7.76e-2 0.76 4.58e-2 0.80 2.63e-2

v L1 2.76e-2 1.12 1.27e-2 1.04 6.18e-3 1.00 3.09e-3

v L2 3.49e-2 1.14 1.58e-2 1.05 7.63e-3 0.99 3.84e-3

v L∞ 8.54e-2 0.68 5.33e-2 0.75 3.17e-2 0.77 1.86e-2

p L1 1.27 0.90 0.68 1.05 0.33 0.96 0.17

p L2 1.91 0.56 1.30 0.70 0.80 0.50 0.56

p L∞ 9.82 -0.08 10.38 0.20 9.04 -0.10 9.68

X L1 8.52e-3 0.99 4.28e-3 0.72 2.61e-3 1.05 1.26e-3

which is chosen to drive the steady flow of uss as t →∞ in the absence of the immersed

boundary.

We use the implicit IB method proposed in the previous section to solve the saddle point

problem (3.21) with the projection preconditioner (3.19) with Y = BL to advance (2.1)

from the initial condition u(t0 = 0,x) = 0 to te = 2 on a unit periodic domain [0,1]×[0,1].

Figure 2 illustrates the interaction between the IB and the background flow. To verify the

correctness of the program, a refinement study is carried out on five successively refined

grids and the results are shown in Table 1, where the first-order convergence on velocity is

clearly demonstrated; note that the L1 and L2 convergence rates of velocity are limited to

one by the temporal discretization of backward Euler. Furthermore, Table 1 demonstrates

first-order convergence rates of IB points in 1-norm and confirms the known fact [5] that

the pressure computed by IB methods has O(1) error in max-norm, is first-order accurate

in 1-norm, and is half-order accurate in 2-norm. We also note that the explicit IB method

discussed in Section 3.2 is also used to perform the same tests, and its results differ from

those in Table 1 for only a fraction of one percent.

The results shown in Table 1 and Figure 2 are obtained using the proposed method

with Y = BL as the choice of the projection preconditioner. For the same test problem, we

also compare the effectiveness of the six choices of Y. The numbers of iterations of GMRES

with different choices of Y are shown in Figure 3, from which we make the following

observations.
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• The iteration number for Y(1) (the ideal choice of Y) is equal or less than 2 for all

cases. This confirms the validity of the derivation in Section 3.4. and verifies the

correctness of the program.

• Aside form Y(1), the best choice of Y appears to be either Y(2) or Y(3), which are

based on the series expansion.

• The iteration numbers for Y(2) and Y(3) decreases as Reynolds number decreases.

Indeed,

JB−1

L


 decreases as µ increases, and consequently B−1 in (3.26) are better

approximated by taking the first term or the first two terms in the series expansion.

• The simple pressure update of the identity is almost always the worst choice.

4.2. Efficiency of the Implicit Method

For the same setup with Reynolds numbers Re=0.1, 1, 10, 102, 103, and stiffness

coefficients γ = 1,10,102, 103, 104, 105, we list the values of C r
exp
max, the maximum stable

Courant numbers, for the explicit IB method in Table 2. For fixed h and Re, C r
exp
max becomes

smaller as γ gets bigger; this confirms the analysis in Section 2.1 that a stiffer IB requires

a smaller time step size so as to maintain numerical stability of the explicit IB method.

For fixed γ and Re, C r
exp
max becomes smaller as h is reduced. This is not surprising since a

smaller h with the same γ implies a stiffer problem. For a given h, the Reynolds number

does not appear to have a substantial influence on C r
exp
max for stiff IBs. The values of C r

exp
max

for tests different from the forced double-gyre flow are also calculated and found to be

qualitatively the same as those in Table 2.

The similarity between (3.13) and (3.21) is amenable to comparing the efficiency of the

proposed implicit IB method to that of the explicit IB method. More specifically, we replace

B−1 by B−1
L in (3.19), choose Y = BL, and use the corresponding Pproj to precondition

(3.13) before solving it by GMRES. Because multigrid is a very efficient solver for this

problem, it makes an excellent preconditioner, and GMRES always converges within two

or three iterations [8]. This formulation of the explicit method enables the iteration counts

of GMRES to be the single metric for the efficiency comparison as it is independent of

machine-specifics such as CPU speed.

In the numerical test, the explicit and implicit IB methods are advanced for ntest time

steps with C r = C r
exp
max and C r = 1, respectively. Let N

exp

i
and N

imp

i
be the iteration counts

of the explicit and implicit IB methods for the ith step, respectively, the speedup of the

explicit IB method by the implicit IB method can be measured by the ratio of the averaged

iteration count of the former to that of the latter:

Rsp =

∑ntest

i=1 N
exp

i

C r
exp
max

∑ntest

i=1
N

imp

i

. (4.3)

The values of Rsp for the double-gyre tests are shown in Table 3 for Y = BL. When

the immersed boundary has low stiffness (γ = 100, 101, 102), the efficiency advantage of
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Table 2: The maximum Courant numbers for the expliit method (3.13). They are determined by the

riterion that (3.13) runs stably for 100 time steps while a 10% inrease would yield instability within

the same number of time steps. Alternatively, they an be omputed via the inequality that maximum

eigenvalue of the operator orresponding to the expliit method be less than one. The maximum

di�erene between the results of these two approahes is less than 5%.

γ= 100 γ = 101 γ= 102 γ = 103 γ= 104 γ= 105

Re=0.1 1.00 1.00 6.83e-1 1.12e-1 1.03e-2 1.85e-3

Re=1 1.00 7.51e-1 1.02e-1 1.83e-2 4.37e-3 1.26e-3

h= 1

32
Re=10 9.09e-1 1.80e-1 4.74e-2 1.37e-2 3.96e-3 1.26e-3

Re=102 4.67e-1 1.35e-1 3.91e-2 1.25e-2 3.96e-3 1.26e-3

Re=103 4.24e-1 1.23e-1 3.91e-2 1.25e-2 3.96e-3 1.26e-3

Re=0.1 1.00 1.00 6.83e-1 8.39e-2 9.37e-3 1.53e-3

Re=1 1.00 7.51e-1 9.23e-2 1.51e-2 3.28e-3 9.51e-4

h= 1

64
Re=10 9.09e-1 1.49e-1 3.56e-2 9.37e-3 2.97e-3 9.47e-4

Re=102 3.51e-1 9.23e-2 2.94e-2 9.37e-3 2.97e-3 8.65e-4

Re=103 2.90e-1 9.23e-2 2.94e-2 9.37e-3 2.97e-3 8.65e-4

Re=0.1 1.00 1.00 6.83e-1 8.39e-2 9.37e-3 1.27e-3

Re=1 1.00 7.51e-1 9.23e-2 1.25e-3 2.71e-3 7.15e-4

h= 1

128
Re=10 8.26e-1 1.23e-1 2.67e-2 7.04e-3 2.04e-3 6.47e-4

Re=102 2.63e-1 6.93e-2 2.01e-2 6.40e-3 2.04e-3 6.47e-4

Re=103 1.98e-1 6.30e-2 2.01e-2 6.40e-3 2.04e-3 6.47e-4

the proposed projection-preconditioning approach is not obvious. In particular, explicit

IB method is even faster for γ = 100. However, as the stiffness increases, the efficiency

improvement of the proposed method becomes more prominent. We also performed a

subset of these test cases on an even finer grid with h = 1

256
. As shown in Table 4, the

choice of Y = BL yields a speedup of 29.6 for the highest stiffness of γ = 105 and the

lowest Reynolds number Re=0.1.

Besides Y(2), the only other competitive choice of Y was Y(3) (results not shown). For

most cases of γ = 104, 105 and Re<10, our numerical results show that Y(3) performs

slightly better than Y(2) for large grid sizes h= 1

32
, 1

64
, as shown in Figure 3(a). This is not

a surprise. The test cases with large grid sizes correspond to a large ratio of the number

of interface cells to that of all cells; thus we expect that a preconditioner that incorporates

some effects from the boundary would perform better. However, as the grids are refined,

the ratio of the number of interface cells to that of all cells becomes smaller and smaller

for a given test. Consequently in our numerical tests, the values of Rsp for Y(2) increases

while those for Y(3) decreases. Considering the additional expense of applying (DG)−1

in preconditioning with Y(3), we prefer to use Y(2) = BL in constructing the projection

preconditioner. Nonetheless, the grid size of any numerical simulation is nonzero. If a test

has many immersed structures, then a preconditioner that incorporates the effects of the
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Table 3: Ratio of the averaged iteration ount of the expliit IB method to that of the impliit IB

method for the double gyre test. Y = BL. n
test

= 20.

γ= 1 γ = 10 γ = 102 γ= 103 γ= 104 γ= 105

Re=0.1 0.6 0.3 0.4 1.8 6.8 15.0

Re=1 0.5 0.5 1.4 4.4 8.1 12.1

h= 1

32
Re=10 0.5 1.5 2.5 2.9 4.0 13.4

Re=102 0.7 1.2 1.4 1.7 4.0 0.7

Re=103 0.7 1.0 1.1 1.2 0.8 0.7

Re=0.1 0.7 0.4 0.4 2.3 7.9 18.9

Re=1 0.6 0.4 2.1 5.4 12.3 12.7

h= 1

64
Re=10 0.5 1.3 4.0 4.9 4.4 4.1

Re=102 1.0 1.7 2.2 1.9 1.4 1.3

Re=103 0.8 1.1 1.3 1.0 1.0 1.1

Re=0.1 0.7 0.5 0.4 2.4 8.9 23.3

Re=1 0.7 0.4 2.2 7.6 16.9 13.7

h= 1

128
Re=10 0.5 1.6 4.3 7.4 5.3 2.2

Re=102 1.0 2.2 3.1 2.1 1.1 0.7

Re=103 1.0 1.2 1.1 0.8 0.7 0.6

immersed structures may be more effective and worth the extra cost.

The data in Table 3 demonstrate a tendency that a higher stiffness leads to a bigger

speedup. In the flow regime of Re≥100, this tendency comes to a stop after the stiffness

reaches a certain threshold value. At these threshold values, the speedup drops dramat-

ically; for example, Rsp drops from 13.4 to 0.7 from Re=10 to Re=100 for h = 1

32
and

γ = 105. In the flow regime of Re≤10, (3.26) and (3.22) suggest that the bigger µ, the

better the approximation of B−1
L to (BL − J)−1. This is confirmed in Table 3 and Table 4:

the projection preconditioner is more effective when the Reynolds number is low.

Table 4: Results of the double gyre test for h= 1

256
. The test ases here are from a subset of those in

Tables 2 and 3.

γ= 103 γ= 104 γ = 105

Re=0.1 8.39e-2 9.37e-3 1.04e-3

C r
exp
max Re=1 1.03e-2 2.24e-3 5.91e-4

Re=10 5.29e-3 1.05e-3 4.02e-4

Re=0.1 2.4 11.2 29.6

Rsp Re=1 10.2 27.1 17.6

Re=10 10.5 7.2 1.9
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Table 5: Condition numbers of the saddle point system (3.21) before and after the preonditioning for

a 64× 64 grid of the double-gyre test (C r = 1.0) at t = 0. C(A) is the ondition number of A without

preonditioning, C(W) that of W by omputing B−1G with Gaussian elimination, and C(WM ) that of W
by using one F-yle blok iteration to estimate B−1G. Y = BL for both C(W) and C(WM ). For low

sti�ness, the ondition numbers quadruple as the grid size is halved. For high sti�ness, the ondition

numbers double as the grid size is halved. Note that the original saddle point matrix A is symmetri

and its ondition numbers C(A) orresponds to its spetrums in Figures 4 and 5. In omparison, the

preonditioned matrix W and its approximation WM are not symmetri and their ondition number is

de�ned as the ratio of the singular values with the largest and smallest magnitudes.

γ = 1 γ= 10 γ = 102 γ= 103 γ= 104 γ= 105

C(A) 1.65e+3 2.31e+4 1.24e+6 1.13e+8 9.98e+9 5.15e+11

Re=103 C(W) 1.25e+1 7.31e+1 4.34e+2 4.34e+3 3.89e+4 2.03e+05

C(WM) 1.26e+1 7.35e+1 4.34e+2 4.40e+3 4.02e+4 2.05e+05

C(A) 6.08e+4 7.82e+4 1.49e+6 1.18e+8 1.15e+10 1.13e+12

Re=1 C(W) 1.19e+0 2.38e+0 3.88e+0 4.67e+1 4.57e+02 4.51e+03

C(WM) 1.22e+0 2.38e+0 5.54e+0 4.67e+1 4.57e+02 4.52e+03

4.3. Effect of Preconditioning on the Spectrum

To better understand the results shown in the previous subsection, we plot the spectrum

of the saddle point matrix before and after the projection precondition for Re=1 in Figure

4 and for Re=103 in Figure 5. As shown in both Figures, the eigenvalues of the original

saddle point matrix A span ten orders of magnitudes for the stiff case γ = 104; this is

true in both the low Reynolds number case Re=1 and the high Reynolds number case

Re=103. For the nonstiff IB γ= 1, the eigenvalues of the matrix BL with high viscosity are

bigger than those with low viscosity, hence the low Reynolds number case is more stiff than

the high Reynolds number case. Fortunately, the projection preconditioner (3.19) with

Y = BL drastically reduces the range of the saddle point matrix to within several orders

of magnitudes. As another evidence of the efficiency of the projection preconditioner, the

eigenvalues of the preconditioned saddle point matrix W are highly clustered at one for all

the four cases shown in both figures.

The condition numbers of the saddle point matrix before and after preconditioning

are shown in Table 5. Clearly, the projection preconditioner based on Y = BL drastically

reduces the conditioning of the original saddle point system by orders of magnitudes,

especially in the case of low Reynolds numbers. It is important to emphasize that the

matrix B is inverted in computing the eigenvalues of the preconditioned matrix W whereas

only one full multigrid cycle is applied for those of WM . In other words, λ(W) and C(W)

in Figures 4 and 5 and Table 5 show the best potential of the projection preconditioner

with Y = BL while C(WM ) show the actual performance. As another notable feature, the

reduction of the conditioning is very effective when the inverse of B is approximated by one

full multigrid cycle. These observations not only suggest that the projection preconditioner

has a great potential but also imply that this potential can be achieved very efficiently.

To compare the efficiency of the proposed method in different regimes of Reynolds

numbers, we first note that the numbers of iterations for the explicit methods for high
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stiffness are not sensitive to Reynolds numbers: in the case of γ = 104, the iteration

number of Re=103 is about 10% greater than that of Re=1. Therefore, the results in

Tables 3 indeed show that the efficiency of the proposed method in the high Reynolds

number cases is much worse than that in the low Reynolds number cases. To explain this,

the spectrum of W and WM for 200 eigenvalues with the smallest amplitudes are plotted

in Figure 6. For low stiffness, the eigenvalues of W and WM coincide, regardless of the

Reynolds numbers. For high stiffness, the eigenvalues of W and WM has a substantial

difference for the high Reynolds number case, as shown in Figure 6(b). In addition, there

is only one eigenvalue smaller than 0.01 for Re=1 whereas there are tens of eigenvalues

smaller than 0.01 for Re=1000. This might explain the unsatisfactory performance for the

proposed implicit IB method in the case of high stiffness and high Reynolds numbers.

5. Conclusion

Based on an unconditionally stable discretization of the IB equations, we have proposed

a nonstiff IB method for efficiently simulating fluid-structure interactions at low Reynolds

number. The Lagrangian variables of the IB are eliminated from the governing equations

via a Schur complement approach to form purely Eulerian equations, and the correspond-

ing linear system is solved by a Krylov subspace method after being preconditioned by a

projection operator.

The projection preconditioner for immersed boundary equations involves approximately

inverting an operator for the intermediate velocity and finding an update operator which

relates the pressure to the projection variable. We showed that our previously developed

multigrid algorithm [11] provides a very good approximate inverse for updating the ve-

locity with just a single multigrid cycle. For the pressure update operator, we used the

framework of projection methods to derive an ideal preconditioner, which is essentially

the operator resulting from the Schur complement if one were to solve for the pressure

first [2]. This operator is very computationally expensive to construct, although we note

that in some cases fast algorithms for constructing a similar operator were proposed for

implicit immersed boundary equations [4].

We explored a number of choices that approximate the ideal preconditioner. It is found

that the proposed method could be thirty times faster than an explicit IB method for low

Reynolds number 0.1≤ Re ≤10 and high stiffness. In addition, the speedup increases

as h and/or the Reynolds number are further reduced. Interestingly, the best choice of

pressure update operator is the same as that used in projection preconditioning without

the immersed boundary [9]. This update operator ignores the presence of the immersed

boundary. While the method worked very well at low Reynolds numbers, the performance

suffered above Reynolds number about 100. It may be possible to find a different pressure

update operator to provide effective preconditioning at higher Reynolds numbers, but this

is beyond the scope of this paper.

Although the values of the speedup for high Reynolds numbers are much less than

those of low Reynolds numbers, this may not be a serious limititation of the proposed

method. First, fluid-structure interaction at low Reynolds number covers a vast range of
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applications, and in the past there have been many applications of the immersed bound-

ary method at low Reynolds numbers. Second, at high Reynolds number it is essential

to capture the correct physics of boundary layers. Because of first-order accuracy of the

immersed boundary method near the structure, resolving boundary layers requires an ex-

traordinarily large number of grid points. Thus the immersed boundary method is not well

suited for applications at very high Reynolds numbers.

Projection methods are appealing because they decouple the pressure and the velocity,

and solvers can be built from existing solvers for scalar equations. Another approach is to

solve for the pressure and velocity simultaneously. We developed a multigrid-based pre-

conditioner based on this approach for Stokes equation [12], where the time independence

precludes the use of projection methods. It remains to be explored whether this approach

will be effective at higher Reynolds numbers.
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Figure 2: Snapshots of the veloity �eld and IB points produed by the proposed method for the fored

double-gyre test on a 32-by-32 grid. γ = 5, Re=1. `*'s represent the IB Lagrangian points and the

arrows the veloity �eld.
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Figure 3: The e�etiveness of preonditioning for di�erent hoies of Y. The absissa is the sti�ness

oe�ient γ and the ordinate the iteration ount of GMRES for solving the saddle point equation (3.21)

of the double-gyre problem on a 642
grids. Within eah iteration, P

proj

in (3.19) is used as the right-

preonditioner with a single F-yle blok smoothing for approximating B−1
and (DG)−1

. The relative

onvergene riteria is set to 10−8
. C r = 1.
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Figure 4: Spetrum of the saddle point matrix before (A) and after (W with Y = BL) the projetion

preondition for Re=1 and h = 1

64
in the double-gyre test at t = 0. The eigenvalues of eah matrix is

sorted in magnitude; the x-axis represents the index of an eigenvalue in the sorted array and the y-axis

the magnitude of the eigenvalue. The ratio of the number of eigenvalues with their magnitudes less

than 1− 10−6
to that of all eigenvalues is 0.0569 for γ = 1 and 0.0600 for γ = 104

. These ratios are

roughly halved when the grid size is redued to h= 1

128
.
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Figure 5: Spetrum of the saddle point matrix before (A) and after (W with Y = BL) the projetion

preondition for Re=103
and h= 1

64
in the double-gyre test at t = 0. The eigenvalues of eah matrix is

sorted in magnitude; the x-axis represents the index of an eigenvalue in the sorted array and the y-axis

the magnitude of the eigenvalue. The ratio of the number of eigenvalues with their magnitudes less

than 1− 10−6
to that of all eigenvalues is 0.0588 for γ = 1 and 0.0605 for γ = 104

. These ratios are

roughly halved when the grid size is redued to h= 1

128
.
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Figure 6: The �rst 200 eigenvalues with smallest amplitudes for W and WM . h= 1

64
. ∗'s and ◦'s represent

those of W and WM respetively for Re=1; +'s and �'s represent those of W and WM respetively for

Re=103
;


