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Chapter 4

The Method of Matched Asymptotic
Expansions: ODEs

Many singularly perturbed differential equations have solutions that change rapidly
in a narrow region. This may occur in an initial layer where there is a rapid
adjustment of initial conditions to a quasi-steady state, in a boundary layer where
the solution away from the boundary adjusts to a boundary condition, or in an
interior layer such as a propagating wave-front.

These problems can be analyzed using the method of matched asymptotic ex-
pansions (MMAE), in which we construct different asymptotic solutions inside and
outside the region of rapid change, and ‘match’ them together to determine a global
solution. A typical feature of this type of problem is a reduction in the order of
the differential equation in the unperturbed problem, leading to a reduction in the
number of initial or boundary conditions that can be imposed upon the solution.
For additional information, see [3], [19].

4.1 Enzyme kinetics

Enzymes are proteins that act as catalysts. (There are also a smaller number of
enzymes, called ribozymes, that contain catalytic RNA molecules.) A substance
that is acted upon by an enzyme to create a product is called a substrate. Enzymes
are typically very specific and highly efficient catalysts — tiny concentrations of
enzymes compared with substrate concentrations are required.

For example, the enzyme catalase catalyzes the decomposition of hydrogen per-
oxide into water and oxygen, and one molecule of catalase can break up 40 million
molecules of hydrogen peroxide each second. As another example, carbonic anhy-
drase occurs in red blood cells, where it catalyzes the reaction CO3+H;0 <> H2COs3
that enables the cells to transport carbon dioxide from the tissues to the lungs. One
molecule of carbonic anhydrase can process one million molecules of CO2 each sec-
ond.

Michaelis and Menton (1913) proposed a simple model of enzymatically con-
trolled reactions, in which the enzyme E and substrate S combine to form a com-
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50 The Method of Matched Asymptotic Expansions: ODEs

plex C, and the complex breaks down irreversibly into the enzyme and a product
P. Symbolically, we have

E+S+«—C—E+P
We let
e=[E], s=[S], c¢=[C], p=[P],

denote the concentrations of the corresponding species.
According to the law of mass action, the rate of a reaction is proportional to the
product of the concentrations of the species involved, so that

% = —koes + (ko + k2) ¢,
Z_: = —kies + koc,

% = kies — (ko + k2) c,
% kac,

where kg, k1, ko are rate constants. We impose initial conditions
8(0) = s0, €(0) =e€o, ¢(0)=rco, p(0)=0,

corresponding to an initial state with substrate and enzyme but no complex or
product.

The equation for p decouples from the remaining equations. Adding the equa-
tions for e and ¢, we get

9 era=0,

which implies that
e(t) + c(t) = eg-

Thus, the equations reduce to a pair of ODEs for s and c:

ds

a = —kiegs + (kls + k‘o) c,

dc

% = ki1egs — (kls + ko + k‘g) c,

s(0) = so, c(0) =0.

We introduce dimensionless quantities
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ko k:k0+k2 Z‘:_6_0

- k‘1807 k‘130 ’ So )
Then u, v satisfy
du =—u+ (u+k— N,
dr
s@ =u— (u+ k), (4.1)
dr

u(0) =1, v(0) =0,

where A > 0 and k > .

The enzyme concentration is typically much less than the substrate concentra-
tion, and the ratio € is usually in the range 1072 to 10~7. Thus, we want to solve
(4.1) when ¢ is small.

This is a singular perturbation problem because the order of the system drops
by one when € = 0, and we cannot impose an initial condition on the dimensionless
complex concentration v. As we will see below, what happens is this: there is
an initial rapid adjustment of the complex and enzyme concentrations to quasi-
equilibrium values on a time-scale of the order £. Then there is a slower conversion
of the substrate into the product on a time-scale of the order 1. We will construct
inner and outer solutions that describe these processes and match them together.

4.1.1 OQwuter solution

We look for a straightforward expansion of the form

u(T,€) = uo(7) + eur (1) + O(?),
v(T,€) = vo(7) + evi (1) + O(e?).

Using these expansion in (4.1), and equating the leading order terms of the order
€% we find that
duo

—:—UO+(U0+I<J—)\)1)0,
dr

0 = ug — (uo + k) vo.

We cannot impose both initial conditions on the leading-order outer solution. We
will therefore take the most general solution of these equations. We will see, how-
ever, when we come to matching that the natural choice of imposing the initial
condition ug(0) =1 is in fact correct.
From the second equation,
Uo

Vg = —u0+k.

This complex concentration vy corresponds to a quasi-equilibrium for the substrate
concentration ug, in which the creation of the complex by the binding of the enzyme
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with the substrate is balanced by the destruction of the complex by the reverse
reaction and the decomposition of the complex into the product and the enzyme.
Substituting this result into the first equation, we get a first order ODE for ug(7):

duo _ )\Uo

?_ uo+k’

The solution of this equation is given by
uo(7) + kloguo(r) = a — Ar,
where a is a constant of integration. This solution is invalid near 7 = 0 because no

choice of a can satisfy the initial conditions for both ug and vg.

4.1.2 Inner solution

There is a short initial layer, for times ¢ = O(g), in which u, v adjust from their
initial values to values that are compatible with the outer solution found above. We
introduce inner variables

T = g U(T,e) = u(r,e), V(T,e)=uv(r,e).

The inner equations are

dUu
dv

U(0,e) =1, V(0,e) = 0.
We look for an innner expansion

U(T,e) = Uo(T) + eUs(T) + O(e?),
V(T,e) = Vo(T) + eVa(T) + O(£?).

The leading order inner equations are

dUyg

ar "

avi

a7 = Vo= (Uo+ BV,

The solution is
Up =1,
_ YTy —a+k)T
Vo= 157 [1 € ] :
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4.1.3 Matching

We assume that the inner and outer expansions are both valid for intermediate
times of the order ¢ < 7 < 1. We require that the expansions agree asymptotically
in this regime, where T' — 0o and 7 — 0 as € — 0. Hence, the matching condition
is

lim Up(T) = lim wug(7),

T—o0 T—0t
lim Vo(T) = i .
A5, Vo) = g, w()
This condition implies that
1

up(0) =1, v(0) = 1+—k’

which is satisfied when a = 1 in the outer solution. Hence
uo(7) + kloguog(r) =1 — Ar.

The slow manifold for the enzyme system is the curve
o

U Utk
Trajectories rapidly approach the slow manifold in the initial layer. They then move
more slowly along the slow manifold and approach the equilibrium v = v = 0 as
7 — o0o. The inner layer corresponds to the small amount of enzyme ‘loading up”
on the substrate. The slow manifold corresponds to the enzyme working at full
capacity in converting substrate into product.

A principle quantity of biological interest is the rate of uptake,

d’LL()
T = —— .
‘ dr 7=0
It follows from the outer solution that
A
rg = ——.
T 14k
The dimensional form of the rate of uptake is
ds
Ry = —
0 dt
Q30
so + km
where () = k2eq is the maximum reaction rate, and
ko + ko
k., =
m kl

is the Michaelis constant. The maximum rate depends only on ks; the rate limiting
step is C — P+ E.
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For more information about enzyme kinetics, see [12].

4.2 General initial layer problems

Consider a dynamical system for z(t) € R™, y(t) € R™:

T = f(z.ay)v
ey = g(z,y), (4.2)
z(0) ==zo,  y(0) = yo.

Here, f : R X R* - R™, g : R™ x R® — R™. Suppose that there is a function
@ : R™ — R” such that

9(z,p(x)) =0,

and for each fixed z € R", the solution y = ¢(z) is a globally asymptotically stable
equilibrium of the ‘fast’ system

ey(t) = g (z,y(1)) .- (4.3)
Then the behavior of solutions of (4.2) is as follows:

(a) for t = O(g), there is a short initial layer in which z(t) is nearly constant,
and close to its initial value g, and y(¢) changes rapidly from its initial
value to the quasi-steady state y = ¢(zq)-

(b) for ¢ = O(1), the solution is close to the slow manifold y = p(z) + O(¢),
and xz(t) satisfies

& = [ (z,p(x)) -

If (4.3) does not have a unique globally stable equilibrium for every z € R™,
then more complex phenomena can occur.

An interesting example of a fast-slow system of ODEs arises in modeling the
phenomenon of bursting in pancreatic S-cells. These cells are responsible for pro-
ducing insulin which regulates glucose levels in the body. The S-cells are observed
to undergo ‘bursting’ in which their membrane potential oscillates rapidly, with
periods of the order of milliseconds. These oscillations stimulate the secretion of
insulin by the cell. The length of each bursting period is on the order of seconds,
and its length is influenced by the amount of glucose in the bloodstream. Thus,
this mechanism provides one way that the body regulates glucose.

The basic mathematical model of bursting [12] consists of a fast/slow system.
The fast system undergoes a Hopf bifurcation, corresponding to the appearance of
a limit cycle oscillation, as the slow variable increases. On further increase in the
slow variable the limit cycle disappears at a homoclinic bifurcation, and the fast
system switches to a stable quasi-steady states. A decrease in the slow variable
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leads to a saddle-node bifurcation which destroys this quasi-steady state. When
the fast system is in its limit-cycle state, it drives an increase in the slow variable,
and when the fast system is in its quasi-steady state it drives a decrease in the slow
variable. The overall effect of this dynamics is a periodic oscillation of the slow
variable on a long time scale which switches on and off the rapid periodic bursting
of the fast system.

4.3 Boundary layer problems

The following explicitly solvable model boundary-value problem for a second order
linear ODE illustrates the phenomenon of boundary layers:

ey'+2y' +y=0, 0<z<1, (4.4)
y(0)=0, y(1)=1

Here, the prime denotes a derivative with respect to x, and ¢ is a small positive
parameter. The order of the ODE reduces from two to one when £ = 0, so we
cannot expect to impose both boundary conditions on the solution. As we will see,
when ¢ is small, there is a thin boundary layer (of width the order of &) near x = 0
where the solution changes rapidly to take on the boundary value.

4.3.1 Exzact solution

The exponential solutions of this equation are y = e™* where

—-1++/1-¢
m=———.
€
We write these roots as m = —a, —3/e where
1-+/1-¢
ale) = ———
€
1

= 5 +O(6),
Ble) = 1+vl-e

= 2+0(e).

The general solution is
y(z,e) = ae~ )7 4 he=AE)/e,
Imposing the boundary conditions and solving for the constants of integration a, b,
we find that
e—oT _ e—ﬂz/s

V@ e) = e
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Thus, the solution involves two terms which vary on widely different length-scales.

Let us consider the behavior of this solution as € — 0. The asymptotic behavior
is nonuniform, and there are two cases, which lead to matching outer and inner
solutions.

(a) Outer limit: x > 0 fixed and ¢ — 0. Then

y(z,€) = yo(),

where

e—w/2
Yo(x) = —1/2" (4.5)

This leading-order outer solution satisfies the boundary condition at z =1
but not the boundary condition at z = 0. Instead, yo(0) = e'/2.
(b) Inner limit: z/e = X fixed and € — 0F. Then

y(eX,e) = Yo(X),

where

1—e2X
Yo(X) = Ti/a

This leading-order inner solution satisfies the boundary condition at z = 0,
but not the one at z = 1, which corresponds to X = 1/e. Instead, we have
limx o0 Yo(X) = /2.

(c) Matching: Both the inner and outer expansions are valid in the region
€ € z < 1, corresponding to z — 0 and X — oo as € — 0. They satisfy
the matching condition

Jim yo(z) = lim ¥o(X).

Let us construct an asymptotic solution of (4.4) without relying on the fact that
we can solve it exactly.

4.3.2 Quter expansion

We begin with the outer solution. We look for a straightforward expansion
y(@,e) = yo(@) + ey1 (x) + O(e?).

We use this expansion in (4.4) and equate the coefficients of the leading-order terms
to zero. Guided by our analysis of the exact solution, we only impose the boundary
condition at x = 1. We will see later that matching is impossible if, instead, we
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attempt to impose the boundary condition at z = 0. We obtain that
2yo + o0 = 0,

The solution is given by (4.5), in agreement with the expansion of the exact solution.

4.3.3 Inner expansion

Next, we consider the inner solution. We suppose that there is a boundary layer at
z = 0 of width d(¢), and introduce a stretched inner variable X = /4. We look for
an inner solution

Y(X,e) = y(z,e).

Since

d

X’

I
8
S| =

we find from (4.4) that Y satisfies

€ n 2 ! —

6_2Y + SY +Y =0,
where the prime denotes a derivative with respect to X. There are two possible
dominant balances in this equation: (a) § = 1, leading to the outer solution; (b)
d = g, leading to the inner solution. Thus, we conclude that the boundary layer
thickness is of the order e, and the appropriate inner variable is

x=2
E

The equation for Y is then

Y 42" £ eY =0,
Y (0,e) = 0.

We impose only the boundary condition at X = 0, since we do not expect the inner
expansion to be valid outside the boundary layer where z = O(g).
We seek an inner expansion

Y(X,e) = Yo(X) + €Y1 (X) + O(e?)
and find that
Yy +2Yy =0,
Yo(0) = 0.
The general solution of this problem is

Yo(X)=c[l—e?¥], (4.6)
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where ¢ is an arbitrary constant of integration.

4.3.4 Matching

We can determine the unknown constant ¢ in (4.6) by requiring that the inner
solution matches with the outer solution (4.5). Here the matching condition is
simply that
lim yo(z) = lim Yp(X),
X—o0

z—0t
which implies that

c=e'/2

In summary, the asymptotic solution as ¢ — 07, is given by

y(z,c) = {61/2 [1-e722/5] ase— 0% with z/e fixed,
’ e—%/2+1/2 as € — 01 with = > 0 fixed.

A more systematic way to match solutions, which is useful in problems where
the behavior of the solution is not as simple, is to introduce an intermediate variable
& =z/n(e), where ¢ € n(e) < 1 as ¢ — 07, and require that the inner and outer
solutions have the same asymptotic behavior as ¢ — 01 with ¢ fixed for suitably
chosen 7. This requirement holds provided that both the inner and outer expansions
hold in an intermediate ‘overlap’ region in which z = O(n).

4.3.5 Uniform solution

We have constructed two different inner and outer asymptotic solutions in two
different regions. Sometimes it is convenient to have a single uniform solution. This
can be constructed from the inner and outer solutions as follows:

Yuniform = Yinner + Youter — Yoverlap-

Here, the function yoverlap is the common asymptotic behavior of the inner and
outer solutions in the matching region. Inside the boundary layer, we have youter ~
Yoverlap; SO Yuniform ~ Yinner- Away from the boundary layer, we have yinper ~
Yoverlaps SO Yuniform ~ Youter- Lhus, in either case the uniform solution yyniform has
the correct asymptotic behavior.

For the model ODE problem solved above, we have yoverlap = €'/, and the
leading order uniform solution is given by

yuniform(l',E) = 61/2 [e—w/Z _ e—2w/5 .

There are systematic matching methods that provide higher-order matched asymp-
totic solutions, but we will not discuss them here. In general such expansions may
not converge, reflecting the singular nature of the perturbation problem. This can
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also be anticipated from the fact that the location of the boundary layer switches
abruptly from z = 0 to £ = 1 as the sign of € switches from positive to negative.

4.3.6 Why is the boundary layer at x = 07

Suppose we impose the boundary condition at = 0 on the outer solution and
look for an inner solution and a boundary layer at x = 1. The leading-order outer
solution yq satisfies

2y +yo =0,
yO(O) =0,

so that
yo(z) = 0.

We look for an inner expansion y(z,e) = Y(X,¢) in a boundary layer near z = 1,
depending on a stretched inner variable

x=1=%

€
The leading-order inner solution Y5(X) = Y (X, 0) satisfies
vy - 2v) =0,
Yo(0) = 1.
The solution is
Yo(X) =e*X + ¢

In this case, the inner solution grows exponentially into to interior of the domain,
and Yp(X) — oo as X — 0o. Thus, no matching with the outer solution is possible.

4.4 Boundary layer problems for linear ODEs

Consider the linear BVP

ey’ +a(x)y +bx)y=0 0<z<1,
y(0)=a,  y(1) =45,

where a,b : [0,1] — R are continuous functions, and «a, 8 are constants.

The requirement that the inner, boundary layer solution decays exponentially
into the interior of the interval implies that if a(0) > 0, then a boundary layer can
occur at = 0, and if a(1) < 0, then a boundary layer can occur at = 1. Thus,
if a does not change sign on [0, 1], the boundary layer can occur at only one end,
while if @ changes sign, then more complicated behavior is possible:
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(a) if a(z) > 0, then the boundary layer is at = 0;

(b) if a(z) < 0, then the boundary layer is at z = 1;

(c) if a(x) changes sign and a'(x) > 0, then a boundary layer cannot occur at
either endpoint (in this case a corner layer typically occurs in the interior);

(d) if a(x) changes sign and a'(z) < 0, then a boundary layer can occur at both
endpoints.

The first two cases are treated by a straightforward modification of the expansion
for constant coefficients. The other two cases are more difficult, and we illustrate
them with some examples.

Example 4.1 Consider the BVP

ey +xy —y=0 —-1<z<1,
s =1, ) =2

This ODE can be solved exactly. One solution is y(z) = z. A second linearly
independent solution can be found by reduction of order, which gives

o =0 1 [ o1 g,

We will use the MMAE to construct an asymptotic solution without relying on an
exact solution.

The inner solution grows exponentially into the interior at either end, so we
cannot construct a boundary layer solution. We use instead left and right outer
solutions

y(m,s) = yo(z) + 6y1(x) + 0(62)5

where

Ty, — Yo = 0.

As we will see, matching implies that the left and right outer solutions are valid in
the intervals (—1,0) and (0, 1), respectively. Imposing the boundary conditions at
the left and right, we therefore get

—z ase— 01 with —1 < 2 < 0 fixed,
y(x,s) ~ + o
2r ase— 07 with 0 < 2 < 1 fixed.

These outer solutions meet at x = 0, where the coefficient of ' in the ODE vanishes.
The outer solution has a ‘corner’ at that point.

We seek an inner solution inside a corner layer about 2 = 0. To find the
appropriate scalings, we introduce the inner variables

T

X == Y =7y,
67 77:
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and use a dominant balance argument. The rescaled ODE is
€
(5_2Y” +XY'-Y =0.

The dominant balance for the inner solution occurs when § = £'/2, and all three

terms are of the same order of magnitude. Matching the inner solution with the
left and right outer solutions, we find that

—0X as X — —oo,

Y (X ~
Y (X,e) {Z(SX as X — oo.

We therefore choose 1 = 4.
The leading order inner solution is then given by

A z
y(e,) ~ %o (775)
where Yy (X) satisfies

YE)”+XYOI_YE)=07

Y(X)~{_X as X — —o0,
0 2X as X — oo.

In this case, the ODE does not simplify at all; however, we obtain a canonical
boundary value problem on R for matching the two outer solutions.
The solution of this inner problem is

Ven

and this completes the construction of the leading order asymptotic solution. (Other
problems may lead to ODEs that require the use of special functions.)

3 X
Yo(X)=-X + — le—fﬂ + X/ e t°/2 dt] ,
—0oQ

Example 4.2 Consider the BVP

ey —zy' +y=0 —-1<z<1,
y(-1) =1, y(@1) =2

The coefficients of y and %' have the opposite sign to the previous example, and we
can find an inner, boundary layer solution at both z = 0 and z = 1.
The leading order outer solution y(z,&) ~ yo(x) satisfies

_wy(l) + Yo = 07
with solution
Yo (J)) = C'Z.7

where C is a constant of integration.
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The inner solution near x = —1 is given by

1
o) =v (FEe).

where Y (X, €) satisfies

Y'+ (1—eX)Y'+eY =0,
Y(0,e) =1.

Expanding
Y(X,e) =Yo(X)+e¥i(X)+...,
we find that the leading order inner solution Y5(X) satisfies
Yo' +Y¥% =0,
Yo(0) =1.
The solution is
Yo(X)=1+A(1-e%),

where A is a constant of integration.
The inner solution near x = 1 is given by

y(z,6) = Z (1_”“",5) ,

3

where Z(X,¢e) satisfies

Z"+(1-eX)Z'+eZ =0,
Z(0,e) = 2.

Expanding
Z(X,E) = Z()(X) +EZ1(X) +... y
we find that the leading order inner solution Zy(X) satisfies

Zd + 2y =0,
Z(0) = 2.

The solution is
Zo(X)=2+B(1-¢7),

where B is a constant of integration.
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The leading order matching condition implies that

lim Y5(X) = lim yo(z),

X—o00 z——1
lim Zp(X) = lim yo(z),
X—o00 z—1

or
1+A=-C, 2+B=C.
We conclude that
A=—-(1+0), B=C-2.

The constant C is not determined by the matching conditions. Higher order match-
ing conditions also do not determine C. Its value (C' = 1/2) depends on the inter-
action between the solutions in the boundary layers at either end, which involves
exponentially small effects [13].

4.5 A boundary layer problem for capillary tubes

In view of the subtle boundary layer behavior that can occur for linear ODEs, it
is not surprising that the solutions of nonlinear ODEs can behave in even more
complex ways. Various nonlinear boundary layer problems for ODEs are discussed
in [3], [13], [19]. Here we will discuss a physical example of a boundary layer problem:
the rise of a liquid in a wide capillary tube. This problem was first analyzed by
Laplace [15]; see also [5], [14].

4.5.1 Formulation

Consider an open capillary tube of cross-section 0 C R? that is placed vertically in
an infinite reservoir of fluid (such as water). Surface tension causes the fluid to rise
up the tube, and we would like to compute the equilibrium shape of the meniscus
and how high the fluid rises.

According the the Laplace-Young theory, there is a pressure jump [p] across a
fluid interface that is proportional to the mean curvature s of the interface:

[p] = ok.

The constant of proportionality o is the coefficient of surface tension.

We use (z,y) as horizontal coordinates and z as a vertical coordinate, where we
measure the height z from the undisturbed level of the liquid far away from the
tube and pressure p from the corresponding atmospheric pressure. Then, assuming
that the fluid is in hydrostatic equilibrium, the pressure of a column of fluid of
height z is pgz, where p is the density of the fluid (assumed constant), and g is the
acceleration due to gravity.
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If the fluid interface is a graph z = u(z,y), then its mean curvature is given by

Vu
(1 + |Vu|2) e

where V denotes the derivative with respect to the horizontal coordinates. Choosing
the sign of the pressure jump appropriately, we find that u satisfies the following
PDE in Q

k=-V-

oV - _Vu = pgu.

(1 + |Vu|2) i

The boundary condition for the PDE follows from the fact that the fluid makes a
fixed angle 6,,, called the wetting angle, with the wall of the tube. Hence on the
boundary 0f), we have

Ou
on
where 8y = w/2 — 0,,. For definiteness, we assume that 0 < 6y < 7/2.

Let a be a typical length-scale of the tube cross-section (for example, the radius
of a circular tube). We introduce dimensionless variables

= tan 6y,

e’V Vu =u in 0,
(1 + |Vu|2)
6—“ = tanfy on 012,
on
where
2_ 0
pga?’

We define the capillary length-scale

==
Py
This a characteristic length-scale for the balance between surface-tension and grav-
ity forces, and we expect the fluid to rise up the tube by an amount of this order.
We can write ¢ = £/a, meaning that it is the ratio of the capillary length-scale to
the width of the tube. When € > 1, we have a ‘narrow’ tube, and when ¢ < 1 we
have a ‘wide’ tube.
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4.5.2 Wide circular tubes

We now specialize to the case of a cylindrical tube with circular cross-section. In
view of the symmetry of the problem, we expect that the height of the interface
z = u(r,e) depends on the radial coordinate r = (2? +y?)'/2, and the PDE reduces
to an ODE,

2 ' !
2w VL hecran,
T+ (w)?]
u'(0) = 0, u'(1) = tan 6.

Here, the prime denotes a derivative with respect to r. The surface must have zero
slope at r = 0 if it is to be smooth at the origin.

We will obtain an asymptotic solution for a wide circular tube, corresponding to
the limit € — 0.* In this case, we expect that the fluid interface is almost flat over
most of the interior of the tube (so that ' < 1, which linearizes the leading order
equations), and rises near the boundary r = 1 to satisfy the boundary condition.
We will obtain and match three leading-order asymptotic solutions:

(a) an inner solution valid near r = 0;

(b) an intermediate solution valid in 0 < r < 1 (as we will see, this solution is
the large-r limit of the inner solution, and matches with the boundary layer
solution at r = 1);

(c) a boundary layer solution valid near r = 1.

Our main goal is to compute an asymptotic approximation as € — 0 for the
height of the fluid at the center of the cylinder. The result is given in (4.13) below
— the height is exponentially small in ¢.

(a) The inner solution. We look for an inner solution near r = 0 of the form

_r

u(r,e) = AU(R,¢), R 4.7)

ga
where we will determine the scaling parameters A\(¢), §(¢) by matching and a dom-
inant balance argument.
The slope u' of the interface is of the order

o= —.

)
Using (4.7) in the ODE, we get

e1f  me ',
2R [1—|—Oz2(U')2]1/2 -

*An asymptotic solution can also be obtained for a narrow circular tube, an easier case since the
problem is a regular perturbation problem as ¢ — oo.
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where the prime denotes a derivative with respect to R. The dominant balance is
& = &, so the inner solution holds in a region of radius of the order £ about the
origin.

The inner equation is then

l{R—U’ _
R\ [1+a2Wn? )

Since we expect that the interface is almost flat in the interior, we assume that
a =0(1) as € — 0. (This assumption is consistent with the final solution, in which
A is exponentially small in €.)

The leading order inner solution U(R,e) ~ Up(R) then satisfies the linear
equation

1
= (RUY = Uy,
U} (0) = 0.

We do not attempt to impose the boundary condition at »r = 1, or R = 1/4, since
we do not expect the inner solution to be valid in the boundary layer where v’ is of
the order one.

We choose the parameter A in (4.7) so that Up(0) = 1. Thus, to leading order
in €, A is the height of the fluid at the center of the tube. It follows that

UO(R) =1 (R)7

where Ij is the modified Bessel function of order zero, which satisfies [17]

1
= (RI})' — Iy =0,

I(0) =1, I(0) =0.

A power series expansion shows that there is a unique solution of this singular IVP.
The solution has the integral representation

Io(R) = % /0 eReost gy

This function satisfies the initial conditions, and one can verify that it satisfies the
ODE by direct computation and an integration by parts:

1 1

R(RI{))'—IO = 15'—10+R15
1 /7 1 &
= —/ (coszt—l)eRCOStdt—}—R—/ costeftcost gt
™ Jo T Jo

Rcost

1 N a2 Rcost 1 i : 1€
= —= sin“te dt+ — (sint) dt
™ Jo T Jo

= 0.
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The asymptotic behavior of Io(R) as R — oo can be computed from the integral
representation by Laplace’s method, and it grows exponentially in R. The phase
cost has a maximum at ¢t = 0, and

o ]
L(R) ~ = / cRO-32) gy
™ Jo
R [ee]
~ e_/ e BEC/2 gt
™ Jo
et
27R

Hence, the outer expansion of this leading-order inner solution is

R
Uo(R) ~ 1/ ;T—R as R — oo. (4.8)

(b) Intermediate solution. In the region 0 < r < 1, we expect that v’ < 1. The
leading order intermediate solution u(r,&) ~ ug(r,€) then satisfies
2
57 (rub) = uo. (4.9)
This is the same equation as the one for the inner solution, so the inner solution
remains valid in this region. Nevertheless, it is instructive to obtain the asymptotic
behavior of the solution directly from the ODE.

Away from r = 0, the solutions of (4.10) depend on two different length-scales:
exponentially on a length-scale of the order € and more slowly on a length-scale of
the order one, arising from the dependence of the coefficients of the ODE on r due
to the cylindrical geometry.

To account for this behavior, we use the WKB method, and look for solutions
of the form

uo(r,e) = a(r,e)e? /e (4.10)

One motivation for this form is that the constant-coefficients ODE obtained by
‘freezing’ the value of r at some nonzero constant value,

e2uf = ug,
has solutions

uo = ae*"/e,

where a is a constant. When the coefficients in the ODE depend upon r, we allow
the amplitude a and the phase ¢(r) = £r to depend upon r in an appropriate way.
Using (4.10) in (4.9), and rewriting the result, we find that

1 1
a(p)? +¢e |2d' ¢ + a (ro)' | + 52; (ra') =a.
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We seek an asymptotic expansion of a,
a(r,e) ~ ag(r) +ear(r) + ... ase — 0.

Using this expansion in (4.5.2), expanding, and equating coefficients of €® we find
that

ao [(¢')* —1] =0.

Hence, if ag # 0, we must have
(¢) =1

Omitting the constants of integration, which can be absorbed into a, the solutions
are

p(r) = £r.

Equating coefficients of ¢ and simplifying the result, we find that

1
!
—ap = 0.
aO + 2/’.0/0

The solution is

where A is a constant.
We therefore obtain that

Ap e, A

ug(r) ~ i/2¢ +—e

—r/e
ri/2 :

Matching this solution as 7 — 0% with the the inner solution at r = 0, whose outer
expansion is given in (4.8), and using R = r/e, Uy = Aug, we find that there are no

terms that grow exponentially as r — 0% so A_ = 0, and
€
A =\ —.
+ 27

Thus, the outer expansion of the inner solution (4.8) is valid as e — 0 in the interior
0 < r < 1, and the leading order behavior of the solution is given by

u(r,e) ~ A/ ;Wer/g ase — 0. (4.11)

Here, the height A(e) of the interface at the origin remains to be determined. We
will find it by matching with the solution in the boundary layer.
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(c) The boundary layer solution. Since u'(1,¢) = tanfy > 0, we expect that
the slope u' of the interface is of the order one in a boundary layer near r = 1. We
therefore look for an inner boundary layer solution of the form

1—r
5

A dominant balance argument gives § = £, and then U satisfies the ODE

1 1-ex)v' | _
1—-eX {[1+(U’)2]1/2} =T,

where the prime denotes a derivative with respect to X. The boundary conditions
are

u(r,e) = 0U (X, e), X =

U'(0,e) = —tan @y, U'(X,e) >0 as X — oo.

The condition as X — oo is a matching condition, which would need to be refined
for higher-order approximations.
As e — 0, we have U(X,¢) ~ Uy(X) where Up(X) satisfies the following BVP

of '
— 0 % = Uo 0< X < oo,
[1+ (Uy)2?

U(I)(O) = —tanHo,
Uy(X) =0 as X — oo.

The ODE is autonomous, corresponding to a two-dimensional planar problem, and
(unlike the cylindrical problem) it can be solved exactly.

To solve the equation, it is convenient to introduce the angle ¢ > 0 of the
interface, defined by

tant = —UJ. (4.12)

We will use ¢ as a new independent variable, and solve for Uy = Up(¢)) and X =
X (). The change of variables X — ¢ is well-defined if U] is strictly decreasing,
as is the case, and then X = 0 corresponds to ¥y = 6§y and X = oo corresponds to
P =0.

Differentiating (4.12) with respect to X, and writing X -derivatives as d/dX, we
find that

dp  dUs
ax = axe 8
The ODE implies that
2
¢"Uo/ = Upsec® .

dXx?
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It follows that

dyp
ix = —Uy sec .

Using this result, the definition of ¢, and the equation
Uy _ dUy dX
dy dX dyp’
we find that Uy, X satisfy the following ODEs:
dUp  siny

&y Uy
ﬁ__coszb
dp Uy

The boundary conditions on X (¢) are
X (60) =0, X(@) >0 asy — 0T,
The solution for Uy is
Uo(¥) = /2(k — costp),
where k is a constant of integration. The solution for X is

1 o cost
X)) =— — dt,
®) V2 /¢ vk —cost

where we have imposed the boundary condition X (fg) = 0. The boundary condition
that X — oo as ¢ — 0 implies that £ = 1, and then

fo
Uo(w) = 2sin %, X(y) = %/ Cosf dt.

2 P sin 3

Evaluating the integral for X, we get

1 [P
X (v) §/¢ (cosec% — sin %) dt

t bo
logtan — + 2 cos —
4 2]y

_ 0o 0o Y ()
= logtan 1 + 2 cos > logtam4 2cos2.

The asymptotic behaviors of Uy and X as 1) — 01 are given by

Uo(¢) = ¢ +o(1),

X @) zlogtam%0 +2cos%0 —log% —240(1).
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It follows that the outer expansion of the leading-order boundary layer solution is
bo —4sin*(0g/4) ,—X
Up(X) ~ 4tan 7)€ e as X — oo.

Rewriting this expansion in terms of the original variables, u ~ €Uy, r = 1 — X,
we get

u(r,€) ~ 4¢ tan (%0) e 4sin*(Bo/4) g—1/cpr/e

The inner expansion as r — 17 of the leading order intermediate solution in
(4.11) is

These solutions match if
A =4tan (%0) e’4sm2(90/4)\/27ree’1/5.
Thus, we conclude that

0 .2
u(0,€) ~ 4tan (ZO) e~ 4sin(00/4)\/omee1/® ase — 0. (4.13)



