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Chapter 4

Prandtl’s Boundary Layer Theory

Prandtl introduced boundary layer theory in 1905 to understand the flow of a
slightly viscous fluid near a solid boundary. Prandtl’s boundary layer theory is the
original, and fundamental, example of a singular perturbation problem that can be
treated by the method of matched asymptotic expansions.

4.1 The Navier-Stokes and Euler equations

The flow of an incompressible, viscous fluid is described by the incompressible
Navier-Stokes equations,

u; +u-Vu+ Vp =eAu,
V-u=0.

Here, u(x,t) is the fluid velocity, p(x,t) is the pressure, and ¢ = 1/Re is the
dimensionless viscosity, or inverse Reynold’s number. Setting ¢ = 0, we get the
incompressible Euler equations,

u +u-Vu+ Vp =0,
V-u=0.

Both the Navier-Stokes and the Euler equations are first order in time, and they
require the same initial condition for the velocity,

u(z,0) = ug(x).

No initial condition is required for the pressure.

The Navier-Stokes equations are a singular perturbation of the FEuler equations
because they contain higher-order spatial derivatives. As a result, the Navier-Stokes
equations require different boundary conditions from the Euler equations to be well-
posed.

Suppose that the fluid flows in a region €2 with a stationary, solid boundary 92.
The appropriate boundary condition for the Navier-Stokes equations is the ‘no-slip’
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condition
u(x,t) =0 for x € 091,

which means that a viscous fluid ‘sticks’ to the boundary. The appropriate boundary
condition for the Euler equations is the ‘no-flow’ conditions,

u(x,t) -n(x) =0 for x € 091,

where n is the unit normal vector to the boundary. Thus, for a viscous fluid both the
normal and tangential velocities are zero at the boundary, whereas for an inviscid
fluid only the normal velocity is zero.

Prandtl’s idea was that when the viscosity is small a thin boundary layer forms
near the boundary in which the tangential velocity component adjusts rapidly from a
nonzero value away from the boundary to a zero value on the boundary. Outside the
boundary layer, the inviscid equations hold, and inside the boundary layer, viscosity
becomes important because the solution varies rapidly in the direction normal to
the boundary and the higher-order viscous terms eAu become significant.

4.2 Two-dimensional boundary layer equations

We will consider two-dimensional flow over a flat boundary.* We write the spatial
coordinates as x = (z,y) and the velocity u = (u,v), where u(z,y, t) and v(z,y,t)
are the x and y velocity components, respectively. We suppose that there is a
solid boundary is located at y = 0. The component form of the two-dimensional
Navier-Stokes equations in y > 0 is

Ut + Uy + VUy + Py = € (Ugg + Uyy) ,
U + Uy + vUy + Py = € (Uga + Vyy) ,

Uz +vy =0,
with the ‘no-slip’ boundary conditions
u(z,0,t) =0, v(z,0,t) =0,
and initial conditions
u(z,y,0) = uo(e,y),  v(z,y,0) =vo(z,y).

We assume that vo(x,0) = 0, so that the initial data is compatible with the ‘no-flow’
condition, but we do not necessarily assume that ug(z,0) = 0. For example, we
may consider a plate that is set impulsively into motion at ¢ = 0.

*Since the boundary layer is thin, one obtains the same leading order boundary-layer equations
for flow over a smooth curved boundary.
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The leading-order outer solution in y > 0, which we still denote by (u,v,p),
satisfies the inviscid Euler equations obtained by setting € = 0,

Ug + Uy + VUy + Py =0,
Vg + uv; + vy +py = 0,

Uz +vy =0,
with initial conditions
w(z,y,0) =uo(z,y),  v(z,y,0) =vo(z,y),
and the ‘no-flow’ boundary condition
v(z,0,t) = 0.

These equations determine the outer solution. We cannot impose the full ‘no-slip’
condition, since the resulting inviscid problem is over-determined and in general
u(z,0,t) # 0.

Inside the boundary layer, we expect that: (a) the solution varies rapidly in
y, since u has to adjust from a nonzero value in the outer, inviscid solution to
a zero value on the boundary; (b) the transverse component v of the velocity is
small, since it vanishes on the boundary and in the leading-order outer solution at
y = 0; (c) the solution varies on an order one longitudinal length-scale in z, and
the longitudinal component u of the velocity is of the order one. (Here, we have
implicitly non-dimensionalized lengths and velocities by characteristic values of the
outer, inviscid solution.)

We therefore look for an inner solution of the form

U:U(X,Y,T), U:nV(XaYaT)a p:P(XaYaT)a
X:_’L’, YZ%, T=t,

where inner variables are denoted by capital letters, and n(e) and d(g) are small scal-
ing parameters for the transverse velocity in the boundary layer and the boundary
layer thickness, respectively. Using these expressions in the Navier-Stokes equations,
we get

Ur +UUx + gVUy + Px = eUxx + 55_2Uw,

n? 1 £n
nVr +nUVx + FVVY + EPY =enVxx + ﬁVYY;
Ux + gVY =0,

An examination of these equations shows that we have a dominant balance when

n=724, § = +/E.
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Thus, the boundary layer thickness is of the order €!'/2L, where L is a length-scale
characteristic of the external flow.
The scaled equations in the boundary layer are then

Ur + UUx + VUy + Px = eUxx + Uyy,
e(Vr +UVx + VW) + Py = e2Vxx +eVyy,
Ux +Vy =0,

The leading order inner equations are therefore

Ur +UUx + VUy + Px = Uyy,
Py =0,
Ux+Vy =0,

These equations are the Prandtl boundary layer equations. The second equation
implies that the pressure is independent of Y.

The inner boundary layer solution must match as Y — oo with the outer inviscid
solution as y — 0. It follows that

UX,Y,T)-»U"X,T), PX,T)=P(X,T),
where U*, P* are given in terms of the outer solution by
U*(X,T) = u(X,0,T), P*(X,T)=p(X,0,T).

These functions satisfy the compatibility relation obtained by setting y = 0 and
v = 0 in the inviscid equations

Ur+U*Ux + Px =0. (4.1)
It follows from the equation Ux + Vy = 0 that
VXY, T) ~Ux (X, T)Y asY — o
which matches with the inner expansion as y — 0,
v(z,y,t) ~ vy(z,0,t)y = uy(z,0,t)y.

Thus, we do not require matching conditions on V.
The corresponding initial condition for U is

U(X,Y,0) = uo(X,0).
More generally, if the original initial data contains a boundary layer, so that
— Y
U(.’L‘,y,O) = Ug (J?, 61/2) )
then

U(X,Y,0) = uo(X,Y).
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We do not require an initial condition for V.
Thus, the final unsteady boundary layer equations are

Ur +UUx + VUy + Py = Uyy,

Ux +Vy =0,

UX,Y,T) > UX,T), asY — oo,
U(X,Y,0) = uo(X,Y),

where uo(X,Y) and U*(X,T) are prescribed functions, and P*(X,T) is given by
(4.1).
For steady boundary layer flows, with U > 0, these equations reduce to

UUx + VUy + Px = Uyy,

Ux+ VW =0,

UX,Y) - U*(X) as Y — oo,
UX,Y)~Uy(Y) as X - —o0

where Py = -U*U%.

4.3 Limitations of Prandtl’s boundary layer theory

The notion of a boundary layer is a crucial concept for understanding high-Reynolds
number (Re > 1) fluid flows. Nevertheless, the phenomena of turbulence and
boundary layer separation lead to severe limitations in the use of boundary layer
theory as a quantitative asymptotic theory.

Boundary layer theory applies in the limit Re — co. In that limit however, all
flows with non-zero vorticity (which includes boundary layer flows) are turbulent.
Turbulent flows possess a complex and apparently random fine structure, whose
length-scales depend on the Reynold’s number. The simple scaling assumed above
for laminar boundary layer flows therefore no longer applies. In typical problems,
the boundary layer may become turbulent at Reynold’s numbers of the order 108,
and a systematic mathematical theory for turbulent flows is still lacking.

Boundary layer separation is a phenomenon in which the boundary layer leaves
the boundary and enters the interior of the fluid. When this happens, there is a
strong coupling between the outer flow and the boundary layer, often accompanied
by turbulence. Separation is reflected in the boundary layer equations by the forma-
tion of singularities, which typically occur unless Uy > 0 throughout the solution.
For example, boundary layer separation does not occur in flow past a sufficiently
streamlined body (such as an airfoil); in that case inviscid flow theory together with
boundary layer theory provides a good quantitative approximation of the flow field
and the viscous drag. On the other hand, boundary layer separation does occur for
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flow past bluff bodies (such as a sphere), leading to problems which are still not
resolved.

The case of ‘weak’ separation can be studied by the use of a more sophisticated
asymptotic expansion (called ‘triple-deck’ theory because one introduces three dif-
ferent regions). In the case of incompressible fluids, this expansion leads to Prandtl
equations in which the pressure P* is no-longer specified a priori, but is related in
a nonlocal way to the asymptotic behavior of U as Y — oo.



