


Chapter 2

Numbers

God created the integers and the rest is the work of man. (Leopold
Kronecker, in an after-dinner speech at a conference, Berlin, 1886)

“God created the integers and the rest is the work of man.” This maxim
spoken by the algebraist Kronecker reveals more about his past as a
banker who grew rich through monetary speculation than about his philo-
sophical insight. There is hardly any doubt that, from a psychological
and, for the writer, ontological point of view, the geometric continuum is
the primordial entity. If one has any consciousness at all, it is conscious-
ness of time and space; geometric continuity is in some way inseparably
bound to conscious thought. (René Thom, 1986)

In this chapter, we describe the properties of the basic number systems. We
briefly discuss the integers and rational numbers, and then consider the real num-
bers in more detail.

The real numbers form a complete number system which includes the rational
numbers as a dense subset. We will summarize the properties of the real numbers in
a list of intuitively reasonable axioms, which we assume in everything that follows.
These axioms are of three types: (a) algebraic; (b) ordering; (c) completeness. The
completeness of the real numbers is what distinguishes them from the rationals
numbers and is the essential property for analysis.

The rational numbers may be constructed from the natural numbers as pairs
of integers, and there are several ways to construct the real numbers from the ra-
tional numbers. For example, Dedekind used cuts of the rationals, while Cantor
used equivalence classes of Cauchy sequences of rational numbers. The real num-
bers that are constructed in either way satisfy the axioms given in this chapter.
These constructions show that the real numbers are as well-founded as the natural
numbers (at least, if we take set theory for granted), but they don’t lead to any
new properties of the real numbers, and we won’t describe them here.
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22 2. Numbers

2.1. Integers

Why then is this view [the induction principle] imposed upon us with such
an irresistible weight of evidence? It is because it is only the affirmation
of the power of the mind which knows it can conceive of the indefinite
repetition of the same act, when that act is once possible. (Poincaré,
1902)

The set of natural numbers, or positive integers, is

N = {1, 2, 3, . . . } .

We add and multiply natural numbers in the usual way. (The formal algebraic
properties of addition and multiplication on N follow from the ones stated below
for R.)

An essential property of the natural numbers is the following induction princi-
ple, which expresses the idea that we can reach every natural number by counting
upwards from one.

Axiom 2.1. Suppose that A ⊂ N is a set of natural numbers such that: (a) 1 ∈ A;
(b) n ∈ A implies (n+ 1) ∈ A. Then A = N.

This principle, together with appropriate algebraic properties, is enough to
completely characterize the natural numbers. For example, one standard set of
axioms is the Peano axioms, first stated by Dedekind [3], but we won’t describe
them in detail here.

As an illustration of how induction can be used, we prove the following result
for the sum of the first n squares, written in summation notation as

n∑
k=1

k2 = 12 + 22 + 32 + · · ·+ n2.

Proposition 2.2. For every n ∈ N,

n∑
k=1

k2 =
1

6
n(n+ 1)(2n+ 1).

Proof. Let A be the set of n ∈ N for which this identity holds. It holds for n = 1,
so 1 ∈ A. Suppose the identity holds for some n ∈ N. Then

n+1∑
k=1

k2 =

n∑
k=1

k2 + (n+ 1)2

=
1

6
n(n+ 1)(2n+ 1) + (n+ 1)2

=
1

6
(n+ 1)

(
2n2 + 7n+ 6

)
=

1

6
(n+ 1)(n+ 2)(2n+ 3).

It follows that the identity holds when n is replaced by n+ 1. Thus n ∈ A implies
that (n+ 1) ∈ A, so A = N, and the proposition follows by induction. �
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Note that the right hand side of the identity in Proposition 2.2 is always an
integer, as it must be, since one of n, n + 1 is divisible by 2 and one of n, n + 1,
2n+ 1 is divisible by 3.

Equations for the sum of the first n cubes,
n∑

k=1

k3 =
1

4
n2(n+ 1)2,

and other powers can be proved by induction in a similar way. Another example of a
result that can be proved by induction is the Euler-Binet formula in Proposition 3.9
for the terms in the Fibonacci sequence.

One defect of such a proof by induction is that although it verifies the result, it
does not explain where the original hypothesis comes from. A separate argument is
often required to come up with a plausible hypothesis. For example, it is reasonable
to guess that the sum of the first n squares might be a cubic polynomial in n. The
possible values of the coefficients can then be found by evaluating the first few
sums, after which the general result may be verified by induction.

The set of integers consists of the natural numbers, their negatives (or additive
inverses), and zero (the additive identity):

Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . } .
We can add, subtract, and multiply integers in the usual way. In algebraic termi-
nology, (Z,+, ·) is a commutative ring with identity.

Like the natural numbers N, the integers Z are countably infinite.

Proposition 2.3. The set of integers Z is countably infinite.

Proof. The function f : N→ Z defined by f(1) = 0, and

f(2n) = n, f(2n+ 1) = −n for n ≥ 1,

is one-to-one and onto. �

The function in the previous proof corresponds to listing the integers as

0, 1, −1, 2, −2, 3, −3, 4, −4, 5, −5, . . . .

Alternatively, but less directly, we can prove Proposition 2.3 by writing

Z = −N ∪ {0} ∪ N
as a countable union of countable sets and applying Theorem 1.46.

2.2. Rational numbers

A rational number is a ratio of integers. We denote the set of rational numbers by

Q =

{
p

q
: p, q ∈ Z and q 6= 0

}
where we may cancel common factors from the numerator and denominator, mean-
ing that

p1
q1

=
p2
q2

if and only if p1q2 = p2q1.
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We can add, subtract, multiply, and divide (except by 0) rational numbers in the
usual way. In algebraic terminology, (Q,+, ·) a field. We state the field axioms
explicitly for R in Axiom 2.6 below.

We can construct Q from Z as the collection of equivalence classes in Z×Z\{0}
with respect to the equivalence relation (p1, q1) ∼ (p2, q2) if p1q2 = p2q1. The usual
sums and products of rational numbers are well-defined on these equivalence classes.

The rational numbers are linearly ordered by their standard order, and this
order is compatible with the algebraic structure of Q. Thus, (Q,+, ·, <) is an
ordered field. Moreover, this order is dense, meaning that if r1, r2 ∈ Q and r1 < r2,
then there exists a rational number r ∈ Q between them with r1 < r < r2. For
example, we can take

r =
1

2
(r1 + r2) .

The fact that the rational numbers are densely ordered might suggest that they
contain all the numbers we need. But this is not the case: they have a lot of “gaps,”
which are filled by the irrational real numbers.

The following theorem shows that
√

2 is irrational. In particular, the length of
the hypotenuse of a right-angled triangle with sides of length one is not rational.
Thus, the rational numbers are inadequate even for Euclidean geometry; they are
yet more inadequate for analysis.

The irrationality of
√

2 was discovered by the Pythagoreans of Ancient Greece
in the 5th century BC, perhaps by Hippasus of Metapontum. According to one
legend, the Pythagoreans celebrated the discovery by sacrificing one hundred oxen.
According to another legend, Hippasus showed the proof to Pythagoras on a boat,
while they were having a lesson. Pythagoras believed that, like the musical scales,
everything in the universe could be reduced to ratios of integers and threw Hippasus
overboard to drown.

Theorem 2.4. There is no rational number x ∈ Q such that x2 = 2.

Proof. Suppose for contradiction that x2 = 2 and x = p/q where p, q ∈ N. By
canceling common factors, we can assume p and q are relatively prime (that is, the
only integers that divide both p and q are ±1). Since x2 = 2, we have

p2 = 2q2,

which implies that p2 is even. Since the square of an odd number is odd, p = 2r
must be even. Therefore

2r2 = q2,

which implies that q = 2s is even. Hence p and q have a common factor of 2, which
contradicts the initial assumption. �

Theorem 2.4 may raise the question of whether there is a real number x ∈ R
such that x2 = 2. As we will see in Example 7.47 below, there is.

A similar proof, using the prime factorization of integers, shows that
√
n is

irrational for every n ∈ N that isn’t a perfect square. Two other examples of
irrational numbers are π and e. We will prove in Theorem 4.52 that e is irrational,
but a proof of the irrationality of π is harder.
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The following result may appear somewhat surprising at first, but it is another
indication that there are not “enough” rationals.

Theorem 2.5. The rational numbers are countably infinite.

Proof. The rational numbers are not finite since, for example, they contain the
countably infinite set of integers as a subset, so we just have to show that Q is
countable.

Let Q+ = {x ∈ Q : x > 0} denote the set of positive rational numbers, and
define the onto (but not one-to-one) map

g : N× N→ Q+, g(p, q) =
p

q
.

Let h : N→ N×N be a one-to-one, onto map, as obtained in Proposition 1.45, and
define f : N → Q+ by f = g ◦ h. Then f : N → Q+ is onto, and Proposition 1.44
implies that Q+ is countable. It follows that Q = Q− ∪ {0} ∪Q+, where Q− ≈ Q+

denotes the set of negative rational numbers, is countable. �

Alternatively, we can write

Q =
⋃
q∈N
{p/q : p ∈ Z}

as a countable union of countable sets, and use Theorem 1.46. As we prove in The-
orem 2.19, the real numbers are uncountable, so there are many “more” irrational
numbers than rational numbers.

2.3. Real numbers: algebraic properties

The algebraic properties of R are summarized in the following axioms, which state
that (R,+, ·) is a field.

Axiom 2.6. There exist binary operations

a,m : R× R→ R,

written a(x, y) = x + y and m(x, y) = x · y = xy, and elements 0, 1 ∈ R such that
for all x, y, z ∈ R:

(a) x+ 0 = x (existence of an additive identity 0);

(b) for every x ∈ R there exists y ∈ R such that x+y = 0 (existence of an additive
inverse y = −x);

(c) x+ (y + z) = (x+ y) + z (addition is associative);

(d) x+ y = y + x (addition is commutative);

(e) x1 = x (existence of a multiplicative identity 1);

(f) for every x ∈ R \ {0}, there exists y ∈ R such that xy = 1 (existence of a
multiplicative inverse y = x−1);

(g) x(yz) = (xy)z (multiplication is associative);

(h) xy = yx (multiplication is commutative);

(i) (x+ y)z = xz + yz (multiplication is distributive over addition).
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Axioms (a)–(d) say that R is a commutative group with respect to addition;
axioms (e)–(h) say that R \ {0} is a commutative group with respect to multipli-
cation; and axiom (i) says that addition and multiplication are compatible, in the
sense that they satisfy a distributive law.

All of the usual algebraic properties of addition, subtraction (subtracting x
means adding −x), multiplication, and division (dividing by x means multiplying
by x−1) follow from these axioms, although we will not derive them in detail. The
natural number n ∈ N is obtained by adding one to itself n times, the integer −n is
its additive inverse, and p/q = pq−1, where p, q are integers with q 6= 0 is a rational
number. Thus, N ⊂ Z ⊂ Q ⊂ R.

2.4. Real numbers: ordering properties

The real numbers have a natural order relation that is compatible with their alge-
braic structure. We visualize the ordered real numbers as the real line, with smaller
numbers to the left and larger numbers to the right.

Axiom 2.7. There is a strict linear order < on R such that for all x, y, z ∈ R:

(a) either x < y, x = y, or x > y;

(b) if x < y then x+ z < y + z;

(c) if x < y and z > 0, then xz < yz.

For any a, b ∈ R with a ≤ b, we define the open intervals

(−∞, b) = {x ∈ R : x < b} ,
(a, b) = {x ∈ R : a < x < b} ,

(a,∞) = {x ∈ R : a < x} ,
the closed intervals

(−∞, b] = {x ∈ R : x ≤ b} ,
[a, b] = {x ∈ R : a ≤ x ≤ b} ,

[a,∞) = {x ∈ R : a ≤ x} ,
and the half-open intervals

(a, b] = {x ∈ R : a < x ≤ b} ,
[a, b) = {x ∈ R : a ≤ x < b} .

All standard properties of inequalities follow from Axiom 2.6 and Axiom 2.7.
For example: if x < y and z < 0, then xz > yz, meaning that the direction of
an inequality is reversed when it is multiplied by a negative number; and x2 > 0
for every x 6= 0. In future, when we write an inequality such as x < y, we will
implicitly require that x, y ∈ R.

Real numbers satisfy many inequalities. A simple, but fundamental, example
is the following.

Proposition 2.8. If x, y ∈ R, then

xy ≤ 1

2

(
x2 + y2

)
,
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with equality if and only if x = y.

Proof. We have
0 ≤ (x− y)2 = x2 − 2xy + y2,

with equality if and only if x = y, so 2xy ≤ x2 + y2. �

On writing x =
√
a, y =

√
b, where a, b ≥ 0, in the result of Proposition 2.8,

we get that
√
ab ≤ a+ b

2
,

which says that the geometric mean of two nonnegative numbers is less than or
equal to their arithmetic mean, with equality if and only if the numbers are equal.
A geometric interpretation of this inequality is that the square-root of the area
of a rectangle is less than or equal to one-quarter of its perimeter, with equality
if and only if the rectangle is a square. Thus, a square encloses the largest area
among all rectangles of a given perimeter, which is a simple form of an isoperimetric
inequality.

The arithmetic-geometric mean inequality generalizes to more than two num-
bers: If n ∈ N and a1, a2, . . . , an ≥ 0 are nonnegative real numbers, then

(a1a2 . . . an)
1/n ≤ a1 + a2 + · · ·+ an

n
,

with equality if and only if all of the ak are equal. For a proof, see e.g., Steele [13].

2.5. The supremum and infimum

Next, we use the ordering properties of R to define the supremum and infimum of
a set of real numbers. These concepts are of central importance in analysis. In
particular, in the next section we use them to state the completeness property of
R.

First, we define upper and lower bounds.

Definition 2.9. A set A ⊂ R of real numbers is bounded from above if there exists
a real number M ∈ R, called an upper bound of A, such that x ≤ M for every
x ∈ A. Similarly, A is bounded from below if there exists m ∈ R, called a lower
bound of A, such that x ≥ m for every x ∈ A. A set is bounded if it is bounded
both from above and below.

Equivalently, a set A is bounded if A ⊂ I for some bounded interval I = [m,M ].

Example 2.10. The interval (0, 1) is bounded from above by every M ≥ 1 and
from below by every m ≤ 0. The interval (−∞, 0) is bounded from above by every
M ≥ 0, but it not bounded from below. The set of integers Z is not bounded from
above or below.

If A ⊂ R, we define −A ⊂ R by

−A = {y ∈ R : y = −x for some x ∈ A} .
For example, if A = (0,∞) consists of the positive real numbers, then −A =
(−∞, 0) consists of the negative real numbers. A number m is a lower bound of
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A if and only if M = −m is an upper bound of −A. Thus, every result for upper
bounds has a corresponding result for lower bounds, and we will often consider only
upper bounds.

Definition 2.11. Suppose that A ⊂ R is a set of real numbers. If M ∈ R is an
upper bound of A such that M ≤ M ′ for every upper bound M ′ of A, then M is
called the least upper bound or supremum of A, denoted

M = supA.

If m ∈ R is a lower bound of A such that m ≥ m′ for every lower bound m′ of A,
then m is called the greatest lower bound or infimum of A, denoted

m = inf A.

If A = {xi : i ∈ I} is an indexed subset of R, we also write

supA = sup
i∈I

xi, inf A = inf
i∈I

xi.

As an immediate consequence of the definition, we note that the supremum (or
infimum) of a set is unique if one exists: If M , M ′ are suprema of A, then M ≤M ′
since M ′ is an upper bound of A and M is a least upper bound; similarly, M ′ ≤M ,
so M = M ′. Furthermore, the supremum of a nonempty set A is always greater
than or equal to its infimum if both exist. To see this, choose any x ∈ A. Since inf A
is a lower bound and supA is an upper bound of A, we have inf A ≤ x ≤ supA.

If supA ∈ A, then we also denote it by maxA and refer to it as the maximum of
A; and if inf A ∈ A, then we also denote it by minA and refer to it as the minimum
of A. As the following examples illustrate, supA and inf A may or may not belong
to A, so the concepts of supremum and infimum must be clearly distinguished from
those of maximum and minimum.

Example 2.12. Every finite set of real numbers

A = {x1, x2, . . . , xn}
is bounded. Its supremum is the greatest element,

supA = max{x1, x2, . . . , xn},
and its infimum is the smallest element,

inf A = min{x1, x2, . . . , xn}.
Both the supremum and infimum of a finite set belong to the set.

Example 2.13. If A = (0, 1), then every M ≥ 1 is an upper bound of A. The
least upper bound is M = 1, so

sup(0, 1) = 1.

Similarly, every m ≤ 0 is a lower bound of A, so

inf(0, 1) = 0.

In this case, neither supA nor inf A belong to A. The set R = (0, 1)∩Q of rational
numbers in (0, 1), the closed interval B = [0, 1], and the half-open interval C = (0, 1]
all have the same supremum and infimum as A. Neither supR nor inf R belong to
R, while both supB and inf B belong to B, and only supC belongs to C.
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Example 2.14. Let

A =

{
1

n
: n ∈ N

}
be the set of reciprocals of the natural numbers. Then supA = 1, which belongs to
A, and inf A = 0, which does not belong to A.

A set must be bounded from above to have a supremum (or bounded from below
to have an infimum), but the following notation for unbounded sets is convenient.
We introduce a system of extended real numbers

R = {−∞} ∪ R ∪ {∞}

which includes two new elements denoted−∞ and∞, ordered so that−∞ < x <∞
for every x ∈ R.

Definition 2.15. If a set A ⊂ R is not bounded from above, then supA =∞, and
if A is not bounded from below, then inf A = −∞.

For example, supN = ∞ and inf R = −∞. We also define sup∅ = −∞ and
inf ∅ =∞, since — by a strict interpretation of logic — every real number is both
an upper and a lower bound of the empty set. With these conventions, every set
of real numbers has a supremum and an infimum in R. Moreover, we may define
the supremum and infimum of sets of extended real numbers in an obvious way; for
example, supA =∞ if ∞ ∈ A and inf A = −∞ if −∞ ∈ A.

While R is linearly ordered, we cannot make it into a field however we extend
addition and multiplication from R to R. Expressions such as ∞ − ∞ or 0 · ∞
are inherently ambiguous. To avoid any possible confusion, we will give explicit
definitions in terms of R alone for every expression that involves ±∞. Moreover,
when we say that supA or inf A exists, we will always mean that it exists as a
real number, not as an extended real number. To emphasize this meaning, we will
sometimes say that the supremum or infimum “exists as a finite real number.”

2.6. Real numbers: completeness

The rational numbers Q and real numbers R have similar algebraic and order prop-
erties (they are both densely ordered fields). The crucial property that distinguishes
R from Q is its completeness. There are two main ways to define the completeness
of R. The first, which we describe here, is based on the order properties of R and
the existence of suprema. The second, which we describe in Chapter 3, is based on
the metric properties of R and the convergence of Cauchy sequences.

We begin with an example that illustrates the difference between Q and R.

Example 2.16. Define A ⊂ Q by

A =
{
x ∈ Q : x2 < 2

}
.

Then A is bounded from above by every M ∈ Q+ such that M2 > 2. Nevertheless,
A has no supremum in Q because

√
2 is irrational: for every upper bound M ∈ Q

there exists M ′ ∈ Q such that
√

2 < M ′ < M , so M isn’t a least upper bound of A
in Q. On the other hand, A has a supremum in R, namely supA =

√
2.
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The following axiomatic property of the real numbers is called Dedekind com-
pleteness. Dedekind (1872) showed that the real numbers are characterized by the
condition that they are a complete ordered field (that is, by Axiom 2.6, Axiom 2.7,
and Axiom 2.17).

Axiom 2.17. Every nonempty set of real numbers that is bounded from above has
a supremum.

Since inf A = − sup(−A) and A is bounded from below if and only if −A
is bounded from above, it follows that every nonempty set of real numbers that
is bounded from below has an infimum. The restriction to nonempty sets in Ax-
iom 2.17 is necessary, since the empty set is bounded from above, but its supremum
does not exist.

As a first application of this axiom, we prove that R has the Archimedean
property, meaning that no real number is greater than every natural number.

Theorem 2.18. If x ∈ R, then there exists n ∈ N such that x < n.

Proof. Suppose, for contradiction, that there exists x ∈ R such that x > n for every
n ∈ N. Then x is an upper bound of N, so N has a supremum M = supN ∈ R.
Since n ≤ M for every n ∈ N, we have n − 1 ≤ M − 1 for every n ∈ N, which
implies that n ≤M − 1 for every n ∈ N. But then M − 1 is an upper bound of N,
which contradicts the assumption that M is a least upper bound. �

By taking reciprocals, we also get from this theorem that for every ε > 0 there
exists n ∈ N such that 0 < 1/n < ε.

These results say roughly that there are no infinite or infinitesimal real num-
bers. This property is consistent with our intuitive picture of a real line R that
does not “extend past the natural numbers,” where the natural numbers are ob-
tained by counting upwards from 1. Robinson (1961) introduced extensions of the
real numbers, called non-standard real numbers, which form non-Archimedean or-
dered fields with both infinite and infinitesimal elements, but they do not satisfy
Axiom 2.17.

The following proof of the uncountability of R is based on its completeness and
is Cantor’s original proof (1874). The idea is to show that given any countable set
of real numbers, there are additional real numbers in the “gaps” between them.

Theorem 2.19. The set of real numbers is uncountable.

Proof. Suppose that
S = {x1, x2, x3, . . . , xn, . . . }

is a countably infinite set of distinct real numbers. We will prove that there is a
real number x ∈ R that does not belong to S.

If x1 is the largest element of S, then no real number greater than x1 belongs to
S. Otherwise, we select recursively from S an increasing sequence of real numbers
ak and a decreasing sequence bk as follows. Let a1 = x1 and choose b1 = xn1

where n1 is the smallest integer such that xn1
> a1. Then xn /∈ (a1, b1) for all

1 ≤ n ≤ n1. If xn /∈ (a1, b1) for all n ∈ N, then no real number in (a1, b1) belongs to
S, and we are done e.g., take x = (a1 + b1)/2. Otherwise, choose a2 = xm2 where
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m2 > n1 is the smallest integer such that a1 < xm2 < b1. Then xn /∈ (a2, b1) for all
1 ≤ n ≤ m2. If xn /∈ (a2, b1) for all n ∈ N, we are done. Otherwise, choose b2 = xn2

where n2 > m2 is the smallest integer such that a2 < xn2
< b1.

Continuing in this way, we either stop after finitely many steps and get an
interval that is not included in S, or we get subsets {a1, a2, . . . } and {b1, b2, . . . } of
{x1, x2, . . . } such that

a1 < a2 < · · · < ak < · · · < bk < · · · < b2 < b1.

It follows from the construction that for each n ∈ N, we have xn /∈ (ak, bk) when k
is sufficiently large. Let

a = sup
k∈N

ak, inf
k∈N

bk = b,

which exist by the completeness of R. Then a ≤ b (see Proposition 2.22 below) and
x /∈ S if a ≤ x ≤ b, which proves the result. �

This theorem shows that R is uncountable, but it doesn’t show that R has the
same cardinality as the power set P(N) of the natural numbers, whose uncountabil-
ity was proved in Theorem 1.47. In Theorem 5.67, we show that R has the same
cardinality as P(N); this provides a second proof that R is uncountable and shows
that P(N) has the cardinality of the continuum.

2.7. Properties of the supremum and infimum

In this section, we collect some properties of the supremum and infimum for later
use. This section can be referred back to as needed.

First, we state an equivalent way to characterize the supremum and infimum,
which is an immediate consequence of Definition 2.11.

Proposition 2.20. If A ⊂ R, then M = supA if and only if: (a) M is an upper
bound of A; (b) for every M ′ < M there exists x ∈ A such that x > M ′. Similarly,
m = inf A if and only if: (a) m is a lower bound of A; (b) for every m′ > m there
exists x ∈ A such that x < m′.

We frequently use this proposition as follows: (a) if M is an upper bound of
A, then supA ≤M ; (b) if A is nonempty and bounded from above, then for every
ε > 0, there exists x ∈ A such that x > supA − ε. Similarly: (a) if m is a lower
bound of A, then m ≤ inf A; (b) if A is nonempty and bounded from below, then
for every ε > 0, there exists x ∈ A such that x < inf A+ ε.

Making a set smaller decreases its supremum and increases its infimum. In the
following inequalities, we allow the sup and inf to be extended real numbers.

Proposition 2.21. Suppose that A, B are subsets of R such that A ⊂ B. Then
supA ≤ supB, and inf A ≥ inf B.

Proof. The result is immediate if B = ∅, when A = ∅, so we may assume that B
is nonempty. If B is not bounded from above, then supB =∞, so supA ≤ supB.
If B bounded from above, then supB is an upper bound of B. Since A ⊂ B, it
follows that supB is an upper bound of A, so supA ≤ supB. Similarly, either
inf B = −∞ or inf B is a lower bound of A, so inf A ≥ inf B. �
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The next proposition states that if every element in one set is less than or equal
to every element in another set, then the sup of the first set is less than or equal to
the inf of the second set.

Proposition 2.22. Suppose that A, B are nonempty sets of real numbers such
that x ≤ y for all x ∈ A and y ∈ B. Then supA ≤ inf B.

Proof. Fix y ∈ B. Since x ≤ y for all x ∈ A, it follows that y is an upper bound
of A, so supA is finite and supA ≤ y. Hence, supA is a lower bound of B, so inf B
is finite and supA ≤ inf B. �

If A ⊂ R and c ∈ R, then we define

cA = {y ∈ R : y = cx for some x ∈ A}.

Multiplication of a set by a positive number multiplies its sup and inf; multiplication
by a negative number also exchanges its sup and inf.

Proposition 2.23. If c ≥ 0, then

sup cA = c supA, inf cA = c inf A.

If c < 0, then

sup cA = c inf A, inf cA = c supA.

Proof. The result is obvious if c = 0. If c > 0, then cx ≤ M if and only if
x ≤ M/c, which shows that M is an upper bound of cA if and only if M/c is an
upper bound of A, so sup cA = c supA. If c < 0, then then cx ≤ M if and only if
x ≥M/c, so M is an upper bound of cA if and only if M/c is a lower bound of A,
so sup cA = c inf A. The remaining results follow similarly. �

If A,B ⊂ R, then we define

A+B = {z ∈ R : z = x+ y for some x ∈ A, y ∈ B} ,
A−B = {z ∈ R : z = x− y for some x ∈ A, y ∈ B} .

Proposition 2.24. If A, B are nonempty sets, then

sup(A+B) = supA+ supB, inf(A+B) = inf A+ inf B,

sup(A−B) = supA− inf B, inf(A−B) = inf A− supB.

Proof. The set A+B is bounded from above if and only if A and B are bounded
from above, so sup(A+B) exists if and only if both supA and supB exist. In that
case, if x ∈ A and y ∈ B, then

x+ y ≤ supA+ supB,

so supA+ supB is an upper bound of A+B, and therefore

sup(A+B) ≤ supA+ supB.

To get the inequality in the opposite direction, suppose that ε > 0. Then there
exist x ∈ A and y ∈ B such that

x > supA− ε

2
, y > supB − ε

2
.
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It follows that
x+ y > supA+ supB − ε

for every ε > 0, which implies that

sup(A+B) ≥ supA+ supB.

Thus, sup(A+B) = supA+ supB. It follows from this result and Proposition 2.23
that

sup(A−B) = supA+ sup(−B) = supA− inf B.

The proof of the results for inf(A + B) and inf(A − B) is similar, or we can
apply the results for the supremum to −A and −B. �

Finally, we prove that taking the supremum over a pair of indices gives the
same result as taking successive suprema over each index separately.

Proposition 2.25. Suppose that

{xij : i ∈ I, j ∈ J}
is a doubly-indexed set of real numbers. Then

sup
(i,j)∈I×J

xij = sup
i∈I

(
sup
j∈J

xij

)
.

Proof. For each a ∈ I, we have {a} × J ⊂ I × J , so

sup
j∈J

xaj ≤ sup
(i,j)∈I×J

xij .

Taking the supremum of this inequality over a ∈ I, and replacing ‘a’ by ‘i’, we get
that

sup
i∈I

(
sup
j∈J

xij

)
≤ sup

(i,j)∈I×J
xij .

To prove the reverse inequality, first note that if

sup
(i,j)∈I×J

xij

is finite, then given ε > 0 there exists a ∈ I, b ∈ J such that

xab > sup
(i,j)∈I×J

xij − ε.

It follows that
sup
j∈J

xaj > sup
(i,j)∈I×J

xij − ε,

and therefore that

sup
i∈I

(
sup
j∈J

xij

)
> sup

(i,j)∈I×J
xij − ε.

Since ε > 0 is arbitrary, we have

sup
i∈I

(
sup
j∈J

xij

)
≥ sup

(i,j)∈I×J
xij .

Similarly, if
sup

(i,j)∈I×J
xij =∞,
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then given M ∈ R there exists a ∈ I, b ∈ J such that xab > M , and it follows that

sup
i∈I

(
sup
j∈J

xij

)
> M.

Since M is arbitrary, we have

sup
i∈I

(
sup
j∈J

xij

)
=∞,

which completes the proof. �
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