
Chapter 12

Properties and Applications of
the Integral

In the integral calculus I find much less interesting the parts that involve
only substitutions, transformations, and the like, in short, the parts that
involve the known skillfully applied mechanics of reducing integrals to
algebraic, logarithmic, and circular functions, than I find the careful and
profound study of transcendental functions that cannot be reduced to
these functions. (Gauss, 1808)

12.1. The fundamental theorem of calculus

The fundamental theorem of calculus states that differentiation and integration
are inverse operations in an appropriately understood sense. The theorem has two
parts: in one direction, it says roughly that the integral of the derivative is the
original function; in the other direction, it says that the derivative of the integral
is the original function.

In more detail, the first part states that if F : [a, b] → R is differentiable with
integrable derivative, then ∫ b

a

F ′(x) dx = F (b)− F (a).

This result can be thought of as a continuous analog of the corresponding identity
for sums of differences,

n∑
k=1

(Ak −Ak−1) = An −A0.

The second part states that if f : [a, b]→ R is continuous, then

d

dx

∫ x

a

f(t) dt = f(x).
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242 12. Properties and Applications of the Integral

This is a continuous analog of the corresponding identity for differences of sums,

k∑
j=1

aj −
k−1∑
j=1

aj = ak.

The proof of the fundamental theorem consists essentially of applying the iden-
tities for sums or differences to the appropriate Riemann sums or difference quo-
tients and proving, under appropriate hypotheses, that they converge to the corre-
sponding integrals or derivatives.

We’ll split the statement and proof of the fundamental theorem into two parts.
(The numbering of the parts as I and II is arbitrary.)

12.1.1. Fundamental theorem I. First we prove the statement about the in-
tegral of a derivative.

Theorem 12.1 (Fundamental theorem of calculus I). If F : [a, b]→ R is continuous
on [a, b] and differentiable in (a, b) with F ′ = f where f : [a, b] → R is Riemann
integrable, then ∫ b

a

f(x) dx = F (b)− F (a).

Proof. Let
P = {x0, x1, x2, . . . , xn−1, xn},

be a partition of [a, b], with x0 = a and xn = b. Then

F (b)− F (a) =

n∑
k=1

[F (xk)− F (xk−1)] .

The function F is continuous on the closed interval [xk−1, xk] and differentiable in
the open interval (xk−1, xk) with F ′ = f . By the mean value theorem, there exists
xk−1 < ck < xk such that

F (xk)− F (xk−1) = f(ck)(xk − xk−1).

Since f is Riemann integrable, it is bounded, and

mk(xk − xk−1) ≤ F (xk)− F (xk−1) ≤Mk(xk − xk−1),

where
Mk = sup

[xk−1,xk]

f, mk = inf
[xk−1,xk]

f.

Hence, L(f ;P ) ≤ F (b)−F (a) ≤ U(f ;P ) for every partition P of [a, b], which implies

that L(f) ≤ F (b) − F (a) ≤ U(f). Since f is integrable, L(f) = U(f) =
∫ b
a
f and

therefore F (b)− F (a) =
∫ b
a
f . �

In Theorem 12.1, we assume that F is continuous on the closed interval [a, b]
and differentiable in the open interval (a, b) where its usual two-sided derivative
is defined and is equal to f . It isn’t necessary to assume the existence of the
right derivative of F at a or the left derivative at b, so the values of f at the
endpoints are not necessarily determined by F . By Proposition 11.46, however,
the integrability of f on [a, b] and the value of its integral do not depend on these
values, so the statement of the theorem makes sense. As a result, we’ll sometimes
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abuse terminology and say that “F ′ is integrable on [a, b]” even if it’s only defined
on (a, b).

Theorem 12.1 imposes the integrability of F ′ as a hypothesis. Every function F
that is continuously differentiable on the closed interval [a, b] satisfies this condition,
but the theorem remains true even if F ′ is a discontinuous, Riemann integrable
function.

Example 12.2. Define F : [0, 1]→ R by

F (x) =

{
x2 sin(1/x) if 0 < x ≤ 1,

0 if x = 0.

Then F is continuous on [0, 1] and, by the product and chain rules, differentiable
in (0, 1]. It is also differentiable — but not continuously differentiable — at 0, with
F ′(0+) = 0. Thus,

F ′(x) =

{
− cos (1/x) + 2x sin (1/x) if 0 < x ≤ 1,

0 if x = 0.

The derivative F ′ is bounded on [0, 1] and discontinuous only at one point (x = 0),
so Theorem 11.53 implies that F ′ is integrable on [0, 1]. This verifies all of the
hypotheses in Theorem 12.1, and we conclude that∫ 1

0

F ′(x) dx = sin 1.

There are, however, differentiable functions whose derivatives are unbounded
or so discontinuous that they aren’t Riemann integrable.

Example 12.3. Define F : [0, 1] → R by F (x) =
√
x. Then F is continuous on

[0, 1] and differentiable in (0, 1], with

F ′(x) =
1

2
√
x

for 0 < x ≤ 1.

This function is unbounded, so F ′ is not Riemann integrable on [0, 1], however we
define its value at 0, and Theorem 12.1 does not apply.

We can interpret the integral of F ′ on [0, 1] as an improper Riemann integral (as
is discussed further in Section 12.4). The function F is continuously differentiable
on [ε, 1] for every 0 < ε < 1, so∫ 1

ε

1

2
√
x
dx = 1−

√
ε.

Thus, we get the improper integral

lim
ε→0+

∫ 1

ε

1

2
√
x
dx = 1.

The construction of a function with a bounded, non-integrable derivative is
more involved. It’s not sufficient to give a function with a bounded derivative that
is discontinuous at finitely many points, as in Example 12.2, because such a function
is Riemann integrable. Rather, one has to construct a differentiable function whose
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derivative is discontinuous on a set of nonzero Lebesgue measure. Abbott [1] gives
an example.

Finally, we remark that Theorem 12.1 remains valid for the oriented Riemann
integral, since exchanging a and b reverses the sign of both sides.

12.1.2. Fundamental theorem of calculus II. Next, we prove the other direc-
tion of the fundamental theorem. We will use the following result, of independent
interest, which states that the average of a continuous function on an interval ap-
proaches the value of the function as the length of the interval shrinks to zero. The
proof uses a common trick of taking a constant inside an average.

Theorem 12.4. Suppose that f : [a, b] → R is integrable on [a, b] and continuous
at a. Then

lim
h→0+

1

h

∫ a+h

a

f(x) dx = f(a).

Proof. If k is a constant, then we have

k =
1

h

∫ a+h

a

k dx.

(That is, the average of a constant is equal to the constant.) We can therefore write

1

h

∫ a+h

a

f(x) dx− f(a) =
1

h

∫ a+h

a

[f(x)− f(a)] dx.

Let ε > 0. Since f is continuous at a, there exists δ > 0 such that

|f(x)− f(a)| < ε for a ≤ x < a+ δ.

It follows that if 0 < h < δ, then∣∣∣∣∣ 1h
∫ a+h

a

f(x) dx− f(a)

∣∣∣∣∣ ≤ 1

h
· sup
a≤a≤a+h

|f(x)− f(a)| · h ≤ ε,

which proves the result. �

A similar proof shows that if f is continuous at b, then

lim
h→0+

1

h

∫ b

b−h
f = f(b),

and if f is continuous at a < c < b, then

lim
h→0+

1

2h

∫ c+h

c−h
f = f(c).

More generally, if f is continuous at c and {Ih : h > 0} is any collection of intervals
with c ∈ Ih and |Ih| → 0 as h→ 0+, then

lim
h→0+

1

|Ih|

∫
Ih

f = f(c).

The assumption in Theorem 12.4 that f is continuous at the point about which we
take the averages is essential.



12.1. The fundamental theorem of calculus 245

Example 12.5. Let f : R→ R be the sign function

f(x) =


1 if x > 0,

0 if x = 0,

−1 if x < 0.

Then

lim
h→0+

1

h

∫ h

0

f(x) dx = 1, lim
h→0+

1

h

∫ 0

−h
f(x) dx = −1,

and neither limit is equal to f(0). In this example, the limit of the symmetric
averages

lim
h→0+

1

2h

∫ h

−h
f(x) dx = 0

is equal to f(0), but this equality doesn’t hold if we change f(0) to a nonzero value
(for example, if f(x) = 1 for x ≥ 0 and f(x) = −1 for x < 0) since the limit of the
symmetric averages is still 0.

The second part of the fundamental theorem follows from this result and the
fact that the difference quotients of F are averages of f .

Theorem 12.6 (Fundamental theorem of calculus II). Suppose that f : [a, b]→ R
is integrable and F : [a, b]→ R is defined by

F (x) =

∫ x

a

f(t) dt.

Then F is continuous on [a, b]. Moreover, if f is continuous at a ≤ c ≤ b, then F is
differentiable at c and F ′(c) = f(c).

Proof. First, note that Theorem 11.44 implies that f is integrable on [a, x] for
every a ≤ x ≤ b, so F is well-defined. Since f is Riemann integrable, it is bounded,
and |f | ≤M for some M ≥ 0. It follows that

|F (x+ h)− F (x)| =

∣∣∣∣∣
∫ x+h

x

f(t) dt

∣∣∣∣∣ ≤M |h|,
which shows that F is continuous on [a, b] (in fact, Lipschitz continuous).

Moreover, we have

F (c+ h)− F (c)

h
=

1

h

∫ c+h

c

f(t) dt.

It follows from Theorem 12.4 that if f is continuous at c, then F is differentiable
at c with

F ′(c) = lim
h→0

[
F (c+ h)− F (c)

h

]
= lim
h→0

1

h

∫ c+h

c

f(t) dt = f(c),

where we use the appropriate right or left limit at an endpoint. �

The assumption that f is continuous is needed to ensure that F is differentiable.
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Example 12.7. If

f(x) =

{
1 for x ≥ 0,

0 for x < 0,

then

F (x) =

∫ x

0

f(t) dt =

{
x for x ≥ 0,

0 for x < 0.

The function F is continuous but not differentiable at x = 0, where f is discon-
tinuous, since the left and right derivatives of F at 0, given by F ′(0−) = 0 and
F ′(0+) = 1, are different.

12.2. Consequences of the fundamental theorem

The first part of the fundamental theorem, Theorem 12.1, is the basic tool for
the exact evaluation of integrals. It allows us to compute the integral of of a
function f if we can find an antiderivative; that is, a function F such that F ′ =
f . There is no systematic procedure for finding antiderivatives. Moreover, an
antiderivative of an elementary function (constructed from power, trigonometric,
and exponential functions and their inverses) need not be — and often isn’t —
expressible in terms of elementary functions. By contrast, the rules of differentiation
provide a mechanical algorithm for the computation of the derivative of any function
formed from elementary functions by algebraic operations and compositions.

Example 12.8. For p = 0, 1, 2, . . . , we have

d

dx

[
1

p+ 1
xp+1

]
= xp,

and it follows that ∫ 1

0

xp dx =
1

p+ 1
.

Example 12.9. We can use the fundamental theorem to evaluate certain limits of
sums. For example,

lim
n→∞

[
1

np+1

n∑
k=1

kp

]
=

1

p+ 1
,

since the sum on the left-hand side is the upper sum of xp on a partition of [0, 1]
into n intervals of equal length. Example 11.27 illustrates this result explicitly for
p = 2.

Two important general consequences of the first part of the fundamental theo-
rem are integration by parts and substitution (or change of variable), which come
from inverting the product rule and chain rule for derivatives, respectively.

Theorem 12.10 (Integration by parts). Suppose that f, g : [a, b]→ R are contin-
uous on [a, b] and differentiable in (a, b), and f ′, g′ are integrable on [a, b]. Then∫ b

a

fg′ dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f ′g dx.
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Proof. The function fg is continuous on [a, b] and, by the product rule, differen-
tiable in (a, b) with derivative

(fg)′ = fg′ + f ′g.

Since f , g, f ′, g′ are integrable on [a, b], Theorem 11.35 implies that fg′, f ′g, and
(fg)′, are integrable. From Theorem 12.1, we get that∫ b

a

fg′ dx+

∫ b

a

f ′g dx =

∫ b

a

(fg)′ dx = f(b)g(b)− f(a)g(a),

which proves the result. �

Integration by parts says that we can move a derivative from one factor in
an integral onto the other factor, with a change of sign and the appearance of
a boundary term. The product rule for derivatives expresses the derivative of a
product in terms of the derivatives of the factors. By contrast, integration by parts
doesn’t give an explicit expression for the integral of a product, it simply replaces
one integral by another. This can sometimes be used transform an integral into an
integral that is easier to evaluate, but the importance of integration by parts goes
far beyond its use as an integration technique.

Example 12.11. For n = 0, 1, 2, 3, . . . , let

In(x) =

∫ x

0

tne−t dt.

If n ≥ 1, then integration by parts with f(t) = tn and g′(t) = e−t gives

In(x) = −xne−x + n

∫ x

0

tn−1e−t dt = −xne−x + nIn−1(x).

Also, by the fundamental theorem of calculus,

I0(x) =

∫ x

0

e−t dt = 1− e−x.

It then follows by induction that

In(x) = n!

[
1− e−x

n∑
k=0

xk

k!

]
.

Since xke−x → 0 as x → ∞ for every k = 0, 1, 2, . . . , we get the improper
integral ∫ ∞

0

tne−t dt = lim
r→∞

∫ r

0

tne−t dt = n!

This formula suggests an extension of the factorial function to complex numbers
z ∈ C, called the Gamma function, which is defined for <z > 0 by the improper,
complex-valued integral

Γ(z) =

∫ ∞
0

tz−1e−t dt.

In particular, Γ(n) = (n − 1)! for n ∈ N. The Gamma function is an important
special function, which is studied further in complex analysis.

Next we consider the change of variable formula for integrals.
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Theorem 12.12 (Change of variable). Suppose that g : I → R differentiable on
an open interval I and g′ is integrable on I. Let J = g(I). If f : J → R continuous,
then for every a, b ∈ I,

∫ b

a

f (g(x)) g′(x) dx =

∫ g(b)

g(a)

f(u) du.

Proof. For x ∈ J , let

F (x) =

∫ x

g(a)

f(u) du.

Since f is continuous, Theorem 12.6 implies that F is differentiable in J with
F ′ = f . The chain rule implies that the composition F ◦ g : I → R is differentiable
in I, with

(F ◦ g)′(x) = f (g(x)) g′(x).

This derivative is integrable on [a, b] since f ◦ g is continuous and g′ is integrable.
Theorem 12.1, the definition of F , and the additivity of the integral then imply
that ∫ b

a

f (g(x)) g′(x) dx =

∫ b

a

(F ◦ g)′ dx

= F (g(b))− F (g(a))

=

∫ g(b)

g(a)

F ′(u) du,

which proves the result. �

There is no assumption in this theorem that g is invertible, but we often use the
theorem in that case. A continuous function maps an interval to an interval, and it
is one-to-one if and only if it is strictly monotone. An increasing function preserves
the orientation of the interval, while a decreasing function reverses it, in which case
the integrals in the previous theorem are understood as oriented integrals.

This result can also be formulated in terms of non-oriented integrals. Suppose
that g : I → J is one-to-one and onto from an interval I = [a, b] to an interval
J = g(I) = [c, d] where c = g(a), d = g(b) if g is increasing, and c = g(b), d = g(a)
if g is decreasing, then∫

g(I)

f(u) du =

∫
I

(f ◦ g)(x)|g′(x)| dx.

In this identity, both integrals are over positively oriented intervals and we include
an absolute value in the Jacobian factor |g′(x)|. If g′ ≥ 0, then this identity is the
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same as the oriented form, while if g′ ≤ 0, then∫
I

(f ◦ g)(x)|g′(x)| dx =

∫ b

a

(f ◦ g)(x)[−g′(x)] dx

= −
∫ g(b)

g(a)

f(u) du

=

∫ g(a)

g(b)

f(u) du

=

∫
g(I)

f(u) du.

Example 12.13. For every a > 0, the increasing, differentiable function g : R→ R
defined by g(x) = x3 maps (−a, a) one-to-one and onto (−a3, a3) and preserves
orientation. Thus, if f : [−a, a]→ R is continuous,∫ a

−a
f(x3) · 3x2 dx =

∫ a3

−a3
f(u) du.

The decreasing, differentiable function g : R → R defined by g(x) = −x3 maps
(−a, a) one-to-one and onto (−a3, a3) and reverses orientation. Thus,∫ a

−a
f(−x3) · (−3x2) dx =

∫ −a3
a3

f(u) du = −
∫ a3

−a3
f(u) du.

The non-monotone, differentiable function g : R → R defined by g(x) = x2 maps
(−a, a) onto [0, a2). It is two-to-one, except at x = 0. The change of variables
formula gives ∫ a

−a
f(x2) · 2x dx =

∫ a2

a2
f(u) du = 0.

The contributions to the original integral from [0, a] and [−a, 0] cancel since the
integrand is an odd function of x.

One consequence of the second part of the fundamental theorem, Theorem 12.6,
is that every continuous function has an antiderivative, even if it can’t be expressed
explicitly in terms of elementary functions. This provides a way to define transcen-
dental functions as integrals of elementary functions.

Example 12.14. One way to define the natural logarithm log : (0,∞) → R in
terms of algebraic functions is as the integral

log x =

∫ x

1

1

t
dt.

This integral is well-defined for every 0 < x < ∞ since 1/t is continuous on the
interval [1, x] if x > 1, or [x, 1] if 0 < x < 1. The usual properties of the logarithm
follow from this representation. We have (log x)′ = 1/x by definition; and, for
example, by making the substitution s = xt in the second integral in the following
equation, when dt/t = ds/s, we get

log x+ log y =

∫ x

1

1

t
dt+

∫ y

1

1

t
dt =

∫ x

1

1

t
dt+

∫ xy

x

1

s
ds =

∫ xy

1

1

t
dt = log(xy).
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Figure 1. Graphs of the error function y = F (x) (blue) and its derivative,

the Gaussian function y = f(x) (green), from Example 12.15.

We can also define many non-elementary functions as integrals.

Example 12.15. The error function

erf(x) =
2√
π

∫ x

0

e−t
2

dt

is an anti-derivative on R of the Gaussian function

f(x) =
2√
π
e−x

2

.

The error function isn’t expressible in terms of elementary functions. Nevertheless,
it is defined as a limit of Riemann sums for the integral. Figure 1 shows the graphs
of f and F . The name “error function” comes from the fact that the probability of
a Gaussian random variable deviating by more than a given amount from its mean
can be expressed in terms of F . Error functions also arise in other applications; for
example, in modeling diffusion processes such as heat flow.

Example 12.16. The Fresnel sine function S is defined by

S(x) =

∫ x

0

sin

(
πt2

2

)
dt.

The function S is an antiderivative of sin(πt2/2) on R (see Figure 2), but it can’t
be expressed in terms of elementary functions. Fresnel integrals arise, among other
places, in analysing the diffraction of waves, such as light waves. From the perspec-
tive of complex analysis, they are closely related to the error function through the
Euler formula eiθ = cos θ + i sin θ.

Discontinuous functions may or may not have an antiderivative and typically
don’t. Darboux proved that every function f : (a, b) → R that is the derivative of
a function F : (a, b)→ R, where F ′ = f at all points of (a, b), has the intermediate
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Figure 2. Graphs of the Fresnel integral y = S(x) (blue) and its derivative

y = sin(πx2/2) (green) from Example 12.16.

value property. That is, for all c, d such that if a < c < d < b and all y between
f(c) and f(d), there exists an x between c and d such that f(x) = y. A continuous
derivative has this property by the intermediate value theorem, but a discontinuous
derivative also has it. Thus, discontinuous functions without the intermediate value
property, such as ones with a jump discontinuity, don’t have an antiderivative. For
example, the function F in Example 12.7 is not an antiderivative of the step function
f on R since it isn’t differentiable at 0.

In dealing with functions that are not continuously differentiable, it turns out
to be more useful to abandon the idea of a derivative that is defined pointwise
everywhere (pointwise values of discontinuous functions are somewhat arbitrary)
and introduce the notion of a weak derivative. We won’t define or study weak
derivatives here.

12.3. Integrals and sequences of functions

A fundamental question that arises throughout analysis is the validity of an ex-
change in the order of limits. Some sort of condition is always required.

In this section, we consider the question of when the convergence of a sequence
of functions fn → f implies the convergence of their integrals

∫
fn →

∫
f . Here,

we exchange a limit of a sequence of functions with a limit of the Riemann sums
that define their integrals. The two types of convergence we’ll discuss are pointwise
and uniform convergence, which are defined in Chapter 9.

As we show first, the Riemann integral is well-behaved with respect to uniform
convergence. The drawback to uniform convergence is that it’s a strong form of
convergence, and we often want to use a weaker form, such as pointwise convergence,
in which case the Riemann integral may not be suitable.
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12.3.1. Uniform convergence. The uniform limit of continuous functions is
continuous and therefore integrable. The next result shows, more generally, that
the uniform limit of integrable functions is integrable. Furthermore, the limit of
the integrals is the integral of the limit.

Theorem 12.17. Suppose that fn : [a, b] → R is Riemann integrable for each
n ∈ N and fn → f uniformly on [a, b] as n → ∞. Then f : [a, b] → R is Riemann
integrable on [a, b] and ∫ b

a

f = lim
n→∞

∫ b

a

fn.

Proof. The main statement we need to prove is that f is integrable. Let ε > 0.
Since fn → f uniformly, there is an N ∈ N such that if n > N then

fn(x)− ε

b− a
< f(x) < fn(x) +

ε

b− a
for all a ≤ x ≤ b.

It follows from Proposition 11.39 that

L

(
fn −

ε

b− a

)
≤ L(f), U(f) ≤ U

(
fn +

ε

b− a

)
.

Since fn is integrable and upper integrals are greater than lower integrals, we get
that ∫ b

a

fn − ε ≤ L(f) ≤ U(f) ≤
∫ b

a

fn + ε

for all n > N , which implies that

0 ≤ U(f)− L(f) ≤ 2ε.

Since ε > 0 is arbitrary, we conclude that L(f) = U(f), so f is integrable. Moreover,
it follows that for all n > N we have∣∣∣∣∣

∫ b

a

fn −
∫ b

a

f

∣∣∣∣∣ ≤ ε,
which shows that

∫ b
a
fn →

∫ b
a
f as n→∞. �

Alternatively, once we know that the uniform limit of integrable functions is
integrable, the convergence of the integrals follows directly from the estimate∣∣∣∣∣
∫ b

a

fn −
∫ b

a

f

∣∣∣∣∣ =

∣∣∣∣∣
∫ b

a

(fn − f)

∣∣∣∣∣ ≤ sup
x∈[a,b]

|fn(x)− f(x)| · (b− a)→ 0 as n→∞.

Example 12.18. The function fn : [0, 1]→ R defined by

fn(x) =
n+ cosx

nex + sinx

converges uniformly on [0, 1] to f(x) = e−x since, for 0 ≤ x ≤ 1,∣∣∣∣ n+ cosx

nex + sinx
− e−x

∣∣∣∣ =

∣∣∣∣cosx− e−x sinx

nex + sinx

∣∣∣∣ ≤ 1

n
.

It follows that

lim
n→∞

∫ 1

0

n+ cosx

nex + sinx
dx =

∫ 1

0

e−x dx = 1− 1

e
.



12.3. Integrals and sequences of functions 253

Example 12.19. Every power series

f(x) = a0 + a1x+ a2x2 + · · ·+ anx
n + . . .

with radius of convergence R > 0 converges uniformly on compact intervals inside
the interval |x| < R, so we can integrate it term-by-term to get∫ x

0

f(t) dt = a0x+
1

2
a1x

2 +
1

3
a2x

3 + · · ·+ 1

n+ 1
anx

n+1 + . . . for |x| < R.

Example 12.20. If we integrate the geometric series

1

1− x
= 1 + x+ x2 + · · ·+ xn + . . . for |x| < 1,

we get a power series for log,

log

(
1

1− x

)
= x+

1

2
x2 +

1

3
x3 · · ·+ 1

n
xn + . . . for |x| < 1.

For instance, taking x = 1/2, we get the rapidly convergent series

log 2 =

∞∑
n=1

1

n2n

for the irrational number log 2 ≈ 0.6931. This series was known and used by Euler.
For comparison, the alternating harmonic series in Example 12.46 also converges
to log 2, but it does so extremely slowly and would be a poor choice for computing
a numerical approximation.

Although we can integrate uniformly convergent sequences, we cannot in gen-
eral differentiate them. In fact, it’s often easier to prove results about the conver-
gence of derivatives by using results about the convergence of integrals, together
with the fundamental theorem of calculus. The following theorem provides suffi-
cient conditions for fn → f to imply that f ′n → f ′.

Theorem 12.21. Let fn : (a, b) → R be a sequence of differentiable functions
whose derivatives f ′n : (a, b) → R are integrable on (a, b). Suppose that fn → f
pointwise and f ′n → g uniformly on (a, b) as n → ∞, where g : (a, b) → R is
continuous. Then f : (a, b)→ R is continuously differentiable on (a, b) and f ′ = g.

Proof. Choose some point a < c < b. Since f ′n is integrable, the fundamental
theorem of calculus, Theorem 12.1, implies that

fn(x) = fn(c) +

∫ x

c

f ′n for a < x < b.

Since fn → f pointwise and f ′n → g uniformly on [a, x], we find that

f(x) = f(c) +

∫ x

c

g.

Since g is continuous, the other direction of the fundamental theorem, Theo-
rem 12.6, implies that f is differentiable in (a, b) and f ′ = g. �
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In particular, this theorem shows that the limit of a uniformly convergent se-
quence of continuously differentiable functions whose derivatives converge uniformly
is also continuously differentiable.

The key assumption in Theorem 12.21 is that the derivatives f ′n converge uni-
formly, not just pointwise; the result is false if we only assume pointwise convergence
of the f ′n. In the proof of the theorem, we only use the assumption that fn(x) con-
verges at a single point x = c. This assumption together with the assumption that
f ′n → g uniformly implies that fn → f uniformly, where

f(x) = lim
n→∞

fn(c) +

∫ x

c

g.

Thus, the theorem remains true if we replace the assumption that fn → f pointwise
on (a, b) by the weaker assumption that limn→∞ fn(c) exists for some c ∈ (a, b).
This isn’t an important change, however, because the restrictive assumption in the
theorem is the uniform convergence of the derivatives f ′n, not the pointwise (or
uniform) convergence of the functions fn.

The assumption that g = lim f ′n is continuous is needed to show the differentia-
bility of f by the fundamental theorem, but the result remains true even if g isn’t
continuous. In that case, however, a different — and more complicated — proof is
required, which is given in Theorem 9.18.

12.3.2. Pointwise convergence. On its own, the pointwise convergence of
functions is never sufficient to imply convergence of their integrals.

Example 12.22. For n ∈ N, define fn : [0, 1]→ R by

fn(x) =

{
n if 0 < x < 1/n,

0 if x = 0 or 1/n ≤ x ≤ 1.

Then fn → 0 pointwise on [0, 1] but∫ 1

0

fn = 1

for every n ∈ N. By slightly modifying these functions to

fn(x) =

{
n2 if 0 < x < 1/n,

0 if x = 0 or 1/n ≤ x ≤ 1,

we get a sequence that converges pointwise to 0 but whose integrals diverge to ∞.
The fact that the fn are discontinuous is not important; we could replace the step
functions by continuous “tent” functions or smooth “bump” functions.

The behavior of the integral under pointwise convergence in the previous ex-
ample is unavoidable whatever definition of the integral one uses. A more serious
defect of the Riemann integral is that the pointwise limit of Riemann integrable
functions needn’t be Riemann integrable at all, even if it is bounded.
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Example 12.23. Let {rk : k ∈ N} be an enumeration of the rational numbers in
[0, 1] and define fn : [0, 1]→ R by

fn(x) =

{
1 if x = rk for some 1 ≤ k ≤ n,
0 otherwise.

Then each fn is Riemann integrable since it differs from the zero function at finitely
many points. However, fn → f pointwise on [0, 1] to the Dirichlet function f , which
is not Riemann integrable.

This is another place where the Lebesgue integral has better properties than
the Riemann integral. The pointwise (or pointwise almost everywhere) limit of
Lebesgue measurable functions is Lebesgue measurable. As Example 12.22 shows,
we still need conditions to ensure the convergence of the integrals, but there are
quite simple and general conditions for the Lebesgue integral (such as the monotone
convergence and dominated convergence theorems).

12.4. Improper Riemann integrals

The Riemann integral is only defined for a bounded function on a compact interval
(or a finite union of such intervals). Nevertheless, we frequently want to integrate
unbounded functions or functions on an infinite interval. One way to interpret
such integrals is as a limit of Riemann integrals; these limits are called improper
Riemann integrals.

12.4.1. Improper integrals. First, we define the improper integral of a function
that fails to be integrable at one endpoint of a bounded interval.

Definition 12.24. Suppose that f : (a, b] → R is integrable on [c, b] for every
a < c < b. Then the improper integral of f on [a, b] is∫ b

a

f = lim
ε→0+

∫ b

a+ε

f.

The improper integral converges if this limit exists (as a finite real number), other-
wise it diverges. Similarly, if f : [a, b)→ R is integrable on [a, c] for every a < c < b,
then ∫ b

a

f = lim
ε→0+

∫ b−ε

a

f.

We use the same notation to denote proper and improper integrals; it should
be clear from the context which integrals are proper Riemann integrals (i.e., ones
given by Definition 11.11) and which are improper. If f is Riemann integrable on
[a, b], then Proposition 11.50 shows that its improper and proper integrals agree,
but an improper integral may exist even if f isn’t integrable.

Example 12.25. If p > 0, then the integral∫ 1

0

1

xp
dx
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isn’t defined as a Riemann integral since 1/xp is unbounded on (0, 1]. The corre-
sponding improper integral is∫ 1

0

1

xp
dx = lim

ε→0+

∫ 1

ε

1

xp
dx.

For p 6= 1, we have ∫ 1

ε

1

xp
dx =

1− ε1−p

1− p
,

so the improper integral converges if 0 < p < 1, with∫ 1

0

1

xp
dx =

1

p− 1
,

and diverges to ∞ if p > 1. The integral also diverges (more slowly) to ∞ if p = 1
since ∫ 1

ε

1

x
dx = log

1

ε
.

Thus, we get a convergent improper integral if the integrand 1/xp does not grow
too rapidly as x→ 0+ (slower than 1/x).

We define improper integrals on an unbounded interval as limits of integrals on
bounded intervals.

Definition 12.26. Suppose that f : [a,∞) → R is integrable on [a, r] for every
r > a. Then the improper integral of f on [a,∞) is∫ ∞

a

f = lim
r→∞

∫ r

a

f.

Similarly, if f : (−∞, b]→ R is integrable on [r, b] for every r < b, then∫ b

−∞
f = lim

r→∞

∫ b

−r
f.

Let’s consider the convergence of the integral of the power function in Exam-
ple 12.25 at infinity rather than at zero.

Example 12.27. Suppose that p > 0. The improper integral∫ ∞
1

1

xp
dx = lim

r→∞

∫ r

1

1

xp
dx = lim

r→∞

(
r1−p − 1

1− p

)
converges to 1/(p − 1) if p > 1 and diverges to ∞ if 0 < p < 1. It also diverges
(more slowly) if p = 1 since∫ ∞

1

1

x
dx = lim

r→∞

∫ r

1

1

x
dx = lim

r→∞
log r =∞.

Thus, we get a convergent improper integral if the integrand 1/xp decays sufficiently
rapidly as x→∞ (faster than 1/x).

A divergent improper integral may diverge to ∞ (or −∞) as in the previous
examples, or — if the integrand changes sign — it may oscillate.
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Example 12.28. Define f : [0,∞)→ R by

f(x) = (−1)n for n ≤ x < n+ 1 where n = 0, 1, 2, . . . .

Then 0 ≤
∫ r
0
f ≤ 1 and∫ n

0

f =

{
1 if n is an odd integer,

0 if n is an even integer.

Thus, the improper integral
∫∞
0
f doesn’t converge.

More general improper integrals may be defined as finite sums of improper
integrals of the previous forms. For example, if f : [a, b] \ {c} → R is integrable on
closed intervals not including a < c < b, then∫ b

a

f = lim
δ→0+

∫ c−δ

a

f + lim
ε→0+

∫ b

c+ε

f ;

and if f : R→ R is integrable on every compact interval, then∫ ∞
−∞

f = lim
s→∞

∫ c

−s
f + lim

r→∞

∫ r

c

f,

where we split the integral at an arbitrary point c ∈ R. Note that each limit is
required to exist separately.

Example 12.29. The improper Riemann integral∫ ∞
0

1

xp
dx = lim

ε→0+

∫ 1

ε

1

xp
dx+ lim

r→∞

∫ r

1

1

xp
dx

does not converge for any p ∈ R, since the integral either diverges at 0 (if p ≥ 1) or
at infinity (if p ≤ 1).

Example 12.30. If f : [0, 1] → R is continuous and 0 < c < 1, then we define as
an improper integral∫ 1

0

f(x)

|x− c|1/2
dx = lim

δ→0+

∫ c−δ

0

f(x)

|x− c|1/2
dx+ lim

ε→0+

∫ 1

c+ε

f(x)

|x− c|1/2
dx.

Example 12.31. Consider the following integral, called a Frullani integral,

I =

∫ ∞
0

f(ax)− f(bx)

x
dx,

where 0 < a < b and f : [0,∞)→ R is a continuous function whose limit as x→∞
exists. We write this limit as

f(∞) = lim
x→∞

f(x).

We interpret the integral as an improper integral I = I1 + I2 where

I1 = lim
ε→0+

∫ 1

ε

f(ax)− f(bx)

x
dx, I2 = lim

r→∞

∫ r

1

f(ax)− f(bx)

x
dx.

Consider I1. After making the substitutions s = ax and t = bx and using the
additivity property of the integral, we get that

I1 = lim
ε→0+

(∫ a

εa

f(s)

s
ds−

∫ b

εb

f(t)

t
dt

)
= lim
ε→0+

(∫ εb

εa

f(t)

t
dt

)
−
∫ b

a

f(t)

t
dt.
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To evaluate the limit, we write∫ εb

εa

f(t)

t
dt =

∫ εb

εa

f(t)− f(0)

t
dt+ f(0)

∫ εb

εa

1

t
dt

=

∫ εb

εa

f(t)− f(0)

t
dt+ f(0) log

(
b

a

)
.

Since f is continuous at 0 and t ≥ εa in the interval of integration of length ε(b−a),
we have∣∣∣∣∣

∫ εb

εa

f(t)− f(0)

t
dt

∣∣∣∣∣ ≤
(
b− a
a

)
·max{|f(t)− f(0)| : εa ≤ t ≤ εb} → 0

as ε→ 0+. It follows that

I1 = f(0) log

(
b

a

)
−
∫ b

a

f(t)

t
dt.

A similar argument gives

I2 = −f(∞) log

(
b

a

)
+

∫ b

a

f(t)

t
dt.

Adding these results, we conclude that∫ ∞
0

f(ax)− f(bx)

x
dx = {f(0)− f(∞)} log

(
b

a

)
.

12.4.2. Absolutely convergent improper integrals. The convergence of im-
proper integrals is analogous to the convergence of series. A series

∑
an converges

absolutely if
∑
|an| converges, and conditionally if

∑
an converges but

∑
|an| di-

verges. We introduce a similar definition for improper integrals and provide a
test for the absolute convergence of an improper integral that is analogous to the
comparison test for series.

Definition 12.32. An improper integral
∫ b
a
f is absolutely convergent if the im-

proper integral
∫ b
a
|f | converges, and conditionally convergent if

∫ b
a
f converges but∫ b

a
|f | diverges.

As part of the next theorem, we prove that an absolutely convergent improper
integral converges (similarly, an absolutely convergent series converges).

Theorem 12.33. Suppose that f, g : I → R are defined on some finite or infinite
interval I. If |f | ≤ g and the improper integral

∫
I
g converges, then the improper

integral
∫
I
f converges absolutely. Moreover, an absolutely convergent improper

integral converges.

Proof. To be specific, we suppose that f, g : [a,∞)→ R are integrable on [a, r] for
r > a and consider the improper integral∫ ∞

a

f = lim
r→∞

∫ r

a

f.

A similar argument applies to other types of improper integrals.
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First, suppose that f ≥ 0. Then∫ r

a

f ≤
∫ r

a

g ≤
∫ ∞
a

g,

so
∫ r
a
f is a monotonic increasing function of r that is bounded from above. There-

fore it converges as r →∞.

In general, we decompose f into its positive and negative parts,

f = f+ − f−, |f | = f+ + f−,

f+ = max{f, 0}, f− = max{−f, 0}.

We have 0 ≤ f± ≤ g, so the improper integrals of f± converge by the previous
argument, and therefore so does the improper integral of f :∫ ∞

a

f = lim
r→∞

(∫ r

a

f+ −
∫ r

a

f−

)
= lim
r→∞

∫ r

a

f+ − lim
r→∞

∫ r

a

f−

=

∫ ∞
a

f+ −
∫ ∞
a

f−.

Moreover, since 0 ≤ f± ≤ |f |, we see that
∫∞
a
f+ and

∫∞
a
f− both converge if∫∞

a
|f | converges, and therefore so does

∫∞
a
f , so an absolutely convergent improper

integral converges. �

Example 12.34. Consider the limiting behavior of the error function erf(x) in
Example 12.15 as x→∞, which is given by

2√
π

∫ ∞
0

e−x
2

dx =
2√
π

lim
r→∞

∫ r

0

e−x
2

dx.

The convergence of this improper integral follows by comparison with e−x, for
example, since

0 ≤ e−x
2

≤ e−x for x ≥ 1,

and ∫ ∞
1

e−x dx = lim
r→∞

∫ r

1

e−x dx = lim
r→∞

(
e−1 − e−r

)
=

1

e
.

This argument proves that the error function approaches a finite limit as x → ∞,
but it doesn’t give the exact value, only an upper bound

2√
π

∫ ∞
0

e−x
2

dx ≤M, M =
2√
π

(∫ 1

0

e−x
2

dx+
1

e

)
≤ 2√

π

(
1 +

1

e

)
.

One can evaluate this improper integral exactly, with the result that

2√
π

∫ ∞
0

e−x
2

dx = 1.
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Figure 3. Graph of y = (sinx)/(1 + x2) from Example 12.35. The dashed

green lines are the graphs of y = ±1/x2.

The standard trick to obtain this result (apparently introduced by Laplace) uses
double integration, polar coordinates, and the substitution u = r2:(∫ ∞

0

e−x
2

dx

)2

=

∫ ∞
0

∫ ∞
0

e−x
2−y2 dxdy

=

∫ π/2

0

(∫ ∞
0

e−r
2

r dr

)
dθ

=
π

4

∫ ∞
0

e−u du =
π

4
.

This formal computation can be justified rigorously, but we won’t do so here. There
are also many other ways to obtain the same result.

Example 12.35. The improper integral∫ ∞
0

sinx

1 + x2
dx = lim

r→∞

∫ r

0

sinx

1 + x2
dx

converges absolutely, since∫ ∞
0

sinx

1 + x2
dx =

∫ 1

0

sinx

1 + x2
dx+

∫ ∞
1

sinx

1 + x2
dx

and (see Figure 3)∣∣∣∣ sinx

1 + x2

∣∣∣∣ ≤ 1

x2
for x ≥ 1,

∫ ∞
1

1

x2
dx <∞.

The value of this integral doesn’t have an elementary expression, but by using
contour integration from complex analysis one can show that∫ ∞

0

sinx

1 + x2
dx =

1

2e
Ei(1)− e

2
Ei(−1) ≈ 0.6468,
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where Ei is the exponential integral function defined in Example 12.41.

Improper integrals, and the principal value integrals discussed below, arise
frequently in complex analysis, and many such integrals can be evaluated by contour
integration.

Example 12.36. The improper integral∫ ∞
0

sinx

x
dx = lim

r→∞

∫ r

0

sinx

x
dx =

π

2

converges conditionally. We leave the proof as an exercise. Note that there is no
difficulty at 0, since sinx/x → 1 as x → 0, and comparison with the function
1/x doesn’t imply absolute convergence at infinity because the improper integral∫∞
1

1/x dx diverges. There are many ways to show that the exact value of the
improper integral is π/2. The standard method uses contour integration.

Example 12.37. Consider the limiting behavior of the Fresnel sine function S(x)
in Example 12.16 as x→∞. The improper integral∫ ∞

0

sin

(
πx2

2

)
dx = lim

r→∞

∫ r

0

sin

(
πx2

2

)
dx =

1

2
.

converges conditionally. This example may seem surprising since the integrand
sin(πx2/2) doesn’t converge to 0 as x→∞. The explanation is that the integrand
oscillates more rapidly with increasing x, leading to a more rapid cancelation be-
tween positive and negative values in the integral (see Figure 2). The exact value
can be found by contour integration, again, which shows that∫ ∞

0

sin

(
πx2

2

)
dx =

1√
2

∫ ∞
0

exp

(
−πx

2

2

)
dx.

Evaluation of the resulting Gaussian integral gives 1/2.

12.5. * Principal value integrals

Some integrals have a singularity that is too strong for them to converge as im-
proper integrals but, due to cancelation between positive and negative parts of the
integrand, they have a finite limit as a principal value integral. We begin with an
example.

Example 12.38. Consider f : [−1, 1] \ {0} defined by

f(x) =
1

x
.

The definition of the integral of f on [−1, 1] as an improper integral is∫ 1

−1

1

x
dx = lim

δ→0+

∫ −δ
−1

1

x
dx+ lim

ε→0+

∫ 1

ε

1

x
dx

= lim
δ→0+

log δ − lim
ε→0+

log ε.
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Neither limit exists, so the improper integral diverges. (Formally, we get ∞−∞.)
If, however, we take δ = ε and combine the limits, we get a convergent principal
value integral, which is defined by

p.v.

∫ 1

−1

1

x
dx = lim

ε→0+

(∫ −ε
−1

1

x
dx+

∫ 1

ε

1

x
dx

)
= lim
ε→0+

(log ε− log ε) = 0.

The value of 0 is what one might expect from the oddness of the integrand. A
cancelation in the contributions from either side of the singularity is essential to
obtain a finite limit.

The principal value integral of 1/x on a non-symmetric interval about 0 still
exists but is non-zero. For example, if b > 0, then

p.v.

∫ b

−1

1

x
dx = lim

ε→0+

(∫ −ε
−1

1

x
dx+

∫ b

ε

1

x
dx

)
= lim
ε→0+

(log ε+ log b− log ε) = log b.

The crucial feature of a principal value integral is that we remove a symmetric
interval around a singular point, or infinity. The resulting cancelation in the integral
of a non-integrable function that changes sign across the singularity may lead to a
finite limit.

Definition 12.39. If f : [a, b] \ {c} → R is integrable on closed intervals not
including a < c < b, then the principal value integral of f on [a, b] is

p.v.

∫ b

a

f = lim
ε→0+

(∫ c−ε

a

f +

∫ b

c+ε

f

)
.

If f : R→ R is integrable on compact intervals, then the principal value integral of
f on R is

p.v.

∫ ∞
−∞

f = lim
r→∞

∫ r

−r
f.

If the improper integral exists, then the principal value integral exists and
is equal to the improper integral. As Example 12.38 shows, the principal value
integral may exist even if the improper integral does not. Of course, a principal
value integral may also diverge.

Example 12.40. Consider the principal value integral

p.v.

∫ 1

−1

1

x2
dx = lim

ε→0+

(∫ −ε
−1

1

x2
dx+

∫ 1

ε

1

x2
dx

)
= lim
ε→0+

(
2

ε
− 2

)
=∞.

In this case, the function 1/x2 is positive and approaches ∞ on both sides of the
singularity at x = 0, so there is no cancelation and the principal value integral
diverges to ∞.

Principal value integrals arise frequently in complex analysis, harmonic analy-
sis, and a variety of applications.
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Figure 4. Graphs of the exponential integral y = Ei(x) (blue) and its deriv-

ative y = ex/x (green) from Example 12.41.

Example 12.41. The exponential integral Ei is a non-elementary function defined
by

Ei(x) =

∫ x

−∞

et

t
dt.

Its graph is shown in Figure 4. This integral has to be understood, in general, as an
improper, principal value integral, and the function has a logarithmic singularity
at x = 0.

If x < 0, then the integrand is continuous for −∞ < t ≤ x, and the integral is
interpreted as an improper integral,∫ x

∞

et

t
dt = lim

r→∞

∫ x

−r

et

t
dt.

This improper integral converges absolutely by comparison with et, since∣∣∣∣ett
∣∣∣∣ ≤ et for −∞ < t ≤ −1,

and ∫ −1
−∞

et dt = lim
r→∞

∫ −1
−r

et dt = lim
r→∞

(
e−r − e−1

)
=

1

e
.

If x > 0, then the integrand has a non-integrable singularity at t = 0, and we
interpret it as a principal value integral. We write∫ x

−∞

et

t
dt =

∫ −1
−∞

et

t
dt+

∫ x

−1

et

t
dt.
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The first integral is interpreted as an improper integral as before. The second
integral is interpreted as a principal value integral

p.v.

∫ x

−1

et

t
dt = lim

ε→0+

(∫ −ε
−1

et

t
dt+

∫ x

ε

et

t
dt

)
.

This principal value integral converges, since

p.v.

∫ x

−1

et

t
dt =

∫ x

−1

et − 1

t
dt+ p.v.

∫ x

−1

1

t
dt =

∫ x

−1

et − 1

t
dt+ log x.

The first integral makes sense as a Riemann integral since the integrand has a
removable singularity at t = 0, with

lim
t→0

(
et − 1

t

)
= 1,

so it extends to a continuous function on [−1, x].

Finally, if x = 0, then the integrand is unbounded at the left endpoint t = 0.
The corresponding improper integral diverges, and Ei(0) is undefined.

The exponential integral arises in physical applications such as heat flow and
radiative transfer. It is also related to the logarithmic integral

li(x) =

∫ x

0

dt

log t

by li(x) = Ei(log x). The logarithmic integral is important in number theory,
where it gives an asymptotic approximation for the number of primes less than x
as x→∞.

Example 12.42. Let f : R → R and assume, for simplicity, that f has compact
support, meaning that f = 0 outside a compact interval [−r, r]. If f is integrable,
we define the Hilbert transform Hf : R→ R of f by the principal value integral

Hf(x) =
1

π
p.v.

∫ ∞
−∞

f(t)

x− t
dt =

1

π
lim
ε→0+

(∫ x−ε

−∞

f(t)

x− t
dt+

∫ ∞
x+ε

f(t)

x− t
dt

)
.

Here, x plays the role of a parameter in the integral with respect to t. We use
a principal value because the integrand may have a non-integrable singularity at
t = x. Since f has compact support, the intervals of integration are bounded and
there is no issue with the convergence of the integrals at infinity.

For example, suppose that f is the step function

f(x) =

{
1 for 0 ≤ x ≤ 1,

0 for x < 0 or x > 1.

If x < 0 or x > 1, then t 6= x for 0 ≤ t ≤ 1, and we get a proper Riemann integral

Hf(x) =
1

π

∫ 1

0

1

x− t
dt =

1

π
log

∣∣∣∣ x

x− 1

∣∣∣∣ .
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If 0 < x < 1, then we get a principal value integral

Hf(x) =
1

π
lim
ε→0+

(∫ x−ε

0

1

x− t
dt+

1

π

∫ 1

x+ε

1

x− t
dt

)
=

1

π
lim
ε→0+

[
log
(x
ε

)
+ log

(
ε

1− x

)]
=

1

π
log

(
x

1− x

)
Thus, for x 6= 0, 1 we have

Hf(x) =
1

π
log

∣∣∣∣ x

x− 1

∣∣∣∣ .
The principal value integral with respect to t diverges if x = 0, 1 because f(t) has
a jump discontinuity at the point where t = x. Consequently the values Hf(0),
Hf(1) of the Hilbert transform of the step function are undefined.

12.6. The integral test for series

An a further application of the improper integral, we prove a useful test for the
convergence or divergence of a monotone decreasing, positive series. The idea is to
interpret the series as an upper or lower sum of an integral.

Theorem 12.43 (Integral test). Suppose that f : [1,∞) → R is a positive de-
creasing function (i.e., 0 ≤ f(x) ≤ f(y) for x ≥ y). Let an = f(n). Then the
series

∞∑
n=1

an

converges if and only if the improper integral∫ ∞
1

f(x) dx

converges. Furthermore, the limit

D = lim
n→∞

[
n∑
k=1

ak −
∫ n

1

f(x) dx

]
exists, and 0 ≤ D ≤ a1.

Proof. Let

Sn =

n∑
k=1

ak, Tn =

∫ n

1

f(x) dx.

The integral Tn exists since f is monotone, and the sequences (Sn), (Tn) are in-
creasing since f is positive.

Let
Pn = {[1, 2], [2, 3], . . . , [n− 1, n]}

be the partition of [1, n] into n− 1 intervals of length 1. Since f is decreasing,

sup
[k,k+1]

f = ak, inf
[k,k+1]

f = ak+1,
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and the upper and lower sums of f on Pn are given by

U(f ;Pn) =

n−1∑
k=1

ak, L(f ;Pn) =

n−1∑
k=1

ak+1.

Since the integral of f on [1, n] is bounded by its upper and lower sums, we get that

Sn − a1 ≤ Tn ≤ Sn−1.

This inequality shows that (Tn) is bounded from above by S if Sn ↑ S, and (Sn)
is bounded from above by T + a1 if Tn ↑ T , so (Sn) converges if and only if (Tn)
converges, which proves the first part of the theorem.

Let Dn = Sn−Tn. Then the inequality shows that an ≤ Dn ≤ a1; in particular,
(Dn) is bounded from below by zero. Moreover, since f is decreasing,

Dn −Dn+1 =

∫ n+1

n

f(x) dx− an+1 ≥ f(n+ 1) · 1− an+1 = 0,

so (Dn) is decreasing. Therefore Dn ↓ D where 0 ≤ D ≤ a1, which proves the
second part of the theorem. �

A basic application of this result is to the p-series.

Example 12.44. Applying Theorem 12.43 to the function f(x) = 1/xp and using
Example 12.27, we find that

∞∑
n=1

1

np

converges if p > 1 and diverges if 0 < p ≤ 1.

Theorem 12.43 is also useful for divergent series, since it tells us how quickly
their partial sums diverge. We remark that one can obtain similar, but more
accurate, asymptotic approximations than the one in theorem for the behavior
of the partial sums in terms of integrals, called the Euler-MacLaurin summation
formulae.

Example 12.45. Applying the second part of Theorem 12.43 to the function
f(x) = 1/x, we find that

lim
n→∞

[
n∑
k=1

1

k
− log n

]
= γ

where the limit 0 ≤ γ < 1 is the Euler constant.

Example 12.46. We can use the result of Example 12.45 to compute the sum A
of the alternating harmonic series

A = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ . . . .
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The partial sum of the first 2m terms is given by

A2m =

m∑
k=1

1

2k − 1
−

m∑
k=1

1

2k

=

2m∑
k=1

1

k
− 2

m∑
k=1

1

2k

=

2m∑
k=1

1

k
−

m∑
k=1

1

k
.

Here, we rewrite a sum of the odd terms in the harmonic series as the difference
between the harmonic series and its even terms, then use the fact that a sum of the
even terms in the harmonic series is one-half the sum of the series. It follows that

lim
m→∞

A2m = lim
m→∞

{
2m∑
k=1

1

k
− log 2m−

[
m∑
k=1

1

k
− logm

]
+ log 2m− logm

}
.

Since log 2m− logm = log 2, we get that

lim
m→∞

A2m = γ − γ + log 2 = log 2.

The odd partial sums also converge to log 2 since

A2m+1 = A2m +
1

2m+ 1
→ log 2 as m→∞.

Thus,
∞∑
n=1

(−1)n+1

n
= log 2.

Example 12.47. A similar calculation to the previous one can be used to to
compute the sum S of the rearrangement of the alternating harmonic series

S = 1− 1

2
− 1

4
+

1

3
− 1

6
− 1

8
+

1

5
− 1

10
− 1

12
+ . . .

discussed in Example 4.32. The partial sum S3m of the series may be written in
terms of partial sums of the harmonic series as

S3m = 1− 1

2
− 1

4
+ · · ·+ 1

2m− 1
− 1

4m− 2
− 1

4m

=

m∑
k=1

1

2k − 1
−

2m∑
k=1

1

2k

=

2m∑
k=1

1

k
−

m∑
k=1

1

2k
−

2m∑
k=1

1

2k

=

2m∑
k=1

1

k
− 1

2

m∑
k=1

1

k
− 1

2

2m∑
k=1

1

k
.
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It follows that

lim
m→∞

S3m = lim
m→∞

{ 2m∑
k=1

1

k
− log 2m− 1

2

[
m∑
k=1

1

k
− logm

]
− 1

2

[
2m∑
k=1

1

k
− log 2m

]

+ log 2m− 1

2
log−1

2
log 2m

}
.

Since log 2m− 1
2 logm− 1

2 log 2m = 1
2 log 2, we get that that

lim
m→∞

S3m = γ − 1

2
γ − 1

2
γ +

1

2
log 2 =

1

2
log 2.

Finally, since

lim
m→∞

(S3m+1 − S3m) = lim
m→∞

(S3m+2 − S3m) = 0,

we conclude that the whole series converges to S = 1
2 log 2.

12.7. Taylor’s theorem with integral remainder

In Theorem 8.46, we gave an expression for the error between a function and its
Taylor polynomial of order n in terms of the Lagrange remainder, which involves
a pointwise value of the derivative of order n + 1 evaluated at some intermediate
point. In the next theorem, we give an alternative expression for the error in terms
of an integral of the derivative.

Theorem 12.48 (Taylor with integral remainder). Suppose that f : (a, b) → R
has n+ 1 derivatives on (a, b) and fn+1 is Riemann integrable on every subinterval
of (a, b). Let a < c < b. Then for every a < x < b,

f(x) = f(c) + f ′(c)(x− c) +
1

2!
f ′′(c)(x− c)2 + · · ·+ 1

n!
f (n)(c)(x− c)n +Rn(x)

where

Rn(x) =
1

n!

∫ x

c

f (n+1)(t)(x− t)n dt.

Proof. We use proof by induction. The formula is true for n = 0, since the
fundamental theorem of calculus (Theorem 12.1) implies that

f(x) = f(c) +

∫ x

c

f ′(t) dt = f(c) +R0(x).

Assume that the formula is true for some n ∈ N0 and fn+2 is Riemann inte-
grable. Then, since

(x− t)n = − 1

n+ 1

d

dt
(x− t)n+1,

an integration by parts with respect to t (Theorem 12.10) implies that

Rn(x) = −
[

1

(n+ 1)!
f (n+1)(t)(x− t)n+1

]x
c

+
1

(n+ 1)!

∫ x

c

f (n+2)(t)(x− t)n+1 dt

=
1

(n+ 1)!
f (n+1)(c)(x− c)n+1 +Rn+1(x).
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Use of this equation in the formula for n gives the formula for n+ 1, which proves
the result. �

By making the change of variable

t = c+ s(x− c),
we can also write the remainder as

Rn(x) =
1

n!

[∫ 1

0

f (n+1) (c+ s(x− c)) (1− s)n ds
]

(x− c)n+1.

In particular, if |f (n+1)(x)| ≤M for a < x < b, then

|Rn(x)| ≤ 1

n!
M

[∫ 1

0

(1− s)n ds
]
|x− c|n+1

≤ M

(n+ 1)!
|x− c|n+1,

which agrees with what one gets from the Lagrange remainder.

Thus, the integral form of the remainder is as effective as the Lagrange form
in estimating its size from a uniform bound on the derivative. The integral form
requires slightly stronger assumptions than the Lagrange form, since we need to
assume that the derivative of order n+1 is integrable, but its proof is straightforward
once we have the integral. Moreover, the integral form generalizes to vector-valued
functions f : (a, b)→ Rn, while the Lagrange form does not.
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