Chapter 3

Asymptotic Expansion of Integrals

In this chapter, we give some examples of asymptotic expansions of integrals. We
do not attempt to give a complete discussion of this subject (see [4], [21] for more
information).

3.1 Euler’s integral

Consider the following integral (Euler, 1754):

o] e—t
I(z) = / dt, (3.1)
0
where z > 0.
First, we proceed formally. We use the power series expansion

1
1+ xt

=1l—at+2?2 +... +(=1)"2™t" +... (3.2)

inside the integral in (3.1), and integrate the result term-by-term. Using the integral

oo
/ t"e"tdx = n!,
0

I(z)~1—z+22% +...+ (1) "nlz" +.... (3.3)

we get

The coefficients in this power series grow factorially, and the terms diverge as n —
00. Thus, the series does not converge for any x # 0. On the other hand, the
following proposition shows that the series is an asymptotic expansion of I(z) as
x — 01, and the the error between a partial sum and the integral is less than the
first term neglected in the asymptotic series. The proof also illustrates the use of
integration by parts in deriving an asymptotic expansion.
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30 Asymptotic Ezpansion of Integrals

Proposition 3.1 Forz > 0and N =0,1,2,..., we have

@) —{1-z+...+ (-1)"NzV}| < (N + 1)1z,

Proof. Integrating by parts in (3.1), we have

oo e—t

After N + 1 integrations by parts, we find that
Iz)=1—2z+4 ...+ (-1) Nz + Ry11(2),

where

—(_ N+1 1. N+1 007 .
Ras1 (@) = (=D)NFUN +1)le /0 et

Estimating Ry for > 0, we find that

|[Ryy1(z)] < (N+1)!:UN+1/ e~ tdt
0

< (N + 1)1

which proves the result. Equation (3.1) shows that the partial sums oscillate above
(N even) and below (N odd) the value of the integral. O

Heuristically, the lack of convergence of the series in (3.3) is a consequence of
the fact that the power series expansion (3.2) does not converge over the whole
integration region, but only when 0 < ¢ < 1/z. On the other hand, when z is small,
the expansion is convergent over most of the integration region, and the integrand
is exponentially small when it is not. This explains the accuracy of the resulting
partial sum approximations.

The integral in (3.1) is not well-defined when = < 0 since then the integrand has
a nonintegrable singularity at ¢ = —1/z. The fact that = 0 is a ‘transition point’
is associated with the lack of convergence of the asymptotic power series, because
any convergent power series would converge in a disk (in C) centered at x = 0.

Since the asymptotic series is not convergent, its partial sums do not provide
an arbitrarily accurate approximation of I(z) for a fixed z > 0. It is interesting to
ask, however, what partial sum gives the the best approximation.

This occurs when n minimizes the remainder R,,11(z). The remainder decreases
when n < z and increases when n + 1 > z, so the best approximation occurs
when n + 1 ~ [1/z], and then R, (z) ~ (1/z)!z'/?. Using Stirling’s formula (see
Example 3.10),

n! ~ 2mntt/2e—n as n — 00,
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we find that the optimal truncation at n ~ [1/z] — 1 gives an error

Rn(:zc)N\/%re_l/’J asz — 0F.

Thus, even though each partial sum with a fixed number of terms is polynomially
accurate in z, the optimal partial sum approximation is exponentially accurate.

Example 3.2 The partial sums
Sy(@)=1—z+...+ (-1)"NV

for = 0.1 and 2 < N < 15 are given in the following table (to an appropriate
accuracy).

N | Sx(0.1)
209

3| 0.92

4 | 0.914
5| 0.9164
6 | 0.9152
7 | 0.91529
8 | 0.915416
9 | 0.915819
10 | 0.915463
11 | 0.915819
12 | 0.91542
13 | 0.9159
14 | 0.9153
15 | 0.9162

It follows that
0.91546 < 1(0.1) < 0.91582.
Numerical integration shows that, to four significant figures,

1(0.1) ~ 0.9156.

In some problems, the exponentially small corrections to a power series asymp-
totic expansion contain important information. For example, the vanishing or non-
vanishing of these corrections may correspond to the existence or nonexistence of
particular types of solutions of PDEs, such as traveling waves or breathers. There
exist methods of exponential asymptotics, or asymptotics beyond all orders, that
can be used to compute exponentially small terms.
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3.2 Perturbed Gaussian integrals

Consider the following integral

& 1
I(a,e) = / exp [—iaﬂ - 6:54] dz, (3.4)
where @ > 0 and € > 0. For ¢ = 0, this is a standard Gaussian integral, and
1
I(a,0) = .
2ma

For € > 0, we cannot compute I(a,e) explicitly, but we can obtain an asymptotic
expansion as € = 0t.
First, we proceed formally. Taylor expanding the exponential with respect to &,

1 1 -1Hn
exp [—§a$2 — 5374] = ¢ 202" {1 —ext + 552:1:8 +...+ %5”374" +.. } ,

and integrating the result term-by-term, we get

1 1"
I(a,é‘)N\/%{1—6<$4)+...+%En($4n)+...},, (3.5)
where
© gine—3ar® gy
(ainy = I T
S e 2 da

We use a special case of Wick’s theorem to calculate these integrals.

Proposition 3.3 For m € N, we have

omy _ (2m =1
(2my = S
where
2m-1N=1-3-5...2m—3)-(2m —1)
Proof. Let

Differentiating J(a, b) n-times with respect to b and setting b = 0, we find that

dr
(z") = == J(a,b)
db b0

Writing

2
e—%azz—i-bz — e—%a(w—b)2+g—a
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and making the change of variable (z — b) — z in the numerator, we deduce that

J(a,b):eg.

Hence,
d” b2
(") = S le=
db [ ]bzo
_ dr - b2 N N 1 p2m N
- dbn 2a T m!2a)™ TSl
which implies that
@) = Baymmi

This expression is equivalent to the result.

Using the result of this proposition in (3.5), we conclude that

1 3 105
I(a,e)Nm 1—¥6+a—462+...+an6n+... ase — 0T,
where
(=1)"(4n — )N
p = —F—F—.
nla?n

By the ratio test, the radius of convergence R of this series is

(n + 1)!a®+2(4n — 1)!

R = nh—)néo nla?n(4n + 3)!!
. (n +1)a?
= lim ————————
n=oco (4n + 1)(4n + 3)

= 0.

(3.6)

(3.7)

Thus, the series diverges for every € > 0, as could have been anticipated by the fact

that I(a,¢€) is undefined for € < 0.

The next proposition shows that the series is an asymptotic expansion of I(a,¢)

ase — 0t.

Proposition 3.4 Suppose I(a,¢) is defined by (3.4). For each N =0,1,2,... and

€ > 0, we have

N

I(a,e) — Z ane™

n=0

< Onpe™Ht

where ay, is given by (3.7), and

]. 4 1 2
- - (N+1) ,—5az der.
CN+1 (N—I—l)! Lm$ e 2 X
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Proof. Taylor’s theorem implies that for y > 0 and N € N

—y 1 2 (_I)N N
€ 21—3/4‘53/ SRR v + sn+1(y),
where
1 an+t o N+1
sn1(y) = VT D) dgvT () o

y=n

for some 0 < n < y. Replacing y by ex? in this equation and estimating the
remainder, we find that

1 1)V
et =1 — ezt + 5523:4 +...+ %EN.ZAN +eMrny g (2), (3.8)
where
AN+
Irn1(2)| < =5
S CE

Using (3.8) in (3.4), we get

oo
—0o0

N
I(a,e) = Z ane™ + eVl / TN+1(Z‘)€_%(H2 dz.
n=0

It follows that

N o ]
I{a,e) — Z ane™| < eNt! / PNy ()] e~39%° gy
n=0 -
< N+ 1 % $4(N+1)e—%az2 dz
- N+ ’
which proves the result. O

These expansions generalize to multi-dimensional Gaussian integrals, of the form

I(Ae) = /n exp (—%:L‘TAJU + EV(.'L')) dx

where A is a symmetric nxn matrix, and to infinite-dimensional functional integrals,
such as those given by the formal expression

I(e) = /exp {—/ (%|Vu(m)|2 + %uz(x) +eV (u(x))) d:z:} Du

which appear in quantum field theory and statistical physics.
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3.3 The method of stationary phase

The method of stationary phase provides an asymptotic expansion of integrals with
arapidly oscillating integrand. Because of cancelation, the behavior of such integrals
is dominated by contributions from neighborhoods of the stationary phase points
where the oscillations are the slowest.

Example 3.5 Consider the following Fresnel integral
0= [ et
—00

This oscillatory integral is not defined as an absolutely convergent integral, since

ei’/s| =1, but it can be defined as an improper integral,

R
I(e) = lim [ e€*/¢dt.
R— —R

This convergence follows from an integration by parts:

R R R
it?/e gy — [i it2/s] / & il gt
/1 ¢ 2t I T et '

The integrand oscillates rapidly away from the stationary phase point ¢ = 0, and
these parts contribute terms that are smaller than any power of &, as we show below.
The first oscillation near ¢ = 0, where cancelation does not occur, has width of the
order €'/2, so we expect that I(e) = O(¢'/?) as e = 0.

In fact, using contour integration and changing variables t — e™/*s if ¢ > 0 and
t — E~i"/45 if £ < 0, one can show that

/oo oit®/e gy — e/t [2ne] ife>0
oo e~im/4 farle]  ife<0’

Next, we consider the integral

I(e) = /_ - F(t)e /= gt (3.9)

where f : R — C and ¢ : R — R are smooth functions. A point ¢ = ¢ is a stationary
phase point if ¢'(¢) = 0. We call the stationary phase point nondegenerate if
¢"(c) #0.

Suppose that I has a single stationary phase point at ¢ = ¢, which is nondegen-
erate. (If there are several such points, we simply add together the contributions
from each one.) Then, using the idea that only the part of the integrand near the
stationary phase point ¢ = ¢ contributes significantly, we can Taylor expand the
function f and the phase ¢ to approximate I(¢) as follows:

10~ [1@ewt [0+ zore - o] a
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> Al
~ f(c)ei“’(c)/s/exp [%82] ds

2me

f ¢ eiga(c)/5+i<r7r/47
PO

where

o =sgny’(c).

More generally, we consider the asymptotic behavior as € — 0 of an integral of
the form

I(z,e) = / Az, £)e#=0/° g, (3.10)
where ¢ € R” and £ € R™. We assume that
0:R*xR™ 5 R, A:R*xR"™ - C
are smooth (C'*) functions, and that the support of A,
supp A = {(2,6) € B x B [ A(, ) £ 0},

is a compact subset of R” x R™.

Definition 3.6 A stationary, or critical, point of the phase ¢ is a point (z,£) €
R” x R™ such that
Oy
o€

A stationary phase point is nondegenerate if

oo (22
552 6&65]- i,j=1,...,m

is invertible at the stationary phase point.

92 (z,€) = 0. (3.11)

Proposition 3.7 If the support of A contains no stationary points of ¢, then
I(z,e) =0 (e™) ase =0
for every n € N.

Proof. Rewriting the integral in (3.10), and integrating by parts, we have

_ 890 0 z/s 6(p 2

I(z,e) = /A&S 6—§ v } % %
o 00|7* 00| ip)
- /6_€l 2% ag]e‘” “
= O(e)
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Applying this argument n times, we get the result. O

The implicit function theorem implies there is a unique local smooth solution of
(3.11) for ¢ in a neighborhood U x V' C R™ x R™ We write this stationary phase
point as as & = &(z), where £ : U — V. We may reduce the case of multiple
nondegenerate critical points to this one by means of a partition of unity, and may
also suppose that supp A C U x V. According to the Morse lemma, there is a local
change of coordinates £ — 1 near a nondegenerate critical point such that

P(0,6) = ¢ (2.E0) + 5 5 (0.E@) - ().

Making this change of variables in (3.10), and evaluating the resulting Fresnel inte-
gral, we get the following stationary phase formula [10].

Theorem 3.8 Let I(z,£) be defined by (3.10), where ¢ is a smooth real-valued
function with a nondegenerate stationary phase point at (z,£(x)), and A is a com-
pactly supported smooth function whose support is contained in a sufficiently small
neighborhood of the stationary phase point. Then, as ¢ — 0,

2 n/2 . _ . oo
I(z,¢) ~ ( m;) i@ E@)/Hima/t S (je)P R, (),
det ng _ p=0
€=¢(x)

where

62ap>
o = sgn (—
9 ) e—¢(a)

is the signature of the matrix (the difference between the number of positive and
negative eigenvalues), R = 1, and

ok A

Ry(z) = Z Ryi(z) 6—519

|k|<2p

£=¢(x)

where the R, are smooth functions depending only on ¢.

3.4 Airy functions and degenerate stationary phase points

The behavior of the integral in (3.10) is more complicated when it has degenerate

stationary phase points. Here, we consider the simplest case, where £ € R and

two stationary phase points coalesce. The asymptotic behavior of the integral in a

neighborhood of the degenerate critical point is then described by an Airy function.
Airy functions are solutions of the ODE

y" = zy. (3.12)
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The behavior of these functions is oscillatory as £ — —oo and exponential as © —
00. They are the most basic functions that exhibit a transition from oscillatory
to exponential behavior, and because of this they arise in many applications (for
example, in describing waves at caustics or turning points).

Two linearly independent solutions of (3.12) are denoted by Ai(z) and Bi(z).
The solution Ai(z) is determined up to a constant normalizing factor by the condi-
tion that Ai(z) — 0 as £ — oo. It is conventionally normalized so that

. 1 2

where T is the Gamma-function. This solution decays exponentially as £ — oo and
oscillates, with algebraic decay, as z — —oo [16],

Ai(z) ~ La=1/2g=1/4 exp[—223/2 /3] as & — 0o,
7=V (=)~ sin[2(~2)3/2 /3 + w/4] asz — —o0.

The solution Bi(z) grows exponentially as z — oo.

We can derive these results from an integral representation of Ai(z) that is
obtained by taking the Fourier transform of (3.12).* Let y = F[y] denote the
Fourier transform of y,

P 1 * —ikx
yk) = o | yle)e™™" da,

21 J_

/ g(k)e* dk.

— 00

<

—~
8

~—
I

Then
Fly')=-kg, Fl-izy]=7"
Fourier transforming (3.12), we find that
—k*y =iy,
Solving this first-order ODE, we get
(k) = /2,
so y is given by the oscillatory integral

yl@) =c / ei(keth°/13) g,

*We do not obtain Bi by this method because it grows exponentially as x — oo, which is too fast
for its Fourier transform to be well-defined, even as a tempered distribution.
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The standard normalization for the Airy function corresponds to ¢ = 1/(27), and
thus

Ai(z) = = / " eilkati?/3) g (3.13)

T o

This oscillatory integral is not absolutely convergent, but it can be interpreted
as the inverse Fourier transform of a tempered distribution. The inverse transform
is a C* function that extends to an entire function of a complex variable, as can
be seen by shifting the contour of integration upwards to obtain the absolutely
convergent integral representation

1 cotin
Ai(z) = o / . ei(ketk°/3) g
—oo+1in

Just as the Fresnel integral with a quadratic phase, provides an approximation
near a nondegenerate stationary phase point, the Airy integral with a cubic phase
provides an approximation near a degenerate stationary phase point in which the
third derivative of the phase in nonzero. This occurs when two nondegenerate
stationary phase points coalesce.

Let us consider the integral

I(z,e) = /oo f(z, )@t/ gt
-0
Suppose that we have nondegenerate stationary phase points at
t=ty(z)
for x < xg, which are equal when z = ¢ so that t4(zo) = to. We assume that
@t (To,t0) =0, @i (To,t0) =0, @t (To,t0) # 0.
Then Chester, Friedman, and Ursell (1957) showed that in a neighborhood of (xg, to)

there is a local change of variables ¢t = 7(z, s) and functions v (z), p(z) such that

ol 1) = Y(x) + pla)s + 35"

Here, we have 7(xg,0) = to and p(x¢) = 0. The stationary phase points correspond
to s = £4/—p(x), where p(z) < 0 for z < xo.

Since the asymptotic behavior of the integral as e — 0 is dominated by the
contribution from the neighborhood of the stationary phase point, we expect that

I(z,e) ~ / f(w,T(m,s))Ts(a:,s)ei[’”(w)*”(z)”%sa]/sds

~ f(ﬂUo,tO)Ts(ZUo,O)@w(z)/E/ ei[p(z)er%Ss]/adS

—0Q
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~ £ @oto) ulan, 00 [ ] g

—0o0

. . €T
~ 23 f (20, t0) s (20, 0)e¥ @)/ A (%) ,
where we have made the change of variables s = €!/3k, and used the definition of
the Airy function.
More generally, we have the following result. For the proof, see [10].

Theorem 3.9 Let I(z,¢) be defined by (3.10), where ¢(z,£), with z € R? and
& € R, is a smooth, real-valued function with a degenerate stationary phase point
at (z,&(x)). Suppose that

dp o 0%
a—é_ = 0, 6—52 = 0, 6—63 0,

at & = £(x), and A(z,&) is a smooth function whose support is contained in a
sufficiently small neighborhood of the degenerate stationary phase point. Then
there are smooth real-valued functions v (z), p(x), and smooth functions Ay(x),
By (z) such that
p(2)\ - p(2)\ -
/3 Ai (m> ZAk(JU) +ig?/3AY (W) ZBk(IE)
k=0 k=0

I(z,e) ~ ei(@)/e

ase — 0.

3.4.1 Dispersive wave propagation

An important application of the method of stationary phase concerns the long-
time, or large-distance, behavior of linear dispersive waves. Kelvin (1887) originally
developed the method for this purpose, following earlier work by Cauchy, Stokes,
and Riemann. He used it to study the pattern of dispersive water waves generated
by a ship in steady motion, and showed that at large distances from the ship the
waves form a wedge with a half-angle of sin~*(1/3), or approximately 19.5°.

As a basic example of a dispersive wave equation, we consider the following
IVP (initial value problem) for the linearized KdV (Korteweg-de Vries), or Airy,
equation,

Ut = Uggz,

u(z,0) = f()-

This equation provides an asymptotic description of linear, unidirectional, weakly
dispersive long waves; for example, shallow water waves.
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We assume for simplicity that the initial data f : R — R is a Schwarz function,
meaning that it is smooth and decays, together with all its derivatives, faster than
any polynomial as |z| = co.

We use u(k,t) to denote the Fourier transform of u(x,t) with respect to z,

(o, ) = / Ak, t)e®e dk,

—0o0

1 o0 B
Ak, 1) = 5 / u(z, )e=ik® dg.

-0
Then u(k,t) satisfies
Uy +ik3u =0,
a(k,0) = f(k).
The solution of this equation is
a(k,t) = f(k)e @®?,
where

w(k) = k3.

The function w : R — R gives the (angular) frequency w(k) of a wave with wavenum-
ber k, and is called the dispersion relation of the KAV equation.
Inverting the Fourier transform, we find that the solution is given by

uw.t)= [ Fweteie0r ar,

Using the convolution theorem, we can write this solution as

U(.’E,t) =f *g($7t)a

where the star denotes convolution with respect to z, and

1 i x
9(e1) = pE A (‘ (3t)1/3)

is the Green’s function of the Airy equation.

We consider the asymptotic behavior of this solution as ¢ — oo with 2/t = v
fixed. This limit corresponds to the large-time limit in a reference frame moving
with velocity v. Thus, we want to find the behavior as t — oo of

u(vt,t) =/ f(k)ei“’(k’”)t dk, (3.14)

where

p(k,v) = kv — w(k).
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The stationary phase points satisfy ¢ = 0, or
v=uw'(k).

The solutions are the wavenumbers k whose group velocity w’(k) is equal to v. It
follows that

3k% = v.

If v < 0, then there are no stationary phase points, and u(vt,t) = o(t™") as
t — oo for any n € N.

If v > 0, then there are two nondegenerate stationary phase points at k =
+ko(v), where

These two points contribute complex conjugate terms, and the method of stationary
phase implies that

27

7|w”(k0)|tf(ko)ew(ko,v)t_iﬂM + c.c. as t — oo.

u(vt,t) ~

The energy in the wave-packet therefore propagates at the group velocity C = w'(k),
C = 3k?,
rather than the phase velocity ¢ = w/k,
c=k.
1/2

The solution decays at a rate of t~/%, in accordance with the linear growth in ¢ of
the length of the wavetrain and the conservation of energy,

o0
/ u?(z,t) dt = constant.
—00

The two stationary phase points coalesce when v = 0, and then there is a single
degenerate stationary phase point. To find the asymptotic behavior of the solution
when v is small, we make the change of variables

£
(3t)1/3

in the Fourier integral solution (3.14), which gives

ule, ) = (3t;1/3 /O; f((3t§1/3) e ag
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where
2/3y
o 31/3 "

w =

It follows that as t — co with ¢2/3v fixed,

R 2/3
w(z, ) ~ (3;—71/3 F(0)Ai (—';1—/3”) .

Thus the transition between oscillatory and exponential behavior is described by
an Airy function. Since v = z/t, the width of the transition layer is of the order
t1/3 in z, and the solution in this region is of the order t='/3. Thus it decays more
slowly and is larger than the solution elsewhere.

Whitham [20] gives a detailed discussion of linear and nonlinear dispersive wave
propagation.

3.5 Laplace’s Method

Consider an integral

I@%=[%f@kﬂwﬂm

where ¢ : R - R and f : R — C are smooth functions, and ¢ is a small positive
parameter. This integral differs from the stationary phase integral in (3.9) because
the argument of the exponential is real, not imaginary. Suppose that ¢ has a global
maximum at ¢ = ¢, and the maximum is nondegenerate, meaning that ¢"(c) < 0.
The dominant contribution to the integral comes from the neighborhood of ¢t = ¢,
since the integrand is exponentially smaller in € away from that point. Taylor
expanding the functions in the integrand about ¢t = ¢, we expect that

I(e) ~ / Fe)elrer+3e@-02/e gy

~ f(e)e?e / ore! (@ (t=0)/e gy

—0o0

/oo ei%atQ dt = 2—7T
oo a’

2me

16~ 10 (7

This result can proved under suitable assumptions on f and ¢, but we will not give
a detailed proof here (see [17], for example).

Using the standard integral

we get

1/2
) e?O/e age 0+,
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Example 3.10 The Gamma function I': (0,00) — R is defined by

I'(z) =/ ettt dt.
0
Integration by parts shows that if n € N, then
F'(n+1) =nl

Thus, the Gamma function extends the factorial function to arbitrary positive real
numbers. In fact, the Gamma function can be continued to an analytic function

r:c\{o,-1,-2,...} »C
with simple poles at 0,—1,—-2,....

Making the change of variables ¢t = xs, we can write the integral representation
of I as

oo
1
I(z) = xw/ ~e?%(9) gs,
0

s
where

p(s) = —s +logs.
The phase ¢(s) has a nondegenerate maximum at s = 1, where ¢(1) = —1, and

¢"(1) = —1. Using Laplace’s method, we find that

2w

1/2
) z%e™® asz — oo.
T

I(z) ~ (

In particular, setting x = n + 1, and using the fact that

lim =e,
n—oo n

we obtain Stirling’s formula for the factorial,

n! ~ (2m) 201267 as i — 0.

This expansion of the I'-function can be continued to higher orders to give:

9\ 1/2
1“(:1:)~(—7r> mze_z[1+a—1+a—§+a—§+... as T — 00,
x x 1?2z
1 1 139
a = -5, a2 3= -
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3.5.1 Multiple integrals

Proposition 3.11 Let A be a positive-definite n X n matrix. Then

—1T Ag _ (27r)n/2
/ne P RTIvEE

Proof. Since A is positive-definite (and hence symmetric) there is an orthogonal
matrix S and a positive diagonal matrix D = diag[\y, ..., A,] such that

A=S8TDSs.

We make the change of variables y = Sz. Since S is orthogonal, we have | det S| =1,
so the Jacobian of this transformation is 1. We find that

_1,T 1, T
/ e3¢ Azdm — / e 3Y Di‘ldy
n n

n

12
H/e AL dy,
i=1 7R

B (27r)n/2
O - )2
_ (271’)"/2
= T
| det A 0
Now consider the multiple integral
Ie) = [ f(t)erD/=dt.

R"

Suppose that ¢ : R* — R has a nondegenerate global maximum at ¢ = ¢. Then

p(t) = p(c) + %D%(c) (t—et—e)+O0(t—¢?) ast—ec.

Hence, we expect that
I(e) ~ f(c)e[ﬂa(c)-i-%(t—c)TA(t—c)]/s dt,
R~

where A is the matrix of D?¢(c), with components

9%
97 otot;

(¢)-

Using the previous proposition, we conclude that

(2m)"/2

SO GV — T WO
|det D2 (c)["/?
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3.6 The method of steepest descents

Consider a contour integral of the form

() = /C F2)eM dz,

where C'is a contour in the complex plane, and f, h : C — C are analytic functions.

If h(z +iy) = @(x,y) +iy(z,y) is analytic, then ¢, 1) : R> — R have no maxima
or minima, and critical points where h'(z) = 0 are saddle points of ¢, ¢. The curves
(¢ = constant, ¢y = constant are orthogonal except at critical points.

The idea of the method of steepest descents is to deform the contour C into a
steepest descent contour passing through a saddle point on which ¢ has a maximum
and 1 = constant, so the contour is orthogonal to the level curves of . We then
apply Laplace’s method to the resulting integral. We will illustrate this idea by
deriving the asymptotic behavior of the Airy function, given by (3.13)

Ai(z) 1/ eilketk*/3) gp;

T o

To obtain the asymptotic behavior of Ai(z) as £ — oo, we put this integral
representation in a form that is suitable for the method of steepest descents. Setting
k = z'/22, we find that

Ai(z) = %a)l/zl ($3/2) ,

where

= [ eltla

1
h(z) =i (z + —z3>
3
has critical points at z = +1.

Writing h = ¢ + 4% in terms of its real and imaginary parts, we have

The phase

o(z,y) = -y (1 + 2% — %yz> ,
v) =2 (1432 7).

The steepest descent contour ) (z,y) = 0 through z = 4, or (z,y) = (0,1), is

/ 1
=4/14+ =22,
Y +3x
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When A > 0, we can deform the integration contour (—oo,00) upwards to this
steepest descent contour C, since the integrand decays exponentially as |z| — oo in
the upper-half plane. Thus,

I = / e 32%] gy
c
We parameterize C' by z(t) = z(t) + iy(t), where

z(t) = V/3sinht, y(t) = cosht.
Then we find that

() = / F(H)e e di,
where

f(t) = V3cosht +isinht,

o(t) = cosht [2 - gcosh2 t] .

The maximum of ¢(t) occurs at t = 0, where

p(0) =—-2/3, ¢'(0)=0, ¢"(0)=—6.

Laplace’s method implies that

0\ 0 (—2 )" e
W = 10(55)
~ ({7

It follows that

. 1 —2w3/2/3

Al(a’]) ~ We as r — 0. (315)

Using the method of stationary phase, one can show from (3.13) that the asymp-
totic behavior of the Airy function as x — —oo is given by

™

Ai(z) sin [§|a:|3/2 + —] : (3.16)

~ T /2|g[1/4 4

This result is an example of a connection formula. It gives the asymptotic behavior
as £ — —oo of the solution of the ODE (3.12) that decays exponentially as z — oo.
This connection formula is derived using the integral representation (3.13), which
provides global information about the solution.



