Chapter 5

Homogenization Theory

Homogenization theory is concerned with the derivation of equations for averages
of solutions of equations with rapidly varying coefficients. This problem arises in
obtaining macroscopic, or ‘homogenized’ or ‘effective’, equations for systems with
a fine microscopic structure. Our goal is to represent a complex, rapidly-varying
medium by a slowly-varying medium in which the fine-scale structure is averaged
out in an appropriate way.

We will consider the homogenization of second-order linear elliptic PDEs. This
is a fundamental and physically important example, but similar ideas apply to many
other types of linear and nonlinear PDEs, such as Hamilton-Jacobi equations and
various kinds of time-dependent PDEs.

5.1 Equilibrium problems

Suppose that u : R¢ — R is the density of a conserved quantity, with flux q : R? —
R? and source density f : RY — R. We suppose that the flux is linearly related to
the density gradient, so that

q=—AVu,

where A is the conductivity tensor. Such a linear constitutive relation holds in the
commonly occurring case of systems that are sufficiently close to equilibrium. Far
from equilibrium, the flux may be a nonlinear function of the density gradient, but
we will not consider that case here.

In general, the conductivity tensor A is symmetric and positive-definite. In an
isotropic medium, we have A = al, where I denotes the identity tensor and a > 0.
If the medium is nonuniform, then A depends on space z € R?. In component
notation, we write A = (a;;) as a matrix, where 1 <4,j <d.

In equilibrium, the total flux of the conserved quantity out of any (smooth)
region Q C R? is equal to the generation of the conserved quantity by sources inside
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where n is the unit outward normal vector on the boundary 99 of Q. It follows
from this equation and the divergence theorem that

the region, so that

/(V-q—f) dz =0.
Q
Since this equation holds for arbitrary regions €2, we conclude that
V-q=1/.
Hence, the density u satisfies the elliptic equation
-V - (AVu) = f.

The component form of this equation is

9

where we use the summation convention.

Example 5.1 Some physical examples are the following.

(a) Heat flow: T = temperature, q = heat flux, and f = heat source density.
Then q = —AVT is Fourier’s law.

(b) Porous media: p = pressure, and v = velocity. Here, the velocity is related
to the pressure gradient by Darcy’s law, v = —AVp, and for incompressible
flows we have V-v =0, so f = 0.

(¢c) Electrostatics: D = electric induction, E = electric intensity, and p =
charge density. The electric induction and intensity are related in a linear
medium by

D =c¢E,

where € is the permittivity tensor. According to Maxwell’s equations, we
have E = —V ¢ where @ is the electric potential, and

V -D = 4mp.

Suppose we have a composite medium with a periodic structure.* Let X be a
typical microscopic length scale of a single period cell and L a typical macroscopic

*Homogenization theory also applies to stationary random media, although the analysis is more
difficult than the periodic case.
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length scale of the medium. Homogenization theory applies when

A
== 1.
IS5 L<<

If we non-dimensionalize space variables by L, then we have

A=a(2).

where A(y) is a periodic function of y.
In equilibrium, the microscopic solution u® satisfies

—V. [A (g) Vus] = f(a).

As ¢ = 0, we have u® — u, where the macroscopic solution u satisfies an effective,
or homogenized, equation of the form

—V - [A"VuE] = f(a).

We want to obtain an expression for the effective, or homogenized, conductivity
tensor A". As we will see, A" is not simply the average of A(y).

Example 5.2 Consider a one-dimensional medium made up of two materials, one
with very low conductivity and the other with very high conductivity. It is clear
that the conductivity of the composite is limited by the conductivity of the low-
conductivity material, and it cannot be equal to the mean conductivity. As we
will show, the effective conductivity of the composite is the harmonic mean of the
conductivities of the components.

Example 5.3 The effective conductivity of a multi-dimensional mixture of two
composites depends on the geometry of the mixture. For example, the effective
conductivity of a medium made up of periodic layers is different from that of a
medium made up of a periodic array of spherical inclusions, even if the volume
fractions of the layers and the spheres are the same.

5.2 Multiple scale expansion

We write the PDE in component form,

a5 (D) ] =1 ().

where we sum over repeated indices. We assume that:

(a) aij(z,y) = aji(z,y);
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(b) there is v > 0 such that for all £ € R?
aij(z,y)&&; > 7&i&,

meaning that the PDE is elliptic;

(€) aij(z,y + ex) = aij(x,y), where e, k =1,...,d, is the unit vector in the k
direction, meaning that the coefficients are periodic in y with a cubic unit
cell, so that a;j(z,-) : T? - R, where T? is the d-dimensional unit torus
(other unit cells can be treated in a similar way);

(d) f(z,y) is periodic in ¥, so that f(z,-) : T? —» R.

We look for an asymptotic solution of the form
u(z,e) = v <:c, E,s) ,
€
for a suitable function v(z,y,e). Then

ou _1@4_ ov
dx;  e0y; Ox;

and using the method of multiple scales, we require that v(x,y, ) satisfies the PDE

_19 ai; (z )@ 190 ai; (z )@ 19 ai; (z )6”
€2 Jy; ij \ T, Y dy; c ox; |V 'Y ay; = Oyi ij \ LY Bz;
0 Ov
o |o5 @) 5| = 1@
? J

We further require that v(x,y,€) is periodic in y, so that
v(z,y + e, e) = v(z,y,€) fork=1,...,d,

or v(z,-¢e): T¢ - R
We seek an asymptotic expansion for v of the form

v (Z’,y,&') = UO(ny) + E'Ul(l',y) + E2U2($7y) +.o..

We use this expansion in the PDE and equate coefficients of powers of €. At the
order £~ 2, we find that v, satisfies

_0 |, 9] _,
oy | Yoy

Proposition 5.4 Suppose that a;; : T? — R, where a;; € L®(T?) satisfies the
ellipticity conditions stated above. If v : T¢ — R, where v € H*(T?), is a periodic
function that satisfies the elliptic PDE

SN P
ay; [“7ay;] ="

then v = constant.
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Proof. We multiply the PDE by v, integrate over T¢, and integrate by parts.
The boundary terms vanish if the solution is periodic, and hence

ov Ov
Qi dy = 0
/Td " By oy; Y

Ellipticity implies that the integrand is non-negative, and therefore

aij@@ =Y,
Oyi Oy,
which implies that
D _y
Oy; ’
50 v = constant. O

Connected with this result is the following solvability condition.

Proposition 5.5 Suppose that a;; : T - R and f : T — R are periodic func-
tions, where a;; € L°(T) satisfies the ellipticity conditions stated above, and
f € H'(T9). Let angular brackets denote an average with respect to y,

Then the PDE

0 Ov
o [az’j () 6—%] =f

has a periodic solution v : T — R, with v € H~(T¢), if and only if
(fy=0.

Proof. An integration by parts implies that the operator L : H(T?) — H 1(T?)

defined by
0 Ov
Lo = —— la;i —
"7 oy [a” 3%‘]
is self-adjoint, meaning that
(u, Lv) = (Lu,v)

for all u,v € H*(T?), where for u,v € L*(T?)

(w) = [ uw)dy.

The null space of L is spanned by constant functions, and thus Lu = f is solvable
only if f is orthogonal to 1, which implies that its mean is zero. Equivalently, we
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can obtain this necessary solvability condition by averaging the PDE over a unit
cell.

Conversely, if (f) = 0, then the variational theory of elliptic PDEs implies that
the PDE is solvable. The solution is unique up to an arbitrary additive constant]

Since z occurs in the leading-order equation as a parameter, it follows that
vo = vo(z). Thus, vy depends only on the ‘slow’ variable z and is perturbed by
small rapidly-varying fluctuations.

At the order ¢!, after using the fact that vg = vg(x), we find that v; satisfies

9 g, 20 Z 9ais 9%
dyi | Yoy;]  Oyi Ox;

Let wg(x,-) : T = R, for k = 1,...,d, be the solution of the ‘cell-problem’

_0 aij (z )% _6“ik($ )
dy; 7 Y oy; | Oy v

(To specify wy(z,y) uniquely, we can require that it has zero mean over y.) In
general, we cannot compute wy, explicitly, but the solution exists by the previous
proposition because Qa;r,/0y; is a derivative and therefore has zero mean. By lin-
earity, we find that

vi(z,y) = 01 (x) + 2—;;<x>wk (2,9),

where 71 (z) is an arbitrary function of integration.
At the order 1, we find that vy satisfies

_9 (G%> _0 (G%> _9 (a%) _ 90 (G%) _
6y,~ Y (91/]' 61}‘ 9 (91/]' 63/,' Y 612]' 8ar,- “ 6.Z'j R

Averaging this equation with respect to y, we obtain the solvability condition

_6% (<ag_yl>) _ % (<ai,-> %) = (f).

Using the expression for v; in this equation, we find that vy satisfies the homogenized

equation
3 h 8'[)0 _
" s (%) =,

ow;
h _ . s}
a;; = <CL” + a; 3yk > .

The second term on the right hand side gives the correction between the effective
conductivity a?j and the mean conductivity (a;;).

where
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Example 5.6 In the case of one space dimension, where the conductivity is a
scalar function a(y) assumed independent of the ‘slow’ variable x for simplicity, the

cell-problem is
_d ([ duw\ _da
dy \"dy) dy’

Integration of this equation implies that

dw k

— =1+ -,

dy a
where k is a constant of integration. Averaging this equation over a period and
using the periodicity of w, we find that

The effective conductivity a” is given by

ah a+ ad—w
= a

= k.

Hence, the effective conductivity is the harmonic mean of the microscopic conduc-
tivity.



