
Homework 4
Math 128A
Due Tuesday, November 26th

1. (a) Let Ln represent the degree n Legendre polynomial. Show that for any polynomial p of
degree less than n, ∫ 1

−1
Ln(x)p(x) dx = 0.

That is, the nth degree Legendre polynomial is orthogonal to all polynomials of degree
less than n.

(b) Let L̃n represent the nth degree monic Legendre polynomial. Show that∥∥∥L̃n

∥∥∥2
2
≤ ‖p̃n‖22

for all monic polynomial of degree n, p̃n, where the norm is

‖f‖22 = 〈f, f〉 =

∫ 1

−1
(f(x))2 dx.

Hint: Let w(x) = p̃n(x)− L̃n(x), and compute ‖p̃n‖22.

This result shows that the degree n monic Legendre polynomial is the degree n monic
polynomial with smallest 2-norm. The results from both part (a) and (b) are important
for high-order accurate integration methods, specifically Gaussian quadrature.

2. The zeros of the Chebyshev polynomials are the optimal points for interpolation on [−1, 1]
in the sense that they give the minimum maximum of the polynomial in the error bound. In
practice we often use the extreme points of the Chebyshev polynomials because they include
the endpoints and operations on the interpolant can be done quickly using the FFT.

(a) For the function f(x) = exp
(
−(x− 0.5)2

)
on [−1, 1] construct the polynomial inter-

polant Pn of degree n for n = 4, 8, 12, 16 using

i. The n+ 1 equally spaced points xk = −1 + 2k/n for k = 0 . . . n,

ii. The n+ 1 extreme points of the degree n Chebyshev polynomial,

iii. The n+ 1 zeros of the degree n+ 1 Chebyshev polynomial.

For each n plot the approximation errors (|Pn(x)− f(x)|) of the three different inter-
polants on the same graph. Make a table of the maximum approximation error for each
n for each interpolant. Discuss the results.

(b) Repeat the previous part for f(x) = (16x2 + 1)−1

3. (a) Let f be a 2π-periodic function defined by the Fourier series

f(x) =

∞∑
k=−∞

ck exp (ikx) .

1



Suppose that f(x) is real valued, which means that c−k = c̄k, where the overbar rep-
resents the complex conjugate, a+ bi = a − bi. For real valued functions, the Fourier
series can be written as

f(x) =
a0
2

+
∞∑
k=1

ak cos (kx) + bk sin (kx) .

Suppose you are given the complex coefficients ck. Use that exp(iθ) = cos(θ) + i sin(θ),
and derive expressions for ak and bk in terms of ck.

(b) Write a program which takes as input x and the complex Fourier coefficients ck for
k = 0 . . .m of a real valued function, f , and returns f(x). Use the table of coefficients
below and make a plot of f(x).

k ck
0 0.0
1 0.0407− 0.0015i
2 0.1645− 0.0167i
3 0.4382− 0.0993i
4 −0.4112− 0.7080i
5 −0.1492− 0.9888i
6 −0.4125 + 0.7072i
7 −0.4447− 0.0641i
8 −0.0242 + 0.1635i

4. The file noisy signal.txt contains pairs of points (tk, f (tk)) which represents 1000 equally
spaced samples of the function f on the time interval [0, 2π).

(a) Make a plot of the data, f vs. t. In Matlab, you can read in the data using the command
load, and in Pytyon use the loadtxt command in the numpy library.

(b) Use the fft command to compute the discrete Fourier transform of the data. Let ck be
the complex-valued Fourier coefficients. Make a plot of |ck| vs. k for k = 0, . . . , 500. Use
log scales for both axes. In both Matlab and Python, you can evaluate the modulus of
a complex number using the abs function. What can you conclude from this plot?

There are 1000 data points, and the fft will return 1000 complex valued Fourier coeffi-
cients. The discrete Fourier coefficients from the fft algorithm (both Matlab and Python)
are ordered as

(c0, c1, . . . , c500, c−499, c−498, . . . , c−2, c−1).

(c) Let fs represent a smoothed version of the f with the high frequency components re-
moved. To smooth the data, filter out the high frequency components by setting the
discrete Fourier coefficients, ck, to zero for |k| > 10. To generate the time samples of fs,
use the ifft command. Plot fs vs. t.
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