
Chapter 1

Introduction

In this chapter, we describe the aims of perturbation theory in general terms, and
give some simple illustrative examples of perturbation problems. Some texts and
references on perturbation theory are [6], [7], and [10].

1.1 Perturbation theory

Consider a problem

P ε(x) = 0 (1.1)

depending on a small, real-valued parameter ε that simplifies in some way when
ε = 0 (for example, it is linear or exactly solvable). The aim of perturbation theory
is to determine the behavior of the solution x = xε of (1.1) as ε→ 0. The use of a
small parameter here is simply for definiteness; for example, a problem depending
on a large parameter ω can be rewritten as one depending on a small parameter
ε = 1/ω.

The focus of these notes is on perturbation problems involving differential equa-
tions, but perturbation theory and asymptotic analysis apply to a broad class of
problems. In some cases, we may have an explicit expression for xε, such as an
integral representation, and want to obtain its behavior in the limit ε→ 0.

1.1.1 Asymptotic solutions

The first goal of perturbation theory is to construct a formal asymptotic solution of
(1.1) that satisfies the equation up to a small error. For example, for each N ∈ N,
we may be able to find an asymptotic solution xε

N such that

P ε (xε
N ) = O(εN+1),

where O(εn) denotes a term of the the order εn. This notation will be made precise
in Chapter 2.
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Once we have constructed such an asymptotic solution, we would like to know
that there is an exact solution x = xε of (1.1) that is close to the asymptotic solution
when ε is small; for example, a solution such that

xε = xε
N +O(εN+1).

This is the case if a small error in the equation leads to a small error in the solution.
For example, we can establish such a result if we have a stability estimate of the
form

|x− y| ≤ C |P ε(x)− P ε(y)|

where C is a constant independent of ε, and | · | denotes appropriate norms. Such an
estimate depends on the properties of P ε and may be difficult to obtain, especially
for nonlinear problems. In these notes we will focus on methods for the construction
of asymptotic solutions, and we will not discuss in detail the existence of solutions
close to the asymptotic solution.

1.1.2 Regular and singular perturbation problems

It is useful to make an imprecise distinction between regular perturbation problems
and singular perturbation problems. A regular perturbation problem is one for which
the perturbed problem for small, nonzero values of ε is qualitatively the same as
the unperturbed problem for ε = 0. One typically obtains a convergent expansion
of the solution with respect to ε, consisting of the unperturbed solution and higher-
order corrections. A singular perturbation problem is one for which the perturbed
problem is qualitatively different from the unperturbed problem. One typically
obtains an asymptotic, but possibly divergent, expansion of the solution, which
depends singularly on the parameter ε.

Although singular perturbation problems may appear atypical, they are the most
interesting problems to study because they allow one to understand qualitatively
new phenomena.

The solutions of singular perturbation problems involving differential equations
often depend on several widely different length or time scales. Such problems can
be divided into two broad classes: layer problems, treated using the method of
matched asymptotic expansions (MMAE); and multiple-scale problems, treated by
the method of multiple scales (MMS). Prandtl’s boundary layer theory for the high-
Reynolds flow of a viscous fluid over a solid body is an example of a boundary layer
problem, and the semi-classical limit of quantum mechanics is an example of a
multiple-scale problem.

We will begin by illustrating some basic issues in perturbation theory with simple
algebraic equations.
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1.2 Algebraic equations

The first two examples illustrate the distinction between regular and singular per-
turbation problems.

Example 1.1 Consider the cubic equation

x3 − x+ ε = 0. (1.2)

We look for a solution of the form

x = x0 + εx1 + ε2x2 +O(ε3). (1.3)

Using this expansion in the equation, expanding, and equating coefficients of εn to
zero, we get

x3
0 − x0 = 0,

3x2
0x1 − x1 + 1 = 0,

3x0x2 − x2 + 3x0x
2
1 = 0.

Note that we obtain a nonlinear equation for the leading order solution x0, and
nonhomogeneous linearized equations for the higher order corrections x1, x2,. . . .
This structure is typical of many perturbation problems.

Solving the leading-order perturbation equation, we obtain the three roots

x0 = 0,±1.

Solving the first-order perturbation equation, we find that

x1 =
1

1− 3x2
0

.

The corresponding solutions are

x = ε+O(ε2), x = ±1− 1
2
ε+O(ε2).

Continuing in this way, we can obtain a convergent power series expansion about
ε = 0 for each of the three distinct roots of (1.2). This result is typical of regular
perturbation problems.

An alternative — but equivalent — method to obtain the perturbation series is
to use the Taylor expansion

x(ε) = x(0) + ẋ(0)ε+
1
2!
ẍ(0)ε2 + . . . ,

where the dot denotes a derivative with respect to ε. To compute the coefficients,
we repeatedly differentiate the equation with respect to ε and set ε = 0 in the result.
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For example, setting ε = 0 in (1.2), and solving the resulting equation for x(0), we
get x(0) = 0,±1. Differentiating (1.2) with respect to ε, we get

3x2ẋ− ẋ+ 1 = 0.

Setting ε = 0 and solving for ẋ(0), we get the same answer as before.

Example 1.2 Consider the cubic equation

εx3 − x+ 1 = 0. (1.4)

Using (1.3) in (1.4), expanding, and equating coefficents of εn to zero, we get

−x0 + 1 = 0,

−x1 + x3
0 = 0,

−x2 + 3x2
0x1 = 0.

Solving these equations, we find that x0 = 1, x1 = 1, . . . , and hence

x(ε) = 1 + ε+O(ε2). (1.5)

We only obtain one solution because the cubic equation (1.4) degenerates to a linear
equation at ε = 0. We missed the other two solutions because they approach infinity
as ε → 0. A change in the qualitative nature of the problem at the unperturbed
value ε = 0 is typical of singular perturbation problems.

To find the other solutions, we introduce a rescaled variable y, where

x(ε) =
1
δ(ε)

y(ε),

and y = O(1) as ε → 0. The scaling factor δ is to be determined. Using this
equation in (1.4), we find that

ε

δ3
y3 − 1

δ
y + 1 = 0. (1.6)

In order to obtain a nontrivial solution, we require that at least two leading-order
terms in this equation have the same order of magnitude. This is called the principle
of dominant balance.

Balancing the first two terms, we find that∗

ε

δ3
=

1
δ
,

which implies that δ = ε1/2. The first two terms in (1.4) are then O(ε−1/2), and the
third term is O(1), which is smaller. With this choice of δ, equation (1.6) becomes

y3 − y + ε1/2 = 0.

∗Nonzero constant factors can be absorbed into y.
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Solving this equation in the same way as (1.2), we get the nonzero solutions

y = ±1− 1
2
ε1/2 +O(ε).

The corresponding solutions for x are

x = ± 1
ε1/2

− 1
2

+O
(
ε1/2

)
.

The dominant balance argument illustrated here is useful in many perturbation
problems. The corresponding limit, ε→ 0 with x(ε) = O(ε−1/2), is called a distin-
guished limit.

There are two other two-term balances in (1.6). Balancing the second and third
terms, we find that

1
δ

= 1

or δ = 1. The first term is then O(ε), so it is smaller than the other two terms. This
dominant balance gives the solution in (1.5). Balancing the first and third terms,
we find that

ε

δ3
= 1,

or δ = ε1/3. In this case, the first and third terms are O(1), but the second term
is O(ε−1/3). Thus, it is larger than the terms that balance, so we do not obtain a
dominant balance or any new solutions.

In this example, no three-term dominant balance is possible as ε → 0, but this
can occur in other problems.

Example 1.3 A famous example of the effect of a perturbation on the solutions of
a polynomial is Wilkinson’s polynomial (1964),

(x− 1)(x− 2) . . . (x− 20) = εx19.

The perturbation has a large effect on the roots even for small values of ε.

The next two examples illustrate some other features of perturbation theory.

Example 1.4 Consider the quadratic equation

(1− ε)x2 − 2x+ 1 = 0.

Suppose we look for a straightforward power series expansion of the form

x = x0 + εx1 +O(ε2).

We find that

x2
0 − 2x0 + 1 = 0,

2(x0 − 1)x1 = x2
0.
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Solving the first equation, we get x0 = 1. The second equation then becomes 0 = 1.
It follows that there is no solution of the assumed form.

This difficulty arises because x = 1 is a repeated root of the unperturbed prob-
lem. As a result, the solution

x =
1± ε1/2

1− ε

does not have a power series expansion in ε, but depends on ε1/2. An expansion

x = x0 + ε1/2x1 + εx2 +O(ε3/2)

leads to the equations x0 = 1, x2
1 = 1, or

x = 1± ε1/2 +O(ε)

in agreement with the exact solution.

Example 1.5 Consider the transcendental equation

xe−x = ε. (1.7)

As ε→ 0+, there are two possibilities:

(a) x→ 0, which implies that x = ε+ ε2 +O(ε2);
(b) e−x → 0, when x→∞.

In the second case, x must be close to log 1/ε.
To obtain an asymptotic expansion for the solution, we solve the equation itera-

tively using the idea that e−x varies much more rapidly than x as x→ 0. Rewriting
(1.7) as e−x = ε/x and taking logarithms, we get the equivalent equation

x = log x+ log
1
ε
.

Thus solutions are fixed points of the function

f(x) = log x+ log
1
ε
.

We then define iterates xn, n ∈ N, by

xn+1 = log xn + log
1
ε
,

x1 = log
1
ε
.

Defining

L1 = log
1
ε
, L2 = log

(
log

1
ε

)
,
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we find that

x2 = L1 + L2,

x3 = L1 + log(L1 + L2)

= L1 + L2 +
L2

L1
+O

((
L2

L1

)2
)
.

At higher orders, terms involving

L3 = log
(

log
(

log
1
ε

))
,

and so on, appear.
The form of this expansion would be difficult to guess without using an iterative

method. Note, however, that the successive terms in this asymptotic expansion
converge very slowly as ε → 0. For example, although L2/L1 → 0 as ε → 0, when
ε = 0.1, L1 ≈ 36, L2 ≈ 12; and when ε = 10−5, L1 ≈ 19, L2 ≈ 1.

1.3 Eigenvalue problems

Spectral perturbation theory studies how the spectrum of an operator is perturbed
when the operator is perturbed. In general, this question is a difficult one, and
subtle phenomena may occur, especially in connection with the behavior of the
continuous spectrum of the operators. Here, we consider the simplest case of the
perturbation in an eigenvalue.

Let H be a Hilbert space with inner product 〈·, ·〉, and Aε : D(Aε) ⊂ H → H a
linear operator in H, with domain D(Aε), depending smoothly on a real parameter
ε. We assume that:

(a) Aε is self-adjoint, so that

〈x,Aεy〉 = 〈Aεx, y〉 for all x, y ∈ D(Aε);

(b) Aε has a smooth branch of simple eigenvalues λε ∈ R with eigenvectors
xε ∈ H, meaning that

Aεxε = λεxε. (1.8)

We will compute the perturbation in the eigenvalue from its value at ε = 0 when ε
is small but nonzero.

A concrete example is the perturbation in the eigenvalues of a symmetric matrix.
In that case, we have H = Rn with the Euclidean inner product

〈x, y〉 = xT y,
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and Aε : Rn → Rn is a linear transformation with an n×n symmetric matrix (aε
ij).

The perturbation in the eigenvalues of a Hermitian matrix corresponds to H = Cn

with inner product 〈x, y〉 = xT y. As we illustrate below with the Schrödinger
equation of quantum mechanics, spectral problems for differential equations can be
formulated in terms of unbounded operators acting in infinite-dimensional Hilbert
spaces.

We use the expansions

Aε = A0 + εA1 + . . .+ εnAn + . . . ,

xε = x0 + εx1 + . . .+ εnxn + . . . ,

λε = λ0 + ελ1 + . . .+ εnλn + . . .

in the eigenvalue problem (1.8), equate coefficients of εn, and rearrange the result.
We find that

(A0 − λ0I)x0 = 0, (1.9)

(A0 − λ0I)x1 = −A1x0 + λ1x0, (1.10)

(A0 − λ0I)xn =
n∑

i=1

{−Aixn−i + λixn−i} . (1.11)

Assuming that x0 6= 0, equation (1.9) implies that λ0 is an eigenvalue of A0

and x0 is an eigenvector. Equation (1.10) is then a singular equation for x1. The
following proposition gives a simple, but fundamental, solvability condition for this
equation.

Proposition 1.6 Suppose that A is a self-adjoint operator acting in a Hilbert space
H and λ ∈ R. If z ∈ H, a necessary condition for the existence of a solution y ∈ H
of the equation

(A− λI) y = z (1.12)

is that

〈x, z〉 = 0,

for every eigenvector x of A with eigenvalue λ.

Proof. Suppose z ∈ H and y is a solution of (1.12). If x is an eigenvector of A,
then using (1.12) and the self-adjointness of A− λI, we find that

〈x, z〉 = 〈x, (A− λI) y〉
= 〈(A− λI)x, y〉
= 0.

�
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In many cases, the necesary solvability condition in this proposition is also suf-
ficient, and then we say that A−λI satisfies the Fredholm alternative; for example,
this is true in the finite-dimensional case, or when A is an elliptic partial differential
operator.

SinceA0 is self-adjoint and λ0 is a simple eigenvalue with eigenvector x0, equation
(1.12) it is solvable for x1 only if the right hand side is orthogonal to x0, which im-
plies that

λ1 =
〈x0, A1x0〉
〈x0, x0〉

.

This equation gives the leading order perturbation in the eigenvalue, and is the
most important result of the expansion.

Assuming that the necessary solvability condition in the proposition is sufficient,
we can then solve (1.10) for x1. A solution for x1 is not unique, since we can add
to it an arbitrary scalar multiple of x0. This nonuniqueness is a consequence of the
fact that if xε is an eigenvector of Aε, then cεxε is also a solution for any scalar cε.
If

cε = 1 + εc1 +O(ε2)

then

cεxε = x0 + ε (x1 + c1x0) +O(ε2).

Thus, the addition of c1x0 to x1 corresponds to a rescaling of the eigenvector by a
factor that is close to one.

This expansion can be continued to any order. The solvability condition for
(1.11) determines λn, and the equation may then be solved for xn, up to an arbitrary
vector cnx0. The appearance of singular problems, and the need to impose solvabilty
conditions at each order which determine parameters in the expansion and allow for
the solution of higher order corrections, is a typical structure of many pertubation
problems.

1.3.1 Quantum mechanics

One application of this expansion is in quantum mechanics, where it can be used
to compute the change in the energy levels of a system caused by a perturbation in
its Hamiltonian.

The Schrödinger equation of quantum mechanics is

i~ψt = Hψ.

Here t denotes time and ~ is Planck’s constant. The wavefunction ψ(t) takes values
in a Hilbert space H, and H is a self-adjoint linear operator acting in H with the
dimensions of energy, called the Hamiltonian.
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Energy eigenstates are wavefunctions of the form

ψ(t) = e−iEt/~ϕ,

where ϕ ∈ H and E ∈ R. It follows from the Schrödinger equation that

Hϕ = Eϕ.

Hence E is an eigenvalue of H and ϕ is an eigenvector. One of Schrödinger’s
motivations for introducing his equation was that eigenvalue problems led to the
experimentally observed discrete energy levels of atoms.

Now suppose that the Hamiltonian

Hε = H0 + εH1 +O(ε2)

depends smoothly on a parameter ε. Then, rewriting the previous result, we find
that the corresponding simple energy eigenvalues (assuming they exist) have the
expansion

Eε = E0 + ε
〈ϕ0,H1ϕ0〉
〈ϕ0, ϕ0〉

+O(ε2)

where ϕ0 is an eigenvector of H0.
For example, the Schrödinger equation that describes a particle of mass m mov-

ing in Rd under the influence of a conservative force field with potential V : Rd → R
is

i~ψt = − ~2

2m
∆ψ + V ψ.

Here, the wavefunction ψ(x, t) is a function of a space variable x ∈ Rd and time
t ∈ R. At fixed time t, we have ψ(·, t) ∈ L2(Rd), where

L2(Rd) =
{
u : Rd → C | u is measurable and

∫
Rd |u|2 dx <∞

}
is the Hilbert space of square-integrable functions with inner-product

〈u, v〉 =
∫

Rd

u(x)v(x) dx.

The Hamiltonian operator H : D(H) ⊂ H → H, with domain D(H), is given by

H = − ~2

2m
∆ + V.

If u, v are smooth functions that decay sufficiently rapidly at infinity, then Green’s
theorem implies that

〈u,Hv〉 =
∫

Rd

u

(
− ~2

2m
∆v + V v

)
dx

=
∫

Rd

{
~2

2m
∇ · (v∇u− u∇v)− ~2

2m
(∆u)v + V uv

}
dx
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=
∫

Rd

(
− ~2

2m
∆u+ V u

)
v dx

= 〈Hu, v〉.

Thus, this operator is formally self-adjoint. Under suitable conditions on the poten-
tial V , the operator can be shown to be self-adjoint with respect to an appropriately
chosen domain.

Now suppose that the potential V ε depends on a parameter ε, and has the
expansion

V ε(x) = V0(x) + εV1(x) +O(ε2).

The perturbation in a simple energy eigenvalue

Eε = E0 + εE1 +O(ε2),

assuming one exists, is given by

E1 =

∫
Rd V1(x)|ϕ0(x)|2 dx∫

Rd |ϕ0(x)|2 dx
,

where ϕ0 ∈ L2(Rd) is an unperturbed energy eigenfunction that satisfies

− ~2

2m
∆ϕ0 + V0ϕ0 = E0ϕ0.

Example 1.7 The one-dimensional simple harmonic oscillator has potential

V0(x) =
1
2
kx2.

The eigenvalue problem

− ~2

2m
ϕ′′ +

1
2
kx2ϕ = Eϕ, ϕ ∈ L2(R)

is exactly solvable. The energy eigenvalues are

En = ~ω
(
n+

1
2

)
n = 0, 1, 2, . . . ,

where

ω =

√
k

m

is the frequency of the corresponding classical oscillator. The eigenfunctions are

ϕn(x) = Hn(αx)e−α2x2/2,

where Hn is the nth Hermite polynomial,

Hn(ξ) = (−1)neξ2 dn

dξn
e−ξ2

,
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and the constant α, with dimensions of 1/length, is given by

α2 =

√
mk

~
.

The energy levels Eε
n of a slightly anharmonic oscillator with potential

V ε(x) =
1
2
kx2 + ε

k

α2
W (αx) +O(ε2) as ε→ 0+

where ε > 0 have the asymptotic behavior

Eε
n = ~ω

{
n+

1
2

+ ε∆n +O(ε2)
}

as ε→ 0+,

where

∆n =
∫
W (ξ)H2

n(ξ)e−ξ2
dξ∫

H2
n(ξ)e−ξ2 dξ

.

For an extensive and rigorous discussion of spectral perturbation theory for
linear operators, see [9].

1.4 Nondimensionalization

The numerical value of any quantity in a mathematical model is measured with
respect to a system of units (for example, meters in a mechanical model, or dollars
in a financial model). The units used to measure a quantity are arbitrary, and a
change in the system of units (for example, to feet or yen, at a fixed exchange rate)
cannot change the predictions of the model. A change in units leads to a rescaling
of the quantities. Thus, the independence of the model from the system of units
corresponds to a scaling invariance of the model. In cases when the zero point of a
unit is arbitrary, we also obtain a translational invariance, but we will not consider
translational invariances here.

Suppose that a model involves quantities (a1, a2, . . . , an), which may include de-
pendent and independent variables as well as parameters. We denote the dimension
of a quantity a by [a]. A fundamental system of units is a minimal set of indepen-
dent units, which we denote symbolically by (d1, d2, . . . , dr). Different fundamental
system of units can be used, but given a fundamental system of units any other de-
rived unit may be constructed uniquely as a product of powers of the fundamental
units, so that

[a] = dα1
1 dα2

2 . . . dαr
r (1.13)

for suitable exponents (α1, α2, . . . , αr).

Example 1.8 In mechanical problems, a fundamental set of units is d1 = mass,
d2 = length, d3 = time, or d1 = M , d2 = L, d3 = T , for short. Then velocity



Nondimensionalization 13

V = L/T and momentum P = ML/T are derived units. We could use instead
momentum P , velocity V , and time T as a fundamental system of units, when mass
M = P/V and length L = V T are derived units. In problems involving heat flow, we
may introduce temperature (measured, for example, in degrees Kelvin) as another
fundamental unit, and in problems involving electromagnetism, we may introduce
current (measured, for example, in Ampères) as another fundamental unit.

The invariance of a model under the change in units dj 7→ λjdj implies that it
is invariant under the scaling transformation

ai → λ
α1,i

1 λ
α2,i

2 . . . λαr,i
r ai i = 1, . . . , n

for any λ1, . . . λr > 0, where

[ai] = d
α1,i

1 d
α2,i

2 . . . dαr,i
r . (1.14)

Thus, if

a = f (a1, . . . , an)

is any relation between quantities in the model with the dimensions in (1.13) and
(1.14), then f has the scaling property that

λα1
1 λα2

2 . . . λαr
r f (a1, . . . , an) = f

(
λ

α1,1
1 λ

α2,1
2 . . . λαr,1

r a1, . . . , λ
α1,n

1 λ
α2,n

2 . . . λαr,n
r an

)
.

A particular consequence of the invariance of a model under a change of units is
that any two quantities which are equal must have the same dimensions. This fact
is often useful in finding the dimension of some quantity.

Example 1.9 According to Newton’s second law,

force = rate of change of momentum with respect to time.

Thus, if F denotes the dimension of force and P the dimension of momentum,
then F = P/T . Since P = MV = ML/T , we conclude that F = ML/T 2 (or
mass× acceleration).

Example 1.10 In fluid mechanics, the shear viscosity µ of a Newtonian fluid is the
constant of proportionality that relates the viscous stress tensor T to the velocity
gradient ∇u:

T =
1
2
µ
(
∇u +∇uT

)
.

Stress has dimensions of force/area, so

[T ] =
ML

T 2

1
L2

=
M

LT 2
.
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The velocity gradient ∇u has dimensions of velocity/length, so

[∇u] =
L

T

1
L

=
1
T
.

Equating dimensions, we find that

[µ] =
M

LT
.

We can also write [µ] = (M/L3)(L2/T ). It follows that if ρ0 is the density of the
fluid, and µ = ρ0ν, then

[ν] =
L2

T
.

Thus ν, which is called the kinematical viscosity, has the dimensions of diffusivity.
Physically it is the diffusivity of momentum. For example, in time T , viscous effects
lead to the diffusion of momentum over a length scale of the order

√
νT .

Scaling invariance implies that we can reduce the number of quantities appear-
ing in the problem by the introduction of dimensionless variables. Suppose that
(a1, . . . , ar) are a set of (nonzero) quantities whose dimensions form a fundamental
system of units. We denote the remaining quantities in the model by (b1, . . . , bm),
where r +m = n. Then for suitable exponents (β1,i, . . . , βr,i), the quantity

Πi =
bi

a
β1,i

1 . . . a
βr,i
r

is dimensionless, meaning that it is invariant under the scaling transformations
induced by changes in units. Such dimensionless quantities can often be interpreted
as the ratio of two quantities of the same dimension appearing in the problem (such
as a ratio of lengths, times, diffusivities, and so on). Perturbation methods are
typically applicable when one or more of these dimensionless quantities is small or
large.

Any relationship of the form

b = f(a1, . . . , ar, b1, . . . , bm)

is equivalent to a relation

Π = f(1, . . . , 1,Π1, . . . ,Πm).

Thus, the introduction of dimensionless quantities reduces the number of variables
in the problem by the number of fundamental units involved in the problem. In
many cases, nondimensionalization leads to a reduction in the number of parameters
in the problem to a minimal number of dimensionless parameters. In some cases,
one may be able to use dimensional arguments to obtain the form of self-similar
solutions.
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Example 1.11 Consider the following IVP for the Green’s function of the heat
equation in Rd:

ut = ν∆u,

u(x, 0) = Eδ(x).

Here δ is the delta-function. The dimensioned parameters in this problem are the
diffusivity ν and the energy E of the point source. The only length and times
scales are those that come from the independent variables (x, t), so the solution is
self-similar.

We have [u] = θ, where θ denotes temperature, and, since∫
Rd

u(x, 0) dx = E,

we have [E] = θLd. Dimensional analysis and the rotational invariance of the
Laplacian ∆ imply that

u(x, t) =
E

(νt)d/2
f

(
|x|√
νt

)
.

Using this expression for u(x, t) in the PDE, we get an ODE for f(ξ),

f ′′ +
(
ξ

2
+
d− 1
ξ

)
f ′ +

d

2
f = 0.

We can rewrite this equation as a first-order ODE for f ′ + ξ
2f ,(

f ′ +
ξ

2
f

)′

+
d− 1
ξ

(
f ′ +

ξ

2
f

)
= 0.

Solving this equation, we get

f ′ +
ξ

2
f =

b

ξd−1
,

where b is a constant of integration. Solving for f , we get

f(ξ) = ae−ξ2/4 + be−ξ2/4

∫
e−ξ2

ξd−1
dξ,

where a s another constant of integration. In order for f to be integrable, we must
set b = 0. Then

u(x, t) =
aE

(νt)d/2
exp

(
−|x|

2

4νt

)
.

Imposing the requirement that ∫
Rd

u(x, t) dx = E,
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and using the standard integral∫
Rd

exp
(
−|x|

2

2c

)
dx = (2πc)d/2

,

we find that a = (4π)−d/2, and

u(x, t) =
E

(4πνt)d/2
exp

(
−|x|

2

4νt

)
.

Example 1.12 Consider a sphere of radius L moving through a fluid with constant
speed U . A primary quantity of interest is the total drag force D exerted by the
fluid on the sphere. We assume that the fluid is incompressible, which is a good
approximation if the flow speed U is much less than the speed of sound in the
fluid. The fluid properties are then determined by the density ρ0 and the kinematic
viscosity ν. Hence,

D = f(U,L, ρ0, ν).

Since the drag D has the dimensions of force (ML/T 2), dimensional analysis implies
that

D = ρ0U
2L2F

(
UL

ν

)
.

Thus, the dimensionless drag

D

ρ0U2L2
= F (Re)

is a function of the Reynold’s number

Re =
UL

ν
.

The function F has a complicated dependence on Re that is difficult to compute
explicitly. For example, F changes rapidly near Reynolds numbers for which the
flow past the sphere becomes turbulent. Nevertheless, experimental measurements
agree very well with the result of this dimensionless analysis (see Figure 1.9 in [1],
for example).

Dimensional analysis leads to continuous scaling symmetries. These scaling sym-
metries are not the only continuous symmetries possessed by differential equations.
The theory of Lie groups and Lie algebras provides a systematic method for com-
puting all continuous symmetries of a given differential equation [13]. Lie originally
introduced the notions of Lie groups and Lie algebras precisely for this purpose.

Example 1.13 The full group of symmetries of the one-dimensional heat equation

ut = uxx
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is generated by the following transformations [13]:

u(x, t) 7→ u(x− α, t),

u(x, t) 7→ u(x, t− β),

u(x, t) 7→ γu(x, t),

u(x, t) 7→ u(δx, δ2t),

u(x, t) 7→ e−εx+ε2tu(x− 2εt, t),

u(x, t) 7→ 1√
1 + 4ηt

exp
[
−ηx2

1 + 4ηt

]
u

(
x

1 + 4ηt
,

t

1 + 4ηt

)
,

u(x, t) 7→ u(x, t) + v(x, t),

where (α, . . . , η) are constants, and v(x, t) is an arbitrary solution of the heat
equation. The scaling symmetries involving γ and δ can be deduced by dimen-
sional arguments, but the symmetries involving ε and η cannot.

For further discussion of dimensional analysis and self-similar solutions, see [1].


