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Chapter 5

Method of Multiple Scales: ODEs

The method of multiple scales is needed for problems in which the solutions depend
simultaneously on widely different scales. A typical example is the modulation of
an oscillatory solution over time-scales that are much greater than the period of
the oscillations. We will begin by describing the Poincaré-Lindstedt method, which
uses a ‘strained’ time coordinate to construct periodic solutions. We then describe
the method of multiple scales.

5.1 Periodic solutions and the Poincaré-Lindstedt expansion

We begin by constructing asymptotic expansions of periodic solutions of ODEs. The
first example, Duffing’s equation, is a Hamiltonian system with a family of periodic
solutions. The second example, van der Pol’s equation, has an isolated limit cycle.

5.1.1 Duffing’s equation

Consider an undamped nonlinear oscillator described by Duffing’s equation

y′′ + y + εy3 = 0,

where the prime denotes a derivative with respect to time t. We look for solutions
y(t, ε) that satisfy the initial conditions

y(0, ε) = 1, y′(0, ε) = 0.

We look for straightforward expansion of an asymptotic solution as ε → 0,

y(t, ε) = y0(t) + εy1(t) + O(ε2).

The leading-order perturbation equations are

y′′0 + y0 = 0,

y0(0) = 1, y′0(0) = 0,
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74 Method of Multiple Scales: ODEs

with the solution

y0(t) = cos t.

The next-order perturbation equations are

y′′1 + y1 + y3
0 = 0,

y1(0) = 0, y′1(0) = 0,

with the solution

y1(t) =
1
32

[cos 3t− cos t]− 3
8
t sin t.

This solution contains a secular term that grows linearly in t. As a result, the
expansion is not uniformly valid in t, and breaks down when t = O(ε) and εy1 is
no longer a small correction to y0.

The solution is, in fact, a periodic function of t. The straightforward expansion
breaks down because it does not account for the dependence of the period of the
solution on ε. The following example illustrates the difficulty.

Example 5.1 We have the following Taylor expansion as ε → 0:

cos [(1 + ε)t] = cos t− εt sin t + O(ε2).

This asymptotic expansion is valid only when t ¿ 1/ε.

To construct a uniformly valid solution, we introduced a stretched time variable

τ = ω(ε)t,

and write y = y(τ, ε). We require that y is a 2π-periodic function of τ . The choice
of 2π here is for convenience; any other constant period — for example 1 — would
lead to the same asymptotic solution. The crucial point is that the period of y in τ

is independent of ε (unlike the period of y in t).
Since d/dt = ωd/dτ , the function y(τ, ε) satisfies

ω2y′′ + y + εy3 = 0,

y(0, ε) = 1, y′(0, ε) = 0,

y(τ + 2π, ε) = y(τ, ε),

where the prime denotes a derivative with respect to τ .
We look for an asymptotic expansion of the form

y(τ, ε) = y0(τ) + εy1(τ) + O(ε2),

ω(ε) = ω0 + εω1 + O(ε2).
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Using this expansion in the equation and equating coefficients of ε0, we find that

ω2
0y′′0 + y0 = 0,

y0(0) = 1, y′0(0) = 0,

y0(τ + 2π) = y0(τ).

The solution is

y0(τ) = cos τ,

ω0 = 1.

After setting ω0 = 1, we find that the next order perturbation equations are

y′′1 + y1 + 2ω1y
′′
0 + y3

0 = 0,

y1(0) = 0, y′1(0) = 0,

y1(τ + 2π) = y1(τ).

Using the solution for y0 in the ODE for y1, we get

y′′1 + y1 = 2ω1 cos τ − cos3 τ

=
(

2ω1 − 3
4

)
cos τ − 1

4
cos 3τ.

We only have a periodic solution if

ω1 =
3
8
,

and then

y1(t) =
1
32

[cos 3τ − cos τ ] .

It follows that

y = cos ωt +
1
32

ε [cos 3ωt− cos ωt] + O(ε2),

ω = 1 +
3
8
ε + O(ε2).

This expansion can be continued to arbitrary orders in ε.
The appearance of secular terms in the expansion is a consequence of the non-

solvability of the perturbation equations for periodic solutions.

Proposition 5.2 Suppose that f : T→ R is a smooth 2π-periodic function, where
T is the circle of length 2π. The ODE

y′′ + y = f
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has a 2π-periodic solution if and only if
∫

T
f(t) cos t dt = 0,

∫

T
f(t) sin t dt = 0.

Proof. Let L2(T) be the Hilbert space of 2π-periodic, real-valued functions with
inner product

〈y, z〉 =
∫

T
y(t)z(t) dt.

We write the ODE as

Ay = f,

where

A =
d2

dt2
+ 1.

Two integration by parts imply that

〈y,Az〉 =
∫

T
y (z′′ + z) dt

=
∫

T
(y′′ + y) z dt

= 〈Ay, z〉,
meaning that operator A is formally self-adjoint in L2(T). Hence, it follows that if
Ay = f and Az = 0, then

〈f, z〉 = 〈Ay, z〉
= 〈y, Az〉
= 0.

The null-space of A is spanned by cos t and sin t. Thus, the stated condition is
necessary for the existence of a solution.

When these solvability conditions hold, the method of variation of parameters
can be used to construct a periodic solution

y(t) =

Thus, the conditions are also sufficient. ¤

In the equation for y1, after replacing τ by t, we had

f(t) = 2ω1 cos t− cos 3t.

This function is orthogonal to sin t, and

〈f, cos t〉 = 2π
{

2ω1cos2 t− cos4 t
}

,
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where the overline denotes the average value,

f =
1
2π

∫

T
f(t) dt.

Since

cos2 t =
1
2
, cos4 t =

3
8
,

the solvability condition implies that ω1 = 3/8.

5.1.2 Van der Pol oscillator

We will compute the amplitude of the limit cycle of the van der Pol equation with
small damping,

y′′ + ε
(
y2 − 1

)
y′ + y = 0.

This ODE describes a self-excited oscillator, whose energy increases when |y| < 1
and decreases when |y| > 1. It was proposed by van der Pol as a simple model of a
beating heart. The ODE has a single stable periodic orbit, or limit cycle.

We have to determine both the period T (ε) and the amplitude a(ε) of the limit
cycle. Since the ODE is autonomous, we can make a time-shift so that y′(0) = 0.
Thus, we want to solve the ODE subject to the conditions that

y(t + T, ε) = y(t, ε),

y(0, ε) = a(ε),

y′(0, ε) = 0.

Using the Poincaré-Lindstedt method, we introduce a strained variable

τ = ωt,

and look for a 2π-periodic solution y(τ, ε), where ω = 2π/T . Since d/dt = ωd/dτ ,
we have

ω2y′′ + εω
(
y2 − 1

)
y′ + y = 0,

y(τ + 2π, ε) = y(τ, ε),

y(0, ε) = a,

y′(0, ε) = 0,

where the prime denotes a derivative with respect to τ We look for asymptotic
expansions,

y(τ, ε) = y0(τ) + εy1(τ) + O(ε2),

ω(ε) = ω0 + εω1 + O(ε2),

a(ε) = a0 + εa1 + O(ε2).
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Using these expansions in the equation and equating coefficients of ε0, we find that

ω2
0y′′0 + y0 = 0,

y0(τ + 2π) = y0(τ),

y0(0) = a0,

y′0(0) = 0.

The solution is

y0(τ) = a0 cos τ,

ω0 = 1.

The next order perturbation equations are

y′′1 + y1 + 2ω1y
′′
0 +

(
y2
0 − 1

)
y′0 = 0,

y1(τ + 2π) = y1(τ),

y1(0) = a1,

y′1(0) = 0.

Using the solution for y0 in the ODE for y1, we find that

y′′1 + y1 = 2ω1 cos τ + a0

(
a2
0 cos2 τ − 1

)
sin τ.

The solvability conditions, that the right and side is orthogonal to sin τ and cos τ

imply that

1
8
a3
0 −

1
2
a0 = 0, ω1 = 0.

We take a0 = 2; the solution a0 = −2 corresponds to a phase shift in the limit cycle
by π, and a0 = 0 corresponds to the unstable steady solution y = 0. Then

y1(τ) = −1
4

sin 3τ +
3
4

sin τ + α1 cos τ.

At the next order, in the equation for y2, there are two free parameters, (a1, ω2),
which can be chosen to satisfy the two solvability conditions. The expansion can
be continued in the same way to all orders in ε.

5.2 The method of multiple scales

The Poincaré-Linstedt method provides a way to construct asymptotic approxima-
tions of periodic solutions, but it cannot be used to obtain solutions that evolve
aperiodically on a slow time-scale. The method of multiple scales (MMS) is a more
general approach in which we introduce one or more new ‘slow’ time variables for
each time scale of interest in the problem. It does not require that the solution
depends periodically on the ‘slow’ time variables.
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We will illustrate the method by applying it to Mathieu’s equation for y(t, ε),

y′′ + (1 + δ + ε cos kt) y = 0,

where (δ, ε, k) are constant parameters, and the prime denotes a derivative with
respect to t. This equation describes a parametrically forced linear oscillator whose
frequency is changed sinusoidally in time (e.g. small amplitude oscillations of a
swing). The equilibrium y = 0 is unstable when the frequency k of the parametric
forcing is sufficiently close to the resonant frequency

√
1 + δ of the unforced (ε = 0)

oscillator.
We suppose that ε ¿ 1 and

δ = εδ1,

where δ1 = O(1) as ε → 0. We will consider the case k = 2, which corresponds to
the strongest instability, when y(t, ε) satisfies

y′′ + (1 + εδ1 + ε cos 2t) y = 0.

The idea of the MMS is to describe the evolution of the solution over long time-
scales of the order ε−1 by the introduction of an additional ‘slow’ time variable

τ = εt.

We then look for a solution of the form

y(t, ε) = ỹ(t, εt, ε),

where ỹ(t, τ, ε) is a function of two time variables (t, τ) that gives y when τ is
evaluated at εt.

Applying the chain rule, we find that

y′ = ỹt + εỹτ ,

y′′ = ỹtt + 2εỹtτ + ε2ỹττ ,

where the subscripts denote partial derivatives. Using this result in the original
equation, and denoting partial derivatives by subscripts, we find that ỹ(t, τ, ε) sat-
isfies

ỹtt + 2εỹtτ + ε2ỹττ + (1 + εδ1 + ε cos 2t) ỹ = 0.

In fact, ỹ(t, τ, ε) only has to satisfy this equation when τ = εt, but we will require
that it satisfies it for all (t, τ). This requirement implies that y satisfies the original
ODE. We have therefore replaced an ODE for y by a PDE for ỹ. At first sight,
this may not appear to be an improvement, but as we shall see we can use the
extra flexibility provided by the dependence of ỹ on two variables to obtain an
asymptotic solution for y that is valid for long times of the order ε−1. Specifically,
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we will require that y(t, τ, ε) is a periodic function of the ‘fast’ variable t. Moreover,
we only need to solve ODEs in t to construct this asymptotic solution.

We expand

ỹ(t, τ, ε) = y0(t, τ) + εy1(t, τ) + O(ε2).

We use this expansion in the equation for ỹ, and equate coefficients of ε0 and ε to
zero. We find that

y0tt + y0 = 0,

y1tt + y1 + 2y0tτ + (δ1 + cos 2t) y0 = 0.

The solution of the first equation is

y0(t, τ) = A(τ)eit + c.c.

Here, it is convenient to use complex notation. The amplitude A(τ) is an arbitrary
complex valued function of the ‘slow’ time, and c.c. denotes the complex conjugate
of the preceding terms.

Using this solution in the second equation, and writing the cosine in terms of
exponentials, we find that y1 satisfies

y1tt + y1 = −2iAτeit −A (δ1 + cos 2t) eit + c.c.

= −1
2
Ae3it −

(
2iAτ + δ1A +

1
2
A∗

)
eit + c.c.

Here, the star denotes a complex conjugate. The solution for y1 is periodic in t,
and does not contain secular terms in t, if and only if the coefficient of the resonant
term eit is zero, which implies that A(τ) satisfies the ODE

2iAτ + δ1A +
1
2
A∗ = 0.

Writing A = u + iv in terms of its real and imaginary parts, we find that
(

u

v

)

τ

=
(

0 δ1/2− 1/4
−δ1/2− 1/4 0

)(
u

v

)

The solutions of this equation are proportional to e±λτ where

λ =
1
2

√
1
4
− δ2

1 .

Thus, in the limit ε → 0, the equilibrium y = 0 is unstable when |δ1| < 1/2, or

|δ| < 1
2
|ε|.
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5.3 The method of averaging

Consider a system of ODEs for x(t) ∈ Rn which can be written in the following
standard form

x′ = εf(x, t, ε). (5.1)

Here, f : Rn × R× R → Rn is a smooth function that is periodic in t. We assume
the period is 2π for definiteness, so that

f(x, t + 2π, ε) = f(x, t, ε).

Many problems can be reduced to this standard form by an appropriate change of
variables.

Example 5.3 Consider a perturbed simple harmonic oscillator

y′′ + y = εh(y, y′, ε).

We rewrite this equation as a first-order system and remove the unperturbed dy-
namics by introducing new dependent variables x = (x1, x2) defined by

(
y

y′

)
=

(
cos t sin t

− sin t cos t

)(
x1

x2

)
.

We find, after some calculations, that (x1, x2) satisfy the system

x′1 = −εh (x1 cos t + x2 sin t,−x1 sin t + x2 cos t, ε) sin t,

x′2 = εh (x1 cos t + x2 sin t,−x1 sin t + x2 cos t, ε) cos t,

which is in standard periodic form.

Using the method of multiple scales, we seek an asymptotic solution of (5.1)
depending on a ‘fast’ time variable t and a ‘slow’ time variable τ = εt:

x = x(t, εt, ε).

We require that x(t, τ, ε) is a 2π-periodic function of t:

x(t + 2π, τ, ε) = x(t, τ, ε).

Then x(t, τ, ε) satisfies the PDE

xt + εxτ = f(x, t, ε).

We expand

x(t, τ, ε) = x0(t, τ) + εx1(t, τ) + O(ε2).

At leading order, we find that

x0t = 0.
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It follows that x0 = x0(τ) is independent of t, which is trivially a 2π-periodic
function of t. At the next order, we find that x1 satisfies

x1t + x0τ = f (x0, t, 0) , (5.2)

x1(t + 2π, τ) = x1(t, τ).

The following solvability condition is immediate.

Proposition 5.4 Suppose f : R → Rn is a smooth, 2π-periodic function. Then
the n× n system of ODEs for x(t) ∈ Rn,

x′ = f(t),

has a 2π-periodc solution if and only if

1
2π

∫ 2π

0

f(t) dt = 0.

Proof. The solution is

x(t) = x(0) +
∫ t

0

f(s) ds.

We have

x(t + 2π)− x(t) =
∫ t+2π

t

f(s) ds,

which is zero if and only if f has zero mean over a period. ¤

If this condition does not hold, then the solution of the ODE grows linearly in
time at a rate equal to the mean on f over a period.

An application of this proposition to (5.2) shows that we have a periodic solution
for x1 if and only if x0 satisfies the averaged ODEs

x0τ = f (x0) ,

where

f(x) =
1
2π

∫ 2π

0

f(x, t, 0) dt.

First we state the basic existence theorem for ODEs, which implies that the
solution of (5.1) exists on a time imterval ofthe order ε−1.

Theorem 5.5 Consider the IVP

x′ = εf(x, t),

x(0) = x0,
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where f : Rn×T→ Rn is a Lipschitz continuous function of x ∈ Rn and a continuous
function of t ∈ T. For R > 0, let

BR(x0) = {x ∈ Rn | |x− x0| < R} ,

where | · | denotes the Euclidean norm,

|x| =
n∑

i=1

|xi|2 .

Let

M = sup
x∈BR(x0),t∈T

|f(x, t)|.

Then there is a unique solution of the IVP,

x : (−T/ε, T/ε) → BR(x0) ⊂ Rn

that exists for the time interval |t| < T/ε, where

T =
R

M
.

Theorem 5.6 (Krylov-Bogoliubov-Mitropolski) With the same notation as
the previous theorem, there exists a unique solution

x : (−T/ε, T/ε) → BR(x0) ⊂ Rn

of the averaged equation

x′ = εf(x),

x(0) = x0,

where

f(x) =
1
2π

∫

T
f(x, t) dt.

Assume that f : Rn × T → Rn is continuously differentiable. Let 0 < R̃ < R, and
define

T̃ =
R̃

M̃
, M̃ = sup

x∈BR̃(x0),t∈T
|f(x, t)|.

Then there exist constants ε0 > 0 and C > 0 such that for all 0 ≤ ε ≤ ε0

|x(t)− x(t)| ≤ Cε for |t| ≤ T̃ /ε.
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A more geometrical way to view these results is in terms of Poincaré return
maps. We define the Poincaré map P ε(t0) : Rn → Rn for (5.1) as the 2π-solution
map. That is, if x(t) is the solution of (5.1) with the initial condition x(t0) = x0,
then

P ε(t0)x0 = x(t0 + 2π).

The choice of t0 is not essential here, since different choices of t0 lead to equivalent
Poincaré maps when f is a 2π-periodic function of t. Orbits of the Poincaré map
consist of closely spaced points when ε is small, and they are approximated by the
trajectories of the averaged equations for times t = O(1/ε).

5.4 The WKB method for ODEs

Suppose that the frequency of a simple harmonic oscillator is changing slowly com-
pared with a typical period of the oscillation. For example, consider small-amplitude
oscillations of a pendulum with a slowly varying length. How does the amplitude
of the oscillations change?

The ODE describing the oscillator is

y′′ + ω2(εt)y = 0,

where y(t, ε) is the amplitude of the oscillator, and ω(εt) > 0 is the slowly varying
frequency.

Following the method of multiple scales, we might try to introduce a slow time
variable τ = εt, and seek an asymptotic solutions

y = y0(t, τ) + εy1(t, τ) + O(ε2).

Then we find that

y0tt + ω2(τ)y0 = 0,

y0(0) = a, y′0(0) = 0,

with solution

y0(t, τ) = a cos [ω(τ)t] .

At next order, we find that

y1tt + ω2y1 + 2y0tτ = 0,

or

y1tt + ω2y1 = 2aωωτ t cos ωt.
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We cannot avoid secular terms that invalidate the expansion when t = O(1/ε). The
defect of this solution is that its period as a function of the ‘fast’ variable t depends
on the ‘slow’ variable τ .

Instead, we look for a solution of the form

y = y(θ, τ, ε),

θ =
1
ε
ϕ(εt), τ = εt,

where we require y to be 2π-periodic function of the ‘fast’ variable θ,

y(θ + 2π, τ, ε) = y(θ, τ, ε).

The choice of 2π for the period is not essential; the important requirement is that
the period is a constant that does not depend upon τ .

By the chain rule, we have

d

dt
= ϕτ∂θ + ε∂τ ,

and

y′′ = (ϕτ )2 yθθ + ε {2ϕτyθτ + ϕττyθ}+ ε2yττ .

It follows that y satisfies the PDE

(ϕτ )2 yθθ + ω2y + ε {2ϕτyθτ + ϕττyθ}+ ε2yττ = 0.

We seek an expansion

y(θ, τ, ε) = y0(θ, τ) + εy1(θ, τ) + O(ε2).

Then

(ϕτ )2 y0θθ + ω2y0 = 0.

Imposing the requirement that y0 is a 2π-periodic function of θ, we find that

(ϕτ )2 = ω2,

which is satisfied if

ϕ(τ) =
∫ τ

0

ω(σ) dσ.

The solution for y0 is then

y0(θ, τ) = A(τ)eiθ + c.c.,

where it is convenient to use complex exponentials, A(τ) is an arbitrary complex-
valued scalar, and c.c. denotes the complex conjugate of the preceding term.
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At the next order, we find that

ω2 (y1θθ + y1) + 2ωy0θτ + ωτy0θ = 0.

Using the solution for y0 is this equation, we find that

ω2 (y1θθ + y1) + i (2ωAτ + ωτA) eiθ + c.c. = 0.

The solution for y1 is periodic in θ if and only if A satisfies

2ωAτ + ωτA = 0.

It follows that

(
ω|A|2)

τ
= 0,

so that

ω|A|2 = constant.

Thus, the amplitude of the oscillator is proportional to ω−1/2 as its frequency
changes.

The energy E ofthe oscillator is given by

E =
1
2

(y′)2 +
1
ω2

y2

=
1
2
ω2|A|2.

Thus, E/ω is constant. The quantity E/ω is called the action. It is an example of
an adiabatic invariant.

The WKB method can also be used to obtain asymptotic approximations as
ε → 0 of ODEs of the form

ε2y′′ + V (x)y = 0.

This form corresponds to a change of variables t 7→ x/ε in the previous equations.
The corresponding WKB expansion is is

y(x, ε) = A(x, ε)eiS(x)/ε,

A(x, ε) = A0(x) + εA1(x) + . . . .

This expansion breaks down at turning points where V (x) = 0, and then one must
use Airy functions (or other functions at degenerate turning points) to describe the
asymptotic behavior of the solution.
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5.5 Perturbations of completely integrable Hamiltonian systems

Consider a Hamiltonian system whose configuration is described by n angles x ∈ Tn,
where Tn is the n-dimensional torus, with corresponding momenta p ∈ Rn. The
Hamiltonian H : Tn × Rn → R gives the energy of the system. The motion is
described by Hamilton’s equations

dx

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂x
.

This is a 2n× 2n system of ODEs for x(t), p(t).

Example 5.7 The simple pendulum has Hamiltonian

H(x, p) =
1
2
p2 + 1− cosx.

A change of coordinates (x, p) 7→ (x̃, p̃) that preserves the form of Hamilton’s
equations (for any Hamiltonian function) is called a canonical change of coordinates.
A Hamiltonian system is completely integrable if there exists a canonical change
of coordinates (x, p) 7→ (ϕ, I) such that H = H(I) is independent of the angles
ϕ ∈ Tn. In these action-angle coordinates, Hamilton’s equations become

dϕ

dt
=

∂H

∂I
,

dI

dt
= 0.

Hence, the solutions are I = constant and

ϕ(t) = ω(I)t + ϕ0,

where

ω(I) =
∂H

∂I
.

If

Hε(ϕ, I) = H0(I) + εH1(ϕ, I)

is a perturbation of a completely integrable Hamiltonian, then Hamilton’s equations
have the form

dϕ

dt
= ω0(I) + εf(ϕ, I),

dI

dt
= εg(ϕ, I),

where

ω0 =
∂H0

∂I
, f =

∂H1

∂I
, g = −∂H1

∂ϕ
.

The study of these problems using multi-phase averaging methods is very subtle
(e.g. KAM theory).


