Chapter 1

Metric and Normed Spaces

We are all familiar with the geometrical properties of ordinary, three-dimensional
Euclidean space. A persistent theme in mathematics is the grouping of various kinds
of objects into abstract spaces. This grouping enables us to extend our intuition
of the relationship between points in Euclidean space to the relationship between
more general kinds of objects, leading to a clearer and deeper understanding of
those objects.

The simplest setting for the study of many problems in analysis is that of a metric
space. A metric space is a set of points with a suitable notion of the distance between
points. We can use the metric, or distance function, to define the fundamental
concepts of analysis, such as convergence, continuity, and compactness.

A metric space need not have any kind of algebraic structure defined on it. In
many applications, however, the metric space is a linear space with a metric derived
from a norm that gives the “length” of a vector. Such spaces are called normed
linear spaces. For example, n-dimensional Euclidean space is a normed linear space
(after the choice of an arbitrary point as the origin). A central topic of this book
is the study of infinite-dimensional normed linear spaces, including function spaces
in which a single point represents a function. As we will see, the geometrical in-
tuition derived from finite-dimensional Euclidean space remains essential, although
completely new features arise in the case of infinite-dimensional spaces.

In this chapter, we define and study metric spaces and normed linear spaces.
Along the way, we review a number of definitions and results from real analysis.

1.1 Metrics and norms

Let X be an arbitrary nonempty set.

Definition 1.1 A metric, or distance function, on X is a function

d: X xX =R,
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Fig. 1.1 A family tree used in the definition of the ultrametric in Example 1.3.

with the following properties:

d(z,y) > 0 for all z,y € X, and d(z,y) = 0 if and only if z = y;
(b) d(z,y) = d(y,z), for all z,y € X;
d(z,y) < d(z,2) +d(z,y), for all z,y,z € X.

A metric space (X,d) is a set X equipped with a metric d.

When the metric d is understood from the context, we denote a metric space
simply by the set X. In words, the definition states that:

(a) distances are nonnegative, and the only point at zero distance from z is z
itself;

(b) the distance is a symmetric function;

(c) distances satisty the triangle inequality.

For points in the Euclidean plane, the triangle inequality states that the length of
one side of a triangle is less than the sum of the lengths of the other two sides.

Example 1.2 The set of real numbers R with the distance function d(x,y) =
|z — y| is a metric space. The set of complex numbers C with the distance function
d(z,w) = |z — w| is also a metric space.

Example 1.3 Let X be a set of people of the same generation with a common
ancestor, for example, all the grandchildren of a grandmother (see Figure 1.1). We
define the distance d(z,y) between any two individuals z and y as the number of
generations one has to go back along female lines to find the first common ancestor.
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For example, the distance between two sisters is one. It is easy to check that d is a
metric. In fact, d satisfies a stronger condition than the triangle inequality, namely

d(z,y) < max{d(z, z),d(z,y)} for all z,y,z € X. (1.1)

A metric d which satisfies (1.1) is called an ultrametric. Ultrametrics have been
used in taxonomy to characterize the genetic proximity of species.

Example 1.4 Let X be the set of n-letter words in a k-character alphabet A =
{a1,az,...,a;}, meaning that X = {(z1,%2,...,2,) | ; € A}. We define the
distance d(z,y) between two words = (z1,...,2,) and y = (y1,...,yn) to be the
number of places in which the words have different letters. That is,

d(z,y) = #{i | z: # yi}.
Then (X, d) is a metric space.

Example 1.5 Suppose (X, d) is any metric space and Y is a subset of X. We define
the distance between points of Y by restricting the metric d to Y. The resulting
metric space (Y,d|y), or (Y,d) for short, is called a metric subspace of (X,d), or
simply a subspace when it is clear that we are talking about metric spaces. For
example, (R, |-|) is a metric subspace of (C,|-|), and the space of rational numbers
(Q,] - |) is a metric subspace of (R, | - |).

Example 1.6 If X and Y are sets, then the Cartesian product X xY is the set of
ordered pairs (z,y) with z € X and y € Y. If dx and dy are metrics on X and Y,
respectively, then we may define a metric dx xy on the product space by

dxxv ((21,y1), (X2,92)) = dx (x1,22) + dy (Y1,¥2)

for all 1,22 € X and y1,y2 € Y.

We recall the definition of a linear, or vector, space. We consider only real or
complex linear spaces.

Definition 1.7 A linear space X over the scalar field R (or C) is a set of points, or
vectors, on which are defined operations of vector addition and scalar multiplication
with the following properties:

(a) the set X is a commutative group with respect to the operation + of vector
addition, meaning that for all z,y,z € X, we have x +y = y + x and
z+ (y+2) = (x+y) + 2z, there is a zero vector 0 such that x + 0 = z
for all z € X, and for each x € X there is a unique vector —x such that
z+(—z) =0;

(b) for all z,y € X and A\, € R (or C), we have 1z = z, (A + p)x = Az + ux,
Apzr) = M)z, and Az +y) = Az + \y.
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We assume that the reader is familiar with the elementary theory of linear spaces.
Some references are given in Section 1.9.

A norm on a linear space is a function that gives a notion of the “length” of a
vector.

Definition 1.8 A norm on a linear space X is a function || - || : X — R with the
following properties:

(a) ||z]| > 0, for all x € X (nonnegative);

(b) [|Az|| = |Al||z]|, for all z € X and A € R (or C) (homogeneous);
(©) |lz +yll < ||z]| + l|yl, for all z,y € X (triangle inequality) ;

(d) ||z|| = 0 implies that z = 0 (strictly positive).

A normed linear space (X, || -||) is a linear space X equipped with a norm || - ||

A normed linear space is a metric space with the metric

d(z,y) = llz - yll. (1.2)

All the concepts we define for metric spaces therefore apply, in particular, to normed
linear spaces. The metric associated with a norm in this way has the special prop-
erties of translation invariance, meaning that for all z € X, d(z+z,y+ z) = d(=z, y),
and homogeneity, meaning that for all A € R (or C), d(Az, Ay) = |Ald(z,y).

The closed unit ball B of a normed linear space X is the set

B={zeX:|z| <1}.
A subset C of a linear space is convex if
tr+(1—-t)yeC (1.3)

for all z,y € C and all real numbers 0 < ¢t < 1, meaning that the line segment
joining any two points in the set lies in the set. The triangle inequality implies that
the unit ball is convex, and its shape gives a good picture of the norm’s geometry.

Example 1.9 The set of real numbers R with the absolute value norm ||z|| = |z|
is a one-dimensional real normed linear space. More generally, R”, where n =
1,2,3,..., is an n-dimensional linear space. We define the Fuclidean norm of a
point = (z1,Za,...,%,) € R* by

el = /o +03 44 22,

and call R” equipped with the Euclidean norm n-dimensional Fuclidean space. We
can also define other norms on R™. For example, the sum or 1-norm is given by

lzlls = |z1] + |z2| + -+ - + |Zn]-
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Fig. 1.2 The unit balls in R? for the Euclidean norm (Bz), the sum norm (B;), and the maximum
norm (Bmax).

The maximum norm is given by
]| max = max{|a1], [z2],- .., |[2n]}-

We also call the maximum norm the co-norm, and denote it by ||z||co- The unit
balls in R? for each of these norms are shown in Figure 1.2. We will equip R” with
the Euclidean norm, unless stated otherwise.

Example 1.10 A linear subspace of a linear space, or simply a subspace when it
is clear we are talking about linear spaces, is a subset that is itself a linear space.
A subset M of a linear space X is a subspace if and only if Az + puy € M for all
A u€R (or C) and all z,y € M. A subspace of a normed linear space is a normed
linear space with norm given by the restriction of the norm on X to M.

We will see later on that all norms on a finite-dimensional linear space lead to
exactly the same notion of convergence, so often it is not important which norm
we use. Different norms on an infinite-dimensional linear space, such as a function
space, may lead to completely different notions of convergence, so the specification
of a norm is crucial in this case.

We will always regard a normed linear space as a metric space with the metric
defined in equation (1.2), unless we explicitly state otherwise. Nevertheless, this
equation is not the only way to define a metric on a normed linear space.

Example 1.11 If (X,||-||) is a normed linear space, then

_ -yl
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Fig. 1.3 A sequence (z,) converging to z.

defines a nonhomogeneous, translation invariant metric on X. In this metric, the
distance between two points is always less than one.

1.2 Convergence

We first consider the convergence of sequences of real numbers. A sequence of real
numbers is a map from the natural numbers N = {1,2,3,...} to R. That is, with
each n € N, we associate a real number z,, € R. We denote a sequence by (z,),
or (z,)52; when we want to indicate the range of the index n. The index n is a
“dummy” index, and we may also write the sequence as (zj) or (zx)32,.

Another common notation for a sequence is {z,}. This notation is a little
ambiguous because a sequence is not the same thing as a set. For example,

(0,1,0,1,0,...) and (1,0,0,0,0,...)

are different sequences, but the set of terms is {0, 1} in each case.

A subsequence of a sequence (z,) is a sequence of the form (z,, ), where for
each £ € N we have ny € N, and ny < ng41 for all k. That is, k — ny is a
strictly increasing function from the set of natural numbers to itself. For example,
(1/k%)%2, is a subsequence of (1/n)52;.

The most important concept concerning sequences is convergence.

Definition 1.12 A sequence (z,) of real numbers converges to = € R if for every
€ > 0 there is an N € N such that |z, — z| < € for all n > N. The point z is called
the limit of (x,,).

In this definition, the integer N depends on e, since smaller €’s usually require
larger N’s, and we could write N(e) to make the dependence explicit. Common
ways to write the convergence of (z,,) to = are

Ty — T aS N — 00, lim z,, = x.
n—oo

A sequence that does not converge is said to diverge. If a sequence diverges
because its terms eventually become larger than any number, it is often convenient
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to regard the sequence as converging to co. That is, we say x,, — oo if for every
M € R there is an N € N such that z, > M for all n > N. Similarly, we say
z, — —oo if for every M € R there is an N € N such that z,, < M for alln > N.

Example 1.13 Here are a few examples of the limits of convergent sequences:

1 . e . \"
lim — =0, limnsin{—)=1, lm {(14+—)] =e.
n—oco N n—00 n n— 00 n

The sequence (logn) diverges because logn — 0o as n — o0. The sequence ((—1)")
diverges because its terms oscillate between —1 and 1, and it does not converge to
either co or —oc.

A sequence is said to be Cauchy if its terms eventually get arbitrarily close
together.

Definition 1.14 A sequence (z,) is a Cauchy sequence if for every € > 0 there is
an N € N such that |z, — z,| < € for all m,n > N.

Suppose that (z,) converges to z. Given € > 0, there is an integer N such that
|zn —z| < €/2 whenn > N. If m,n > N, then use of the triangle inequality implies
that

[T — Tn| < |Tm — 2| + | — 25| <,

so () is Cauchy. Thus, every convergent sequence is a Cauchy sequence. For the
real numbers, the converse is also true, and every Cauchy sequence is convergent.
The convergence of Cauchy sequences is a fundamental defining property of the
real numbers, called completeness. We will discuss completeness for general metric
spaces in greater detail below.

Example 1.15 The sequence (z,) with z,, = logn is not a Cauchy sequence, since
logn — oo. Nevertheless, we have

1
|Znt1 — zn| = log (1 + E) -0

as n — oo. This example shows that it is not sufficient for successive terms in a
sequence to get arbitrarily close together to ensure that the sequence is Cauchy.

We can use the definition of the convergence of a sequence to define the sum of
an infinite series as the limit of its sequence of partial sums. Let (z,) be a sequence
in R. The sequence of partial sums (sy) of the series > x, is defined by

Sp = Zxk. (1.5)
k=1
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If (sn) converges to a limit s, then we say that the series > z,, converges to s, and
write

o
E Ip = S.
n=1

If the sequence of partial sums does not converge, or converges to infinity, then we
say that the series diverges. The series ) z,, is said to be absolutely convergent
if the series of absolute values > |z,| converges. Absolute convergence implies
convergence, but not conversely. A useful property of an absolutely convergent series
of real (or complex) numbers is that any series obtained from it by a permutation
of its terms converges to the same sum as the original series.

The definitions of convergent and Cauchy sequences generalize to metric spaces
in an obvious way. A sequence (x,) in a metric space (X, d) is a map n — =z, which
associates a point z,, € X with each natural number n € N.

Definition 1.16 A sequence (z,) in X converges to z € X if for every € > 0 there
is an N € N such that d(zn,z) < € for all n > N. The sequence is Cauchy if for
every € > 0 there is an N € N such that d(x,,,z,) < € for all m,n > N.

Figure 1.3 shows a convergent sequence in the Euclidean plane. Property (a)
of the metric in Definition 1.1 implies that if a sequence converges, then its limit
is unique. That is, if z, - = and x,, = y, then z = y. The fact that convergent
sequences are Cauchy is an immediate consequence of the triangle inequality, as be-
fore. The property that every Cauchy sequence converges singles out a particularly
useful class of metric spaces, called complete metric spaces.

Definition 1.17 A metric space (X, d) is complete if every Cauchy sequence in X
converges to a limit in X. A subset Y of X is complete if the metric subspace
(Y,d|y) is complete. A normed linear space that is complete with respect to the
metric (1.2) is called a Banach space.

Example 1.18 The space of rational numbers Q is not complete, since a sequence
of rational numbers which converges in R to an irrational number (such as v/2 or
m) is a Cauchy sequence in Q, but does not have a limit in Q.

Example 1.19 The finite-dimensional linear space R™ is a Banach space with re-
spect to the sum, maximum, and Euclidean norms defined in Example 1.9. (See
Exercise 1.6.)

Series do not make sense in a general metric space, because we cannot add points
together. We can, however, consider series in a normed linear space X. Just as for
real numbers, if (z,) is a sequence in X, then the series ) - z, converges to
s € X if the sequence (s,) of partial sums, defined in (1.5), converges to s.
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Fig. 1.4 The number M is an upper bound of A and m is a lower bound of A. The number z is
neither an upper bound nor a lower bound. The number S is the supremum of A, but does not
belong to A. The number ¢ is the infimum of A, and since ¢ € A it is also the minimum of A.

1.3 Upper and lower bounds

The real numbers have a natural ordering which we can use to define the supremum
and infimum of a set of real numbers, and the lim sup and lim inf of a real sequence.
Even a metric space as simple as the Euclidean plane cannot be ordered in a way
that is compatible with its metric structure. Thus, the definitions in this section
are restricted to real sets and sequences. We begin with the definitions of upper
bound and lower bound.

Definition 1.20 Let A be a subset of R. We say that M € R is an upper bound of
Aifx <M for all x € A, and m € R is a lower bound of A if m < z for all x € A.
The set A is bounded from above if it has an upper bound, bounded from below if it
has a lower bound, and bounded if it has both an upper and a lower bound.

If A has an upper bound M, then A has many upper bounds. For example, any
number M’ > M is an upper bound.

Definition 1.21 A number M is the supremum, or least upper bound, of a set
A C Rif M is an upper bound of A and M < M’ for all upper bounds M’ of A. A
number m is the infimum, or greatest lower bound, of A if m is a lower bound of A
and m > m' for all lower bounds m' of A. We denote the supremum of A by sup 4,
and the infimum of A by inf A.

If A is given in the form A = {z, | o € A}, where A is an indexing set, we also
denote the supremum of A by sup,c 4 %o, Or sup z, for short.

The supremum and infimum are unique if they exist. For example, if M; and M,
are both least upper bounds of a set A, then the definition implies that M; < M
and My < My, so My = Ms. The existence of the supremum of every set bounded
from above, or the existence of the infimum of every set bounded from below, is a
consequence of the completeness of R, and is in fact equivalent to it.

Example 1.22 The subset A = {z € Q | < v/2} of the rational numbers Q is
bounded from above by v/2, but has no supremum in Q. The supremum in R is the
irrational number /2. In this example, the supremum of A does not belong to A.
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If A does not have an upper bound, we define sup A = oo, and if A does not
have a lower bound, we define inf A = —o0o0. The convention that every number is
both an upper and a lower bound of the empty set () is sometimes convenient, so
that sup® = —oo and inf ) = .

The supremum of a set A may, or may not, belong to A itself. If it does, then
sup A is called the mazimum of A, and is also denoted by max A. Similarly, if the
infimum belongs to A, then inf A is called the minimum of A, and is also denoted
by min A. The illustration in Figure 1.4 shows an example.

Thus, provided we allow the values +o0, every set of real numbers has a supre-
mum and an infimum, but it does not necessarily have a maximum or a minimum.

Next, we define the liminf and limsup of a real sequence. First, we consider
monotone sequences. A sequence (z,) is said to be monotone increasing if z, <
ZTnt1, for every n, and monotone decreasing if x,, > 41, for every n. A monotone
sequence is a sequence that is monotone increasing or monotone decreasing. A
monotone increasing sequence converges to its supremum (which could be oc), and a
monotone decreasing sequence converges to its infimum (which could be —o0). Thus,
provided that we allow for convergence to £o0, all monotone sequences converge.

Now suppose that (z,,) is an arbitrary sequence of real numbers. We construct a
new sequence (y,) by taking the supremum of successively truncated “tails” of the
original sequence, y,, = sup {zy | k > n}. The sequence (y,) is monotone decreasing
because the supremum is taken over smaller sets for larger n’s. Therefore, the
sequence (yp) has a limit, which we call the lim sup of the sequence (x,), and denote
by lim sup z,,. Similarly, taking the infimum of the successively truncated “tails” of
(zn), we get a monotone increasing sequence. We call the limit of that sequence, the
liminf of (x,), and denote it by liminf z,,. Thus, we have the following definition.

Definition 1.23 Let (z,) be a sequence of real numbers. Then

limsup z, = lim [sup{zy | k > n}],
n—oo

n—oo
liminf 2, = lim [inf {z} | k > n}].
n—oo n—oo

Another common notation for the lim sup and liminf is
lim sup z,, = lim z,,, liminf z,, = lim z,,.
We make the natural convention that if
sup{z |k >n} =00, or inf{xy|k>n}=—o0,

for every n, then limsupz, = oo, or liminfx, = —oo, respectively. In contrast
to the limit, the liminf and limsup of a sequence of real numbers always exist,
provided that we allow the values +o0o. The lim sup of a sequence whose terms are
bounded from above is finite or —00, and the lim inf of a sequence whose terms are
bounded from below is finite or co.



Continuity 11

It follows from the definition that

liminf z,, < limsup z,,.
n—oo n—oo

Moreover, a sequence (x,) converges if and only if

liminf z,, = lim sup z,,
n—0o0 n—00

and, in that case, the limit is the common value of liminf z,, and lim sup z,,.

Example 1.24 If z, = (—1)", then

liminf z, = —1, limsup z,, = 1.
n—0o0 n—00

The lim inf and lim sup have different values and the sequence does not have a limit.

Example 1.25 If {z,, € R|n € Nya € A} is a set of real numbers indexed by
the natural numbers N and an arbitrary set .4, then

sup [lim inf xn’a] < liminf [sup mn,a] .

See Exercise 1.10 for the proof, and the analogous inequality with inf and lim sup.

Suppose that A is a nonempty subset of a general metric space X. The diameter
of A is

diam A = sup{d(z,y) | z,y € A}.

The set A is bounded if its diameter is finite. It follows that A is bounded if and
only if there is an M € R and an zg € X such that d(zo,z) < M for all z € A. The
distance d(z, A) of a point £ € X from the set A is defined by

d(x, A) = inf{d(z,y) | y € A}.

The statement d(x, A) = 0 does not imply that z € A.

We say that a function f: X — Y is bounded if its range f(X) is bounded. For
example, a real-valued function f : X — R is bounded if there is a finite number M
such that |f(z)] < M for all x € X. We say that f : X — R is bounded from above
if there is an M € R such that f(z) < M for all x € X, and bounded from below if
there is an M € R such that f(z) > M for all z € X.

1.4 Continuity

A real function f: R — R is continuous at a point zo € R if for every € > 0 there
is a § > 0 such that |x — xg| < 0 implies |f(z) — f(zo)| < e. Thus, continuity of f
at xo is the property that the value of f at a point close to xq is close to the value
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of f at xg. The definition of continuity for functions between metric spaces is an
obvious generalization of the definition for real functions. Let (X,dx) and (Y,dy)
be two metric spaces.

Definition 1.26 A function f: X — Y is continuous at g € X if for every € > 0
there is a 0 > 0 such that dx (z,x¢) < 0 implies dy (f(z), f(xo)) < €. The function
f is continuous on X if it is continuous at every point in X.

If f is not continuous at x, then we say that f is discontinuous at x. There are
continuous functions on any metric space. For example, every constant function is
continuous.

Example 1.27 Let a € X, and define f : X — R by f(z) = d(z,a). Then f is
continuous on X.

We can also define continuity in terms of limits. If f : X — Y, we say that
f(z) = yo as ¢ — =g, or

lim f(‘r) = Yo,

T—T0

if for every € > 0 there is a § > 0 such that 0 < dx (z,20) < ¢ implies that
dy (f(x),y0) < €. More generally, if f : D C X — Y has domain D, and zg is a
limit of points in D, then we say f(z) = yo as £ — zo in D if for every € > 0 there
is a § > 0 such that 0 < dx (z,z0) < ¢ and z € D implies that dy (f(x),y0) <e€. A
function f: X — Y is continuous at xg € X if

lim f(x) = f(o),

T—T0
meaning that the limit of f(x) as x — x¢ exists and is equal to the value of f at xo.

Example 1.28 If f: (0,a) —» Y for some a > 0, and f(z) = L as z — 0, then we
write

lim f(z) =L.

z—0t

Similarly, if f : (—a,0) = Y, and f(z) — L as x — 0, then we write

lim f(z)=L.

z—0—

If f: X Y and E is a subset of X, then we say that f is continuous on E if
it is continuous at every point € E. This property is, in general, not equivalent
to the continuity of the restriction f|g of f on E.

Example 1.29 Let f : R — R be the characteristic function of the rationals, which

is defined by
[ 1 ifzeqQ,
f(x)_{ 0 ifzr¢Q.
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The function f is discontinuous at every point of R, but f|g : @ — R is the constant
function f|g(z) =1, so f|g is continuous on Q.

A subtle, but important, strengthening of continuity is uniform continuity.

Definition 1.30 A function f: X — Y is uniformly continuous on X if for every
€ > 0 there is a § > 0 such that dx(z,y) < ¢ implies dy (f(z), f(y)) < € for all
z,y € X.

The crucial difference between Definition 1.30 and Definition 1.26 is that the
value of ¢ does not depend on the point z € X, so that f(y) gets closer to f(z) at
a uniform rate as y gets closer to x.

In the following, we will denote all metrics by d when it is clear from the context
which metric is meant.

Example 1.31 The function r : (0,1) — R defined by r(z) = 1/z is continuous on
(0,1) but not uniformly continuous. The function s : R — R defined by s(z) = 2
is continuous on R but not uniformly continuous. If [a,b] is any bounded interval,
then s|[, 5] is uniformly continuous on [a, b].

Example 1.32 A function f: R® — R™ is affine if
fz+ (1 —-ty)=tf(z)+ (1 -1t)f(y) for all z,y € R" and t € [0,1].

Every affine function is uniformly continuous. An affine function f can be written
in the form f(z) = Az +b, where A is a constant m X n matrix and b is a constant
m-vector. Affine functions are more general than linear functions, for which b = 0.

There is a useful equivalent way to characterize continuous functions on metric
spaces in terms of sequences.

Definition 1.33 A function f: X — Y is sequentially continuous at x € X if for

every sequence (z,) that converges to z in X, the sequence (f(z,)) converges to
f(z)inY.

Proposition 1.34 Let X, Y be metric spaces. A function f : X — Y is continuous
at z if and only if it is sequentially continuous at x.

Proof. First, we show that if f is continuous, then it is sequentially continuous.
Suppose that f is continuous at z, and z,, — z. Let € > 0 be given. By the
continuity of f, we can choose § > 0 so that d(z, z,,) < § implies d(f (), f(z,)) <e.
By the convergence of (x,), we can choose N so that n > N implies d(z,z,) < 4.
Therefore, n > N implies d(f(z), f(zn)) < €, and f(z,) = f(z).

To prove the converse, we show that if f is discontinuous, then it is not sequen-
tially continuous. If f is discontinuous at z, then there is an € > 0 such that for
every n € N there exists z,, € X with d(z,z,) < 1/n and d(f(z), f(z,)) > €. The
sequence (x,) converges to z but (f(z,)) does not converge to f(x). O
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Fig. 1.5 The function f is upper semicontinuous, but not continuous, at the point x.

There are two kinds of “half-continuous” real-valued functions, defined as fol-
lows.

Definition 1.35 A function f : X — R is upper semicontinuous on X if for all
z € X and every sequence x,, — x, we have

limsup f(z,) < f(z).

n—o0

A function f is lower semicontinuous on X if for all x € X and every sequence
T, — x, we have

liminf f(z,) > f(x).

n—o0

The definition is illustrated in Figure 1.5. A function f : X — R is continuous
if and only if it is upper and lower semicontinuous.

1.5 Open and closed sets

Open sets provide another way to formulate the concepts of convergence and con-
tinuity. In this section, we define open sets in a metric space. We will discuss open
sets in the more general context of topological spaces in Chapter 4.

Let (X, d) be a metric space. The open ball, B,(a), with radius r > 0 and center
a € X is the set

B.(a) ={z € X | d(z,a) < r}.
The closed ball, B,(a), is the set

B,(a) = {z € X | d(z,a) <7}
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Definition 1.36 A subset G of a metric space X is open if for every x € G there
is an 7 > 0 such that B,(z) is contained in G. A subset F' of X is closed if its
complement F¢ = X \ F is open.

For example, an open ball is an open set, and a closed ball is a closed set. The
following properties of open and closed sets are easy to prove from the definition.

Proposition 1.37 Let X be a metric space.

(a) The empty set ) and the whole set X are open and closed.
(b) A finite intersection of open sets is open.

(¢) An arbitrary union of open sets is open.

(d) A finite union of closed sets is closed.

(e) An arbitrary intersection of closed sets is closed.

Example 1.38 The interval I,, = (—1/n,1) is open in R for every n € N, but the
intersection

ﬁ] =10,1)

is not open. Thus, an infinite intersection of open sets need not be open.

Example 1.39 Let {g, | n € N} be an enumeration of the rational numbers Q,
and € > 0. We define the open interval I, in R by
€ €
I, = (Qn_ 2_n;qn+ 2_n) .
Then G = |J;2, I, is an open set which contains Q. The sum of the lengths of
the intervals I, is 2¢, which can be made as small as we wish. Nevertheless, every
interval in R contains infinitely many rational numbers, and therefore infinitely
many intervals I,.

A subset of R has Lebesgue measure zero if for every € > 0 there is a countable
collection of open intervals whose union contains the subset such that the sum of
the lengths of the intervals is less than e. Thus, the previous example shows that
the set of rational numbers Q, or any other countable subset of R, has measure zero.
A property which holds everywhere except on a set of measure zero is said to hold
almost everywhere, abbreviated a.e. For example, the function xg : R = R that
is one on the rational numbers and zero on the irrational numbers is zero almost
everywhere.

Every open set in R is a countable union of disjoint open intervals. The structure
of open sets in R” for n > 2 may be much more complicated.
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Example 1.40 We define a closed set F; in R by removing the “middle third”
(1/3,2/3) of the interval [0, 1]. That is,

F, =[0,1/3]U[2/3,1].
We define F5 by removing the middle thirds of the intervals in Fj, so that
F, =[0,1/9]U[2/9,1/3]U[2/3,7/9]U[8/9,1].

Continuing this removal of middle thirds, we obtain a nested sequence of closed sets
(Fy). The intersection F' = (", F,, is a closed set called the Cantor set. A number
z € [0,1] belongs to the Cantor set if and only if it has a base three expansion that
contains no 1’s. The endpoints of the closed intervals in the F,’s do not have a
unique expansion. For example, we can write 1/3 € F in base three as 0.1000. ..
and as 0.0222.... The Cantor set is an uncountable set of Lebesgue measure zero
which contains no open intervals, and is a simple example of a fractal. Heuristically,
any part of the set — for example, the left part contained in the interval [0,1/3]
— is a scaled version of the whole set. The name fractal refers to the fact that,
with a suitable definition of the Hausdorff dimension of a set, the Cantor set has a
fractional dimension of log2/log3 = 0.631. The Hausdorff dimension of the Cantor
set lies between that of a point, which has dimension 0, and an interval, which has
dimension 1.

Closed sets in a metric space can be given an alternative, sequential characteri-
zation as sets that contain their limit points.

Proposition 1.41 A subset F' of a metric space is closed if and only if every
convergent sequence of elements in F' converges to a limit in F'. That is, if z,, — =
and z,, € F for all n, then z € F.

Example 1.42 A subset of a complete metric space is complete if and only if it is
closed.

The closure A of a set A C X is the smallest closed set containing A. From
property (e) of Proposition 1.37, the closure A is the intersection of all closed sets
that contain A. In a metric space, the closure of a set A can also be obtained by
adding to A all limits of convergent sequences of elements of A. That is,

A = {z € X | there exist a,, € A such that a,, — z}. (1.6)

The closure of the set of rational numbers Q in the space of real numbers R is
the whole space R. Sets with this property are said to be dense.

Definition 1.43 A subset A of a metric space X is dense in X if A = X.
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It follows from (1.6) that A is a dense subset of the metric space X if and only if
for every x € X there is a sequence (a,,) in A such that a,, — z. Thus, every point
in X can be approximated arbitrarily closely by points in the dense set A. We will
encounter many dense sets later on. Theorem 2.9, the Weierstrass approximation
theorem, gives one example.

Definition 1.44 A metric space is separable if it has a countable dense subset.

For example, R with its usual metric is separable because Q is a countable dense
subset. On the other hand, R with the discrete metric d(z,y) = 1 when = # y is
not separable.

Definition 1.45 Let = be a point in a metric space X. A set U C X is a neigh-
borhood of x if there is an open set G C U with z € G.

Equivalently, a set U is a neighborhood of z if U contains a ball B,.(x) centered
at z for some r > 0. Definition 1.16 for the convergence of a sequence can therefore
be rephrased in the following way. A sequence (z,) converges to x if for every
neighborhood U of x there is an N € N such that z,, € U for all n > N.

The following proposition characterizes continuous functions as functions that
“pull back” open sets to open sets.

Proposition 1.46 Let X, Y be metric spaces and f : X — Y. The function f is
continuous on X if and only if f~1(G) is open in X for every open set G in Y.

Proof. Suppose that f is continuous and G C Y is open. If a € f~1(G), then
there is a b € G with b = f(a). Since G is open, there is an € > 0 with B.(b) C G.
Since f is continuous, there is a § > 0 such that d(z,a) < ¢ implies d(f(z),b) < €
It follows that Bs(a) C f~1(G), so f~1(Q) is open.

Conversely, suppose that f is discontinuous at some point a in X. Then there
is an € > 0 such that for every § > 0, there is an ¢ € X with d(z,a) < § and
d(f(x), f(a)) > €. It follows that, although a belongs to the inverse image of the
open set B.(f(a)) under f, the inverse image does not contain Bs(a) for any ¢ > 0,
so it is not open. O

Example 1.47 If s : R — R is the function s(z) = z2, then s~ ((—4,4)) = (-2,2)
is open, as required by continuity. On the other hand, s((—2,2)) = [0,4) is not
open. Thus, continuous functions need not map open sets to open sets.

1.6 The completion of a metric space

Working with incomplete metric spaces is very inconvenient. For example, suppose
we wish to solve an equation for which we cannot write an explicit expression for
the solution. We may instead construct a sequence (z,) of approximate solutions,
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for example, by use of an iterative method or some kind of numerical scheme. If
the approximate solutions get closer and closer together with increasing n, meaning
that they form a Cauchy sequence in a metric space, then we would like to conclude
that the approximate solutions have a limit, and then try to show that the limit is
a solution. We cannot do this unless the metric space in which the approximations
lie is complete.

In this section we explain how to extend an incomplete metric space X to a
larger, complete metric space, called the completion of X. We construct the com-
pletion of X as a set of equivalence classes of Cauchy sequences in X which “ought”
to converge to the same point. For a brief review of equivalence relations and equiv-
alence classes, see Exercise 1.22. A point x € X is naturally identified with the class
of Cauchy sequences in X that converge to z, while classes of Cauchy sequences
that do not converge in X correspond to new points in the completion. In effect, we
construct the completion by filling the “holes” in X that are detected by its Cauchy
sequences.

Example 1.48 The completion of the set of rational numbers Q is the set of real
numbers R. A real number z is identified with the equivalence class of rational
Cauchy sequences that converge to . When we write a real number in decimal
notation, we give a Cauchy sequence of rational numbers that converges to it.

In order to give a formal definition of the completion, we require the notion of
an isometry between two metric spaces (X,dx) and (Y, dy).

Definition 1.49 A map 1: X — Y which satisfies

dy (1(z1),4(22)) = dx (z1,72) (1.7)

for all x1,zo € X is called an isometry or an isometric embedding of X into Y.
An isometry which is onto is called a metric space isomorphism, or an isomorphism
when it is clear from the context that we are dealing with metric spaces. Two metric
spaces X and Y are isomorphic if there is an isomorphism 7 : X — Y.

Equation (1.7) implies that an isometry ¢ is one-to-one and continuous. We
think of ¢ as “identifying” a point x € X with its image 2(z) € Y, so that 2(X) is a
“copy” of X embedded in Y. Two isomorphic metric spaces are indistinguishable
as metric spaces, although they may differ in other ways.

Example 1.50 The map ¢ : C — R? defined by 1(z + iy) = (z,y) is a metric
space isomorphism between the complex numbers (C, | - |) and the Euclidean plane
(RZ,|| - ||)- In fact, since s is linear, the spaces C and R? are isomorphic as real
normed linear spaces.

We can now define the completion of a metric space. The example of the real
and rational numbers is helpful to keep in mind while reading this definition.
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Definition 1.51 A metric space (X,d) is called the completion of (X,d) if the
following conditions are satisfied:

(a) there is an isometric embedding 1 : X — X;
(b) the image space +(X) is dense in X;
(c) the space (X,d) is complete.

The main theorem about the completion of metric spaces is the following.

Theorem 1.52 Every metric space has a completion. The completion is unique
up to isomorphism.

Proof. First, we prove that the completion is unique up to isomorphism, if it
exists. Suppose that ()?1,(71) and ()?2,672) are two completions of (X,d), with
corresponding isometric embeddings +; : X — X 1and 1y : X — )?2. We will use ¢
to extend 22 from X to the completion X’l and obtain an isomorphism 7 : X 1= )?2.

To define 7on € X, we pick a sequence (z,,) in X such that (11 (,)) converges
to 7 in X;. Such a sequence exists because 11 (X) is dense in X;. The sequence
(11(z,)) is Cauchy because it converges. Since ¢1 and 1o are isometries, it follows
that (z,) and (12(z,)) are also Cauchy. The space X, is complete, hence (12(z,,))

converges in Xo. We define

(@) = lim 12(2n). (1.8)

n—oo

If (z])) is another sequence in X such that (¢1(z],)) converges to Z in X1, then
do (15(2},),02(2n)) = d (2}, @n) = di (11 (2},), 11 (xn)) = 0
as n — oo. Thus, (12(2))) and (12(x,)) converge to the same limit, and (%) is
well-defined. N
If 2, y belong to X5, and
%z) = lim 42(zn), Wy) = nlggo 12(Yn),

n— o0

then

dy (1(Z),1(¥)) = lim da(12(xn),22(yn)) = lim d(z,,y,) = di(Z,7).
n— o0 n— oo
Therefore 7 is an isometry of X, into X. By using constant sequences in X, we see
that 7011 (z) = 12(z) for all z € X, so that 7 identifies the image of X in X; under
11 with the image of X in )2'2 under 15.

To show that 7 is onto, we observe that )?1 contains the limit of all Cauchy
sequences in 41 (X), so the isomorphic space 7()? 1) contains the limit of all Cauchy
sequences in 15(X). Therefore 15(X) C 7(X;). By assumption, u5(X) is dense in
)?2, s0 12(X) = X’g, and 7()?1) = X,. This shows that any two completions are
isomorphic.
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Second, we prove the completion exists. To do this, we construct a completion
from Cauchy sequences in X. We define a relation ~ between Cauchy sequences
z = (zn) and y = (y») in X by

z ~y if and only if nh_}rrgo d(zp,yn) = 0.

Two convergent Cauchy sequences z, y satisfy x ~ y if and only if they have the
same limit. It is straightforward to check that ~ is an equivalence relation on the
set C of Cauchy sequences in X. Let X be the set of equivalence classes of ~ in C.
We call an element (zn) € T of an equivalence class T € X , a representative of .

We define d: X x X — R by

d(F,§) = Tim d(zn,yn), (19)

where (z,,) and (y,,) are any two representatives of T and ¥, respectively. The limit
in (1.9) exists because (d(zn,yn)),—, is a Cauchy sequence of real numbers. For
this definition to make sense, it is essential that the limit is independent of which
representatives of Z and g are chosen. Suppose that (z,), (z},) represent Z and (yy),
(y1,) represent y. Then, by the triangle inequality, we have

d(xnayn) < d(xn’x;) + d(«’ﬁ'my;) + d(y;ayn)a
d(Tn,yn) > d(@y,ypn) — d(@a, 73,) — d(Yp, Ya)-

Taking the limit as n — oo of these inequalities, and using the assumption that
(20) ~ (21,) and (ya) ~ (4}, we find that

lim d(zn,yn) = lim d(z,,yy).
Thus, the limit in (1.9) is independent of the representatives, and d is well-defined.
It is straightforward to check that d is a metric on X.

To show that the metric space ()Z' ,J) is a completion of (X,d), we define an
embedding » : X — X as the map that takes a point x € X to the equivalence
class of Cauchy sequences that contains the constant sequence (z,) with z,, = z for
all n. This map is an isometric embedding, since if (z,) and (y,) are the constant
sequences with x, = z and y,, = y, we have

d(u(z),(y)) = nh—{%o d(Tn,yn) = d(z,y).

The image (X)) consists of the equivalence classes in X which have a constant
representative Cauchy sequence. To show the density of +(X) in X, let (z,) be a
representative of an arbitrary point € X. We define a sequence (yn) of constant
sequences by Un = (Yn,k)5>, Where y, r =z, for all n,k € N. From the definition
of (¥,) and the fact that (z,) is a Cauchy sequence, we have

i, 4G, ®) = Jim, Jim d(@n,20) =0
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Thus, 2(X) is dense in X.

Finally, we prove that ()Z' , c?) is complete. We will use Cantor’s “diagonal”
argument, which is useful in many other contexts as well. Let (Z,) be a Cauchy
sequence in X. In order to prove that a Cauchy sequence is convergent, it is enough
to prove that it has a convergent subsequence, because the whole sequence converges
to the limit of any subsequence. Picking a subsequence, if necessary, we can assume
that (Z,) satisfies

~ ~ 1
d (T, Tp) < N for all m,n > N. (1.10)

For each term Z,, we choose a representative Cauchy sequence in X, denoted by
(Tn,k)72;. Any subsequence of a representative Cauchy sequence of Z, is also a
representative of z,,. We can therefore choose the representative so that

S|

d(Tnk,Tny) < for all k,1 > n. (1.11)
We claim that the “diagonal” sequence (xk,k)zil is a Cauchy sequence, and that
the equivalence class # to which it belongs is the limit of (%,) in X. The fact that
we can obtain the limit of a Cauchy sequence of sequences by taking a diagonal
sequence is the key point in proving the existence of the completion.

To prove that the diagonal sequence is Cauchy, we observe that for any i € N,

d(xpk,t11) < d(Trks Thi) + d(Thi, T1,i) +d (206, 20,) - (1.12)

The definition of d and (1.10) imply that for all k,1 > N,

d(@, %) = lim d(zp,;, 21,5) <

1
lim e (1.13)

Taking the lim sup of (1.12) as ¢ — oo, and using (1.11) and (1.13) in the result, we
find that for all k,1 > N,

3
< —.
d(xp,k,21,1) < N

Therefore (x,x) is Cauchy.
By a similar argument, we find that for all k,n > N,

2| e

d(Zn ks Trok) <limsup {d (znk, Tni) + d(Tni Tr,i) + d (Tris Thok) } <

i—00

Therefore, for n > N, we have

~ i 3
d(Zn,7) = kll>nolo d(Tnk, Thk) < N

Hence, the Cauchy sequence (Z,) converges to T as n — oo, and X is complete. O
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It is slightly annoying that the completion X is constructed as a space of equiv-
alence classes of sequences in X, rather than as a more direct extension of X. For
example, if X is a space of functions, then there is no guarantee that its completion
can be identified with a space of functions that is obtained by adding more functions
to the original space.

Example 1.53 Let C([0,1]) be the set of continuous functions f : [0,1] - R. We
define the L2-norm of f by

1= ( @) )

The associated metric d(f,g) = ||f — g|| is a very useful one, analogous to the
Euclidean metric on R”, but the space C([0,1]) is not complete with respect to
it. The completion is denoted by L?([0,1]), and it can nearly be identified with
the space of Lebesgue measurable, square-integrable functions. More precisely, a
point in L2([0,1]) can be identified with an equivalence class of square-integrable
functions, in which two functions that differ on a set of Lebesgue measure zero are
equivalent. According to the Riesz-Fisher theorem, if (f,,) is a Cauchy sequence with
respect to the L2-norm, then there is a subsequence (f,, ) that converges pointwise-
a.e. to a square-integrable function, and this fact provides one way to identify an
element of the completion with an equivalence class of functions. Many of the
usual operations on functions can be defined on equivalence classes, independently
of which representative function is chosen, but the pointwise value of an element
f € L?([0,1]) cannot be defined unambiguously.

In a similar way, the space L?(R) of equivalence classes of Lebesgue measurable,
square integrable functions on R is the completion of the space C.(R) of continuous
functions on R with compact support (see Definition 2.6) with respect to the L2-

norm
1= ([ 11 dm)m-

We will see later on that these L? spaces are fundamental examples of infinite-
dimensional Hilbert spaces. We discuss measure theory in greater detail in Chap-
ter 12. We will use facts from that chapter as needed throughout the book, including
Fubini’s theorem for the exchange in the order of integration, and the dominated
convergence theorem for passage to the limit under an integral sign.

1/2

1.7 Compactness

Compactness is one the most important concepts in analysis. A simple and useful
way to define compact sets in a metric space is by means of sequences.
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Definition 1.54 A subset K of a metric space X is sequentially compact if every
sequence in K has a convergent subsequence whose limit belongs to K.

We can take K = X in this definition, so that X is sequentially compact if every
sequence in X has a convergent subsequence. A subset K of (X, d) is sequentially
compact if and only if the metric subspace (K, d|k) is sequentially compact.

Example 1.55 The space of real numbers R is not sequentially compact. For
example, the sequence (z,) with x,, = n has no convergent subsequence because
|Zm — 2n| > 1 for all m # n. The closed, bounded interval [0,1] is a sequentially
compact subset of R, as we prove below. The half-open interval (0,1] is not a
sequentially compact subset of R, because the sequence (1/n) converges to 0, and
therefore has no subsequence with limit in (0,1]. The limit does, however, belong
to [0,1].

The full importance of compact sets will become clear only in the setting of
infinite-dimensional normed spaces. It is nevertheless interesting to start with the
finite-dimensional case. Compact subsets of R” have a simple, explicit characteri-
zation.

Theorem 1.56 (Heine-Borel) A subset of R” is sequentially compact if and only
if it is closed and bounded.

The fact that closed, bounded subsets of R” are sequentially compact is a con-
sequence of the following theorem, called the Bolzano-Weierstrass theorem, even
though Bolzano had little to do with its proof. We leave it to the reader to use this
theorem to complete the proof of the Heine-Borel theorem.

Theorem 1.57 (Bolzano-Weierstrass) Every bounded sequence in R™ has a
convergent subsequence.

Proof. We will construct a Cauchy subsequence from an arbitrary bounded se-
quence. Since R" is complete, the subsequence converges.

Let (z1) be a bounded sequence in R™. There is an M > 0 such that z €
[-M, M]™ for all k. The set [-M, M]™ is an n-dimensional cube of side 2M. We
denote this cube by Cy. We partition Cy into 2™ cubes of side M. We denote by C}
one of the smaller cubes that contains infinitely many terms of the sequence (zy),
meaning that zp € C; for infinitely many & € N. Such a cube exists because there
is a finite number of cubes and an infinite number of terms in the sequence. Let
k1 be the smallest index such that zx, € Ci. We pick zy, as the first term of the
subsequence.

To choose the second term, we form a new sequence (y;) by deleting from (x,)
the term zy, and all terms which do not belong to C;. We repeat the procedure
described in the previous paragraph, but with (xy) replaced by (yx), and Cy replaced
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Fig. 1.6 A set with a finite e-net for it.

by Ci. This procedure gives a subcube Cs of C; of side M/2, which contains
infinitely many terms of the original sequence, and an element yi,. We pick zx, =
Yk, as the second element of the subsequence.

By repeating this procedure, we obtain a subsequence (zr,;)$2,. We never “ex-
haust” the original sequence, because every cube in the construction contains in-
finitely many terms. We have zy, € Cj for all i > j where C; is a cube of side
M /23~ Therefore (zy,) is a Cauchy sequence, and hence it converges. O

The following criterion for the sequential compactness of a metric space is often
easier to verify than the definition. Let A be a subset of a metric space X. We say
that a collection {G, | @ € A} of subsets of X is a cover of A if its union contains
A, meaning that

Ac | Ga.
acA
The number of sets in the cover is not required to be countable. If every G, in the
cover is open, then we say that {G,} is an open cover of A.
Let € > 0. A subset {z, | @ € A} of X is called an e-net of the subset A if
the family of open balls {B(z,) | @ € A} is an open cover of A. If the set {z4} is
finite, then we say that {z4} is a finite e-net of A (see Figure 1.6).

Definition 1.58 A subset of a metric space is totally bounded if it has a finite e-net
for every € > 0.

That is, a subset A of a metric space X is totally bounded if for every € > 0
there is a finite set of points {1, z2,...,z,} in X such that A C |J}_, Be(z;).
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Theorem 1.59 A subset of a metric space is sequentially compact if and only if it
is complete and totally bounded.

Proof. The proof that a complete, totally bounded set K is sequentially compact
is the same as the proof of the Bolzano-Weierstrass theorem 1.57. Suppose that (x,,)
is a sequence in K. Then, since K is totally bounded, there is a sequence of balls
(Bg) such that By, has radius 1/2* and every intersection Ay = ﬂle B; contains
infinitely many terms of the sequence. We can therefore choose a subsequence
(zn,) such that x,, € Ay for every k. This subsequence is Cauchy, and, since K is
complete, it converges.

To prove the converse, we show that a sequentially compact space is complete,
and that a space which is not totally bounded is not sequentially compact.

If (z,) is a Cauchy sequence in a sequentially compact space K, then it has a
convergent subsequence. The whole Cauchy sequence converges to the limit of any
convergent subsequence. Hence K is complete.

Now suppose that K is not totally bounded. Then there is an € > 0 such that
K has no finite e-net. For every finite subset {z1,...,2,} of K, there is a point
Tpt1 € K such that z,41 ¢ U, Be(z;). Consequently, we can find an infinite
sequence (z,) in K such that d(x,,,z,) > € for all m # n. This sequence does not
contain a Cauchy subsequence, and hence has no convergent subsequence. Therefore
K is not sequentially compact. d

Another way to define compactness is in terms of open sets. We say that
a cover {G,} of A has a finite subcover if there is a finite subcollection of sets
{Gas,-..,Gaq, } such that A C UL, Ga,-

Definition 1.60 A subset K of a metric space X is compact if every open cover of
K has a finite subcover.

Example 1.61 The space of real numbers R is not compact, since the open cover
{(n—1,n+4+1) | n € Z} of R has no finite subcover. The half-open interval (0,1]
is not compact, since the open cover {(1/2n,2/n) | n € N} has no finite subcover.
If this open cover is extended to an open cover of [0, 1], then the extension must
contain an open neighborhood of 0. This open neighborhood, together with a finite
number of sets from the cover of (0,1], is a finite subcover of [0, 1].

For metric spaces, compactness and sequential compactness are equivalent.

Theorem 1.62 A subset of a metric space is compact if and only if it is sequentially
compact.

Proof. First, we prove that sequential compactness implies compactness. We will
show that an arbitrary open cover of a sequentially compact set has a countable
subcover, and that a countable cover has a finite subcover.
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Lemma 1.63 A sequentially compact metric space is separable.

Proof. By Theorem 1.59, there is a finite (1/n)-net A, of a sequentially compact
space K for every n € N. Let A =|J;2, A,. Then A is countable, because it is a

countable union of finite sets, and A is dense in K by construction. d

Suppose that {G, | a € A} is an arbitrary open cover of a sequentially compact
space K. From Lemma 1.63, the space K has a countable dense subset A. Let B
be the collection of open balls with rational radius and center in A, and let C be
the subcollection of balls in B that are contained in at least one of the open sets
G«. The collection B is countable because it is a countable union of countable sets.
Hence, the subcollection C is also countable.

For every z € K, there is a set G, in the open cover of K with z € G. Since
G, is open, there is an € > 0 such that B.(z) C G,. Since A is dense in K, there is
a point y € A such that d(z,y) < €/3. Then z € B,/3(y), and By /3(y) C Go. (It
may help to draw a picture!) Thus, if ¢ is a rational number with €/3 < ¢ < 2¢/3,
then z € B,(y) and B,(y) C G4. It follows that B,(y) € C, so any point z in K
belongs to a ball in C. Hence C is an open cover of K. For every B € C, we pick an
ap € A such that B C Gy,,. Then {G,, | B € C} is a countable subcover of K,
because |Jgcec Gap contains |Jgzco B, which contains K.

We will show by contradiction that a countable open cover has a finite subcover.
Suppose that {G, | n € N} is a countable open cover of a sequentially compact
space K that does not have a finite subcover. Then the finite union ngl G, does
not contain K for any N. We can therefore construct a sequence (z) in K as
follows. We pick a point z; € K. Since {G,} covers K, there is an N; such that
xz1 € GN,. We pick 25 € K such that zo ¢ Ug; G, and choose N> such that
z2 € Gn,. Then we pick z3 € K such that z3 ¢ |J,,2; G5, and so on. Since

Ni_1
zr € Gn,, and zp ¢ U Gn,
n=1
the open set G, is not equal to Gy, for any n < Nj_;. Thus, the sequence (Ni)
is strictly increasing, and N — oo as k — oo. It follows that, for any n, there
is an integer K, such that zj ¢ G, when k > K,,. If z € G,,, then all points of
the sequence eventually leave the open neighborhood G, of z, so no subsequence
of (z) can converge to z. Since the collection {G,} covers K, the sequence (z,)
has no subsequence that converges to a point of K. This contradicts the sequential
compactness of K, and proves that sequential compactness implies compactness.
To prove the converse, we show that if a space is not sequentially compact,
then it is not compact. Suppose that K has a sequence (z,) with no convergent
subsequence. Such a sequence must contain an infinite number of distinct points,
so we can assume without loss of generality that z,, # z, for m # n.
Let x € K. If the open ball B, (z) contains a point in the sequence that is distinct
from z for every € > 0, then z is the limit of a subsequence, which contradicts the
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assumption that the sequence has no convergent subsequence in K. Hence, there is
an €, > 0 such that the open ball B, (x) contains either no points in the sequence,
if z itself does not belong to the sequence, or one point, if  belongs to the sequence.

The collection of open balls {B._(z) | z € K} is an open cover of K. Every
finite subcollection of n open balls contains at most n terms of the sequence. Since
the terms of the sequence are distinct, no finite subcollection covers K. Thus, K
has an open cover with no finite subcover, and K is not compact. a

In future, we will abbreviate “sequentially compact” to “compact” when refer-
ring to metric spaces. The following terminology is often convenient.

Definition 1.64 A subset A of a metric space X is precompact if its closure in X
is compact.

The term “relatively compact” is frequently used instead of “precompact.” This
definition means that A is precompact if every sequence in A has a convergent
subsequence. The limit of the subsequence can be any point in X, and is not
required to belong to A. Since compact sets are closed, a set is compact if and only
if it is closed and precompact. A subset of a complete metric space is precompact
if and only if it is totally bounded.

Example 1.65 A subset of R" is precompact if and only if it is bounded.

Continuous functions on compact sets have several nice properties. From Propo-
sition 1.34, continuous functions preserve the convergence of sequences. It follows
immediately from Definition 1.54 that continuous functions preserve compactness.

Theorem 1.66 Let f : K — Y be continuous on K, where K is a compact metric
space and Y is any metric space. Then f(K) is compact.

Since compact sets are bounded, continuous functions on a compact set are
bounded. Moreover, continuous functions on compact sets are uniformly continuous.

Theorem 1.67 Let f : K — Y be a continuous function on a compact set K.
Then f is uniformly continuous.

Proof. Suppose that f is not uniformly continuous. Then there is an € > 0 such
that for all § > 0, there are z,y € X with d(z,y) < § and d(f(x), f(y)) > €. Taking
0 =1/n for n € N, we find that there are sequences (z,,) and (y,) in X such that

A(nyn) <y A (), ) > € (114

Since K is compact there are convergent subsequences of (z,) and (y,) which,
for simplicity, we again denote by (z,) and (y,). From (1.14), the subsequences
converge to the same limit, but the sequences (f(z,)) and (f(y,)) either diverge or
converge to different limits. This contradicts the continuity of f. O
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1.8 Maxima and minima

Maximum and minimum problems are of central importance in applications. For
example, in many physical systems, the equilibrium state is one which minimizes
energy or maximizes entropy, and in optimization problems, the desirable state of
a system is one which minimizes an appropriate cost function. The mathematical
formulation of these problems is the maximization or minimization of a real-valued
function f on a state space X. Each point of the state space, which is often a metric
space, represents a possible state of the system. The existence of a maximizing, or
minimizing, point of f in X may not be at all clear; indeed, such a point may
not exist. The following theorem gives sufficient conditions for the existence of
maximizing or minimizing points — namely, that the function f is continuous and
the state space X is compact. Although these conditions are fundamental, they are
too strong to be useful in many applications. We will return to these issues later
on.

Theorem 1.68 Let K be a compact metric space and f : K — R a continuous,
real-valued function. Then f is bounded on K and attains its maximum and mini-
mum. That is, there are points z,y € K such that

f@) = inf f(z),  f(y) = sup f(2). (1.15)
Proof. From Theorem 1.66, the image f(K) is a compact subset of R, and there-
fore f is bounded by the Heine-Borel theorem in Theorem 1.56.

It is enough to prove that f attains its infimum, because the application of this
result to — f implies that f attains its supremum. Since f is bounded, it is bounded
from below, and the infimum m of f on K is finite. By the definition of the infimum,
for each n € N there is an z,, € K such that

1
m < f(z,) <m+ﬁ.
This inequality implies that

lim f(z,) =m. (1.16)

n—oo

The sequence ()52 ; need not converge, but since K is compact the sequence
has a convergent subsequence, which we denote by (z,,)%2,. We denote the limit
of the subsequence by x. Then, since f is continuous, we have from (1.16) that

f(z) = lim f(zn,) =m.

k—oco

Therefore, f attains its infimum m at z. O

The strategy of this proof is typical of many compactness arguments. We con-
struct a sequence of approximate solutions of our problem, in this case a minimizing
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sequence (x,,) that satisfies (1.16). We use compactness to extract a convergent sub-
sequence, and show that the limit of the convergent subsequence is a solution of our
problem, in this case a point where f attains its infimum. The following examples
illustrate Theorem 1.68 and some possible behaviors of minimizing sequences.

Example 1.69 The function f(z) = z*/4 — 2% /2 is continuous and bounded on
[-2,2]. It attains its minimum at & = +£1. An example of a minimizing sequence
(x,) is given by z, = (—=1)". In fact, f(z,) = inf f(z) for all n. This minimizing

sequence does not converge because its terms jump back and forth between x = —1
and z = 1. The subsequences (2241) and (x2)) converge, to x = —1 and = 1,
respectively.

As this example shows, the compactness argument does not imply that a point
where f attains its minimum is unique. There are many possible minimizing se-
quences, and there may be subsequences of a given minimizing sequence that con-
verge to different limits. If, however, the function f attains its minimum at a
unique point, then it follows from Exercise 1.27 that every minimizing sequence
must converge to that point.

Example 1.70 The function f(z) = e~ * is continuous and bounded from below
on the noncompact set R. The infimum of f on R is zero, but f does not attain
its infimum. An example of a minimizing sequence (z,,) is given by z,, = n. The
terms of the minimizing sequence “escape” to infinity, and it has no convergent
subsequence.

Example 1.71 The discontinuous function f on the compact set [0, 1] defined by

[ logz if0<z<1,
f(‘”)_{ 0 ifz=0,

is not bounded from below. A sequence (z;) is a minimizing sequence if z,, — 0 as

n — oco. In that case, f(z,) - —o0 as n — oo, but f is discontinuous at the limit
point z = 0.

Some of the conclusions of Theorem 1.68 still hold for semicontinuous functions.
An almost identical proof shows the following result.

Theorem 1.72 Let K be a compact metric space. If f : K — R is upper semicon-
tinuous, then f is bounded from above and attains its supremum. If f : K — R is
lower semicontinuous, then f is bounded from below and attains its infimum.

Example 1.73 We define f,g:[0,1] - R by

fz) = z if0<z <1, (z) = r if0o<ax<],
=V ife=o0, FE=10 =1 ifz=o0.

The function f is upper semicontinuous, and does not attain its infimum, while g
is lower semicontinuous and attains its minimum at x = 0.
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1.9 References

For introductions to basic real analysis, see Marsden and Hoffman [37] or Rudin
[47]. Simmons [50] gives a clear and accessible discussion of metric, normed, and
topological spaces. For linear algebra, see Halmos [19] and Lax [30]. Two other
books with a similar purpose to this one are Naylor and Sell [40] and Stakgold [52].

1.10 Exercises

Exercise 1.1 A set A is countably infinite if there is a one-to-one, onto map from A
to N. A set is countable if it is finite or countably infinite, otherwise it is uncountable.

(a) Prove that the set Q of rational numbers is countably infinite.
(b) Prove that the set R of real numbers is uncountable.

Exercise 1.2 Give an e-6 proof that

oo
> "= 1 —
n=0 -z

when |z| < 1.
Exercise 1.3 If z, y, z are points in a metric space (X, d), show that
d(z,y) > |d(z,z) — d(y, 2)| -

Exercise 1.4 Suppose that (X,dx) and (Y,dy) are metric spaces. Prove that the
Cartesian product Z = X x Y is a metric space with metric d defined by

d(z1,22) = dx (z1,%2) + dy (y1,y2),

where z; = (z1,y1) and 22 = (z2,y2).

Exercise 1.5 Suppose that (X, || - ||) is a normed linear space. Prove that (1.2)
and (1.4) define metrics on X.

Exercise 1.6 Starting from the fact that R equipped with its usual distance func-
tion is complete, prove that R™ equipped with the sum, maximum, or Euclidean
norm is complete.

Exercise 1.7 Show that the series

oo 1)
Z:l(n)

is not absolutely convergent. Show that by permuting the terms of this series one
can obtain series with different limits.
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Exercise 1.8 Let (z,) be a sequence of real numbers. A point ¢ € RU {£o0} is
called a cluster point of (z,,) if there is a convergent subsequence of (z,) with limit
c. Let C denote the set of cluster points of (x,). Prove that C is closed and

limsupz, = maxC and liminfz, = minC.
Exercise 1.9 Let (z,) be a bounded sequence of real numbers.

(a) Prove that for every € > 0 and every N € N there are ny,no > N, such that

limsupz, < xp, +€, T, —€<liminfz,.
n—oo n—oo

(b) Prove that for every € > 0 there is an N € N such that

Ty <limsupz, +¢€, =, >liminfz, —¢
n—00 n—00

for allm > N.
(c) Prove that (z,) converges if and only if

liminf z,, = lim sup z,,.
n—00 n—oo

Exercise 1.10 Consider a family {z, 4} of real numbers indexed by n € N and
a € A. Prove the following relations:

lim sup (inf wn’a) < inf (lim sup :L'n,a) ;
(e

n— oo @ n—oo

sup (lim inf :cn,a) < liminf (sup xn,a> .
(o4

o n— 00 n— 00

Exercise 1.11 If (z,,) is a sequence of real numbers such that

lim z, = =z,
n—0o00

and a, < z, < by, prove that

limsup a, < z < liminf b,.
n—o0o n—oo

Exercise 1.12 Let (X,dx), (Y,dy), and (Z,dz) be metric spaces and let f: X —
Y, and g : Y — Z be continuous functions. Show that the composition

h=gof:X = Z,
defined by h(x) = g(f(z)), is also continuous.

Exercise 1.13 A function f : R — Ris said to be differentiable at z if the following
limit exists and is finite:

/() = lim

fle+h) - f(z)
- :
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(a) Prove that if f is differentiable at x, then f is continuous at z.
(b) Show that the function

_ [ #%sin(1/2?) ifz #0,
f(x)_{o if 7 = 0.

is differentiable at £ = 0 but the derivative is not continuous at z = 0.
(c) Prove that if f is differentiable at z and has a local maximum or minimum
at z, then f'(z) = 0.

Exercise 1.14 If f : [a,b] — R is continuous on [a,b] and differentiable in (a,b),
then prove that there is a a < £ < b such that

f) = f(a) = f'(§) (b—a).

This result is called the mean value theorem. Deduce that if f'(z) = 0 for all
a < x < bthen f is a constant function.

Exercise 1.15 Prove that every compact subset of a metric space is closed and
bounded. Prove that a closed subset of a compact space is compact.

Exercise 1.16 Suppose that F' and G are closed and open subsets of R", respec-
tively, such that F' C G. Show that there is a continuous function f : R — R such
that:

(@) 0< f(z) <L
(b) f(z) =1for z € F;
c) f(z)=0for xz € G°.

HINT. Consider the function

f@) = g

—~

d(z, G°)
z,G¢) +d(z,F)’

This result is called Urysohn’s lemma.

Exercise 1.17 Let (X,d) be a complete metric space, and ¥ C X. Prove that
(Y,d) is complete if and only if Y is a closed subset of X.

Exercise 1.18 Let (X,d) be a metric space, and let (z,) be a sequence in X.
Prove that if (z,) has a Cauchy subsequence, then, for any decreasing sequence of
positive e, — 0, there is a subsequence (z,, ) of (z,) such that

AT, , Tn,) < € for all k < .

Exercise 1.19 Following the construction of the Cantor set C' by the removal of
middle thirds, we define a function F' on the complement of the Cantor set [0,1]\ C
as follows. First, we define F(z) = 1/2 for 1/3 < < 2/3. Then F(z) = 1/4 for
1/9 <2 <2/9 and F(x) =3/4for 7/9 < x < 8/9, and so on. Prove that F' extends
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to a unique continuous function F : [0,1] = R. Prove that F is differentiable at
every x € R\ C and F'(z) = 0. This function is called the Cantor function. Its
graph is sometimes called the devil’s staircase.

Exercise 1.20 Let X be a normed linear space. A series Y z,, in X is absolutely
convergent if > ||zn|| converges to a finite value in R. Prove that X is a Banach
space if and only if every absolutely convergent series converges.

Exercise 1.21 Suppose that X is a Banach space, and (2,,,,,) is a doubly indexed
sequence in X such that

o0 oo
> 5 el < .

m=1 n=1
Prove that
o0 oo o0 oo
> (z) -3 ( ) -
m=1 \n=1 n=1 \m=1

Exercise 1.22 Let S be a set. A relation ~ between points of S is called an
equivalence relation if, for all a,b,c € S, we have:

(a) a~a;
(b) a ~ b implies b ~ a;
(¢) a~band b~ cimplies a ~ c.

Define the equivalence class C, associated with a € S by
Co={beS|a~b}.

Prove that two equivalence classes are either disjoint or equal, so ~ partitions S into
a union of disjoint equivalence classes. Show that the relation ~ between Cauchy
sequences defined in the proof of Theorem 1.52 is an equivalence relation.

Exercise 1.23 Suppose that f : X — R is lower semicontinuous and M is a real
number. Define fy; : X — R by

fu(z) = min (f(z), M).
Prove that fys is lower semicontinuous.

Exercise 1.24 Let f : X — R be a real-valued function on a set X. The epigraph
epi f of f is the subset of X x R consisting of points that lie above the graph of f:

epif = {(z,t) € X xR |t > f(2)}.

Prove that a function is lower semicontinuous if and only if its epigraph is a closed
set.
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Exercise 1.25 A function f: R® — R is coercive if

lim f(z) = oc. (1.17)
llz|l—o0
Explicitly, this condition means that for any M > 0 there is an R > 0 such that
[|z|]| > R implies f(x) > M. Prove that if f : R* — R is lower semicontinuous and
coercive, then f is bounded from below and attains its infimum.

Exercise 1.26 Let p : R2> — R be a polynomial function of two real variables.
Suppose that p(z,y) > 0 for all z,4y € R. Does every such function attain its
infimum? Prove or disprove.

Exercise 1.27 Suppose that (z,) is a sequence in a compact metric space with
the property that every convergent subsequence has the same limit x. Prove that
Tp — T aS N — 00.



