
Chapter 3

Sequences

In this chapter, we discuss sequences. We say what it means for a sequence to
converge, and define the limit of a convergent sequence. We begin with some
preliminary results about the absolute value, which can be used to define a distance
function, or metric, on R. In turn, convergence is defined in terms of this metric.

3.1. The absolute value

Definition 3.1. The absolute value of x ∈ R is defined by

|x| =

{
x if x ≥ 0,

−x if x < 0.

Some basic properties of the absolute value are the following.

Proposition 3.2. For all x, y ∈ R:

(a) |x| ≥ 0 and |x| = 0 if and only if x = 0;

(b) | − x| = |x|;
(c) |x+ y| ≤ |x|+ |y| (triangle inequality);

(d) |xy| = |x| |y|;

Proof. Parts (a), (b) follow immediately from the definition. Part (c) remains
valid if we change the signs of both x and y or exchange x and y. Therefore we can
assume that x ≥ 0 and |x| ≥ |y| without loss of generality, in which case x+ y ≥ 0.
If y ≥ 0, corresponding to the case when x and y have the same sign, then

|x+ y| = x+ y = |x|+ |y|.

If y < 0, corresponding to the case when x and y have opposite signs and x+y > 0,
then

|x+ y| = x+ y = |x| − |y| < |x|+ |y|,
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which proves (c). Part (d) remains valid if we change x to −x or y to −y, so we
can assume that x, y ≥ 0 without loss of generality. Then xy ≥ 0 and |xy| = xy =
|x||y|. �

One useful consequence of the triangle inequality is the following reverse trian-
gle inequality.

Proposition 3.3. If x, y ∈ R, then

||x| − |y|| ≤ |x− y|.

Proof. By the triangle inequality,

|x| = |x− y + y| ≤ |x− y|+ |y|

so |x|− |y| ≤ |x−y|. Similarly, exchanging x and y, we get |y|− |x| ≤ |x−y|, which
proves the result. �

We can give an equivalent condition for the boundedness of a set by using the
absolute value instead of upper and lower bounds as in Definition 2.9.

Proposition 3.4. A set A ⊂ R is bounded if and only if there exists a real number
M ≥ 0 such that

|x| ≤M for every x ∈ A.

Proof. If the condition in the proposition holds, then M is an upper bound of
A and −M is a lower bound, so A is bounded. Conversely, if A is bounded from
above by M ′ and from below by m′, then |x| ≤ M for every x ∈ A where M =
max{|m′|, |M ′|}. �

A third way to say that a set is bounded is in terms of its diameter.

Definition 3.5. Let A ⊂ R. The diameter of A is

diamA = sup {|x− y| : x, y ∈ A} .

Then a set is bounded if and only if its diameter is finite.

Example 3.6. If A = (−a, a), then diamA = 2a, and A is bounded. If A =
(−∞, a), then diamA =∞, and A is unbounded.

3.2. Sequences

A sequence (xn) of real numbers is an ordered list of numbers xn ∈ R, called the
terms of the sequence, indexed by the natural numbers n ∈ N. We often indicate a
sequence by listing the first few terms, especially if they have an obvious pattern.
Of course, no finite list of terms is, on its own, sufficient to define a sequence.
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Figure 1. A plot of the first 40 terms in the sequence xn = (1 + 1/n)n,

illustrating that it is monotone increasing and converges to e ≈ 2.718, whose
value is indicated by the dashed line.

Example 3.7. Here are some sequences:

1, 8, 27, 64, . . . , xn = n3,

1,
1

2
,

1

3
,

1

4
, . . . xn =

1

n
;

1, −1, 1, −1, . . . xn = (−1)n+1,

(1 + 1) ,

(
1 +

1

2

)2

,

(
1 +

1

3

)3

, . . . xn =

(
1 +

1

n

)n

.

Note that unlike sets, where elements are not repeated, the terms in a sequence
may be repeated.

The formal definition of a sequence is as a function on N, which is equivalent
to its definition as a list.

Definition 3.8. A sequence (xn) of real numbers is a function f : N → R, where
xn = f(n).

We can consider sequences of many different types of objects (for example,
sequences of functions) but for now we only consider sequences of real numbers,
and we will refer to them as sequences for short. A useful way to visualize a
sequence (xn) is to plot the graph of xn ∈ R versus n ∈ N. (See Figure 1 for an
example.)
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If we want to indicate the range of the index n ∈ N explicitly, we write the
sequence as (xn)∞n=1. Sometimes it is convenient to start numbering a sequence
from a different integer, such as n = 0 instead of n = 1. In that case, a sequence
(xn)∞n=0 is a function f : N0 → R where xn = f(n) and N0 = {0, 1, 2, 3, . . . }, and
similarly for other starting points.

Every function f : N → R defines a sequence, corresponding to an arbitrary
choice of a real number xn ∈ R for each n ∈ N. Some sequences can be defined
explicitly by giving an expression for the nth terms, as in Example 3.7; others can
be defined recursively. That is, we specify the value of the initial term (or terms) in
the sequence, and define xn as a function of the previous terms (x1, x2, . . . , xn−1).

A well-known example of a recursive sequence is the Fibonacci sequence (Fn)

1, 1, 2, 3, 5, 8, 13, . . . ,

which is defined by F1 = F2 = 1 and

Fn = Fn−1 + Fn−2 for n ≥ 3.

That is, we add the two preceding terms to get the next term. In general, we cannot
expect to solve a recursion relation to get an explicit expression for the nth term
in a sequence, but the recursion relation for the Fibonacci sequence is linear with
constant coefficients, and it can be solved to give an expression for Fn called the
Euler-Binet formula.

Proposition 3.9 (Euler-Binet formula). The nth term in the Fibonacci sequence
is given by

Fn =
1√
5

[
φn −

(
− 1

φ

)n]
, φ =

1 +
√

5

2
.

Proof. The terms in the Fibonacci sequence are uniquely determined by the linear
difference equation

Fn − Fn−1 − Fn−2 = 0, n ≥ 3,

with the initial conditions

F1 = 1, F2 = 1.

We see that Fn = rn is a solution of the difference equation if r satisfies

r2 − r − 1 = 0,

which gives

r = φ or − 1

φ
, φ =

1 +
√

5

2
≈ 1.61803.

By linearity,

Fn = Aφn +B

(
− 1

φ

)n

is a solution of the difference equation for arbitrary constants A, B. This solution
satisfies the initial conditions F1 = F2 = 1 if

A =
1√
5
, B = − 1√

5
,

which proves the result. �
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Alternatively, once we know the answer, we can prove Proposition 3.9 by in-
duction. The details are left as an exercise. Note that although the right-hand side
of the equation for Fn involves the irrational number

√
5, its value is an integer for

every n ∈ N.

The number φ appearing in Proposition 3.9 is called the golden ratio. It has
the property that subtracting 1 from it gives its reciprocal, or

φ− 1 =
1

φ
.

Geometrically, this property means that the removal of a square from a rectangle
whose sides are in the ratio φ leaves a rectangle whose sides are in the same ratio.
The number φ was originally defined in Euclid’s Elements as the division of a line in
“extreme and mean ratio,” and Ancient Greek architects arguably used rectangles
with this proportion in the Parthenon and other buildings. During the Renaissance,
φ was referred to as the “divine proportion.” The first use of the term “golden
section” appears to be by Martin Ohm, brother of the physicist Georg Ohm, in a
book published in 1835.

3.3. Convergence and limits

Roughly speaking, a sequence (xn) converges to a limit x if its terms xn get arbi-
trarily close to x for all sufficiently large n.

Definition 3.10. A sequence (xn) of real numbers converges to a limit x ∈ R,
written

x = lim
n→∞

xn, or xn → x as n→∞,

if for every ε > 0 there exists N ∈ N such that

|xn − x| < ε for all n > N.

A sequence converges if it converges to some limit x ∈ R, otherwise it diverges.

Although we don’t show it explicitly in the definition, N is allowed to depend
on ε. Typically, the smaller we choose ε, the larger we have to make N . One way
to view a proof of convergence is as a game: If I give you an ε > 0, you have to
come up with an N that “works.” Also note that xn → x as n → ∞ means the
same thing as |xn − x| → 0 as n→∞.

It may appear obvious that a limit is unique if one exists, but this fact requires
proof.

Proposition 3.11. If a sequence converges, then its limit is unique.

Proof. Suppose that (xn) is a sequence such that xn → x and xn → x′ as n→∞.
Let ε > 0. Then there exist N,N ′ ∈ N such that

|xn − x| <
ε

2
for all n > N,

|xn − x′| <
ε

2
for all n > N ′.
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Choose any n > max{N,N ′}. Then, by the triangle inequality,

|x− x′| ≤ |x− xn|+ |xn − x′| <
ε

2
+
ε

2
< ε.

Since this inequality holds for all ε > 0, we must have |x− x′| = 0 (otherwise the
inequality would be false for ε = |x− x′|/2 > 0), so x = x′. �

The following notation for sequences that “diverge to infinity” is convenient.

Definition 3.12. If (xn) is a sequence then

lim
n→∞

xn =∞,

or xn →∞ as n→∞, if for every M ∈ R there exists N ∈ R such that

xn > M for all n > N.

Also

lim
n→∞

xn = −∞,

or xn → −∞ as n→∞, if for every M ∈ R there exists N ∈ R such that

xn < M for all n > N.

That is, xn →∞ as n→∞means the terms of the sequence (xn) get arbitrarily
large and positive for all sufficiently large n, while xn → −∞ as n → ∞ means
that the terms get arbitrarily large and negative for all sufficiently large n. The
notation xn → ±∞ does not mean that the sequence converges.

To illustrate these definitions, we discuss the convergence of the sequences in
Example 3.7.

Example 3.13. The terms in the sequence

1, 8, 27, 64, . . . , xn = n3

eventually exceed any real number, so n3 → ∞ as n → ∞ and this sequence
does not converge. Explicitly, let M ∈ R be given, and choose N ∈ N such that
N > M1/3. (If −∞ < M < 1, we can choose N = 1.) Then for all n > N , we have
n3 > N3 > M , which proves the result.

Example 3.14. The terms in the sequence

1,
1

2
,

1

3
,

1

4
, . . . xn =

1

n

get closer to 0 as n gets larger, and the sequence converges to 0:

lim
n→∞

1

n
= 0.

To prove this limit, let ε > 0 be given. Choose N ∈ N such that N > 1/ε. (Such a
number exists by the Archimedean property of R stated in Theorem 2.18.) Then
for all n > N ∣∣∣∣ 1n − 0

∣∣∣∣ =
1

n
<

1

N
< ε,

which proves that 1/n→ 0 as n→∞.



3.3. Convergence and limits 41

Example 3.15. The terms in the sequence

1, −1, 1, −1, . . . xn = (−1)n+1,

oscillate back and forth infinitely often between 1 and −1, but they do not approach
any fixed limit, so the sequence does not converge. To show this explicitly, note
that for every x ∈ R we have either |x− 1| ≥ 1 or |x+ 1| ≥ 1. It follows that there
is no N ∈ N such that |xn − x| < 1 for all n > N . Thus, Definition 3.10 fails if
ε = 1 however we choose x ∈ R, and the sequence does not converge.

Example 3.16. The convergence of the sequence

(1 + 1) ,

(
1 +

1

2

)2

,

(
1 +

1

3

)3

, . . . xn =

(
1 +

1

n

)n

,

illustrated in Figure 1, is less obvious. Its terms are given by

xn = ann, an = 1 +
1

n
.

As n increases, we take larger powers of numbers that get closer to one. If a > 1
is any fixed real number, then an → ∞ as n → ∞ so the sequence (an) does not
converge (see Proposition 3.31 below for a detailed proof). On the other hand, if
a = 1, then 1n = 1 for all n ∈ N so the sequence (1n) converges to 1. Thus, there
are two competing factors in the sequence with increasing n: an → 1 but n → ∞.
It is not immediately obvious which of these factors “wins.”

In fact, they are in balance. As we prove in Proposition 3.32 below, the sequence
converges with

lim
n→∞

(
1 +

1

n

)n

= e,

where 2 < e < 3. This limit can be taken as the definition of e ≈ 2.71828.

For comparison, one can also show that

lim
n→∞

(
1 +

1

n2

)n

= 1, lim
n→∞

(
1 +

1

n

)n2

=∞.

In the first case, the rapid approach of an = 1+1/n2 to 1 “beats” the slower growth
in the exponent n, while in the second case, the rapid growth in the exponent n2

“beats” the slower approach of an = 1 + 1/n to 1.

An important property of a sequence is whether or not it is bounded.

Definition 3.17. A sequence (xn) of real numbers is bounded from above if there
exists M ∈ R such that xn ≤ M for all n ∈ N, and bounded from below if there
exists m ∈ R such that xn ≥ m for all n ∈ N. A sequence is bounded if it is
bounded from above and below, otherwise it is unbounded.

An equivalent condition for a sequence (xn) to be bounded is that there exists
M ≥ 0 such that

|xn| ≤M for all n ∈ N.
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Example 3.18. The sequence (n3) is bounded from below but not from above,
while the sequences (1/n) and

(
(−1)n+1

)
are bounded. The sequence

1, −2, 3, −4, 5, −6, . . . xn = (−1)n+1n

is not bounded from below or above.

We then have the following property of convergent sequences.

Proposition 3.19. A convergent sequence is bounded.

Proof. Let (xn) be a convergent sequence with limit x. There exists N ∈ N such
that

|xn − x| < 1 for all n > N.

The triangle inequality implies that

|xn| ≤ |xn − x|+ |x| < 1 + |x| for all n > N.

Defining

M = max {|x1|, |x2|, . . . , |xN |, 1 + |x|} ,
we see that |xn| ≤M for all n ∈ N, so (xn) is bounded. �

Thus, boundedness is a necessary condition for convergence, and every un-
bounded sequence diverges; for example, the unbounded sequence in Example 3.13
diverges. On the other hand, boundedness is not a sufficient condition for conver-
gence; for example, the bounded sequence in Example 3.15 diverges.

The boundedness, or convergence, of a sequence (xn)∞n=1 depends only on the
behavior of the infinite “tails” (xn)∞n=N of the sequence, where N is arbitrarily
large. Equivalently, the sequence (xn)∞n=1 and the shifted sequences (xn+N )∞n=1

have the same convergence properties and limits for every N ∈ N. As a result,
changing a finite number of terms in a sequence doesn’t alter its boundedness or
convergence, nor does it alter the limit of a convergent sequence. In particular, the
existence of a limit gives no information about how quickly a sequence converges
to its limit.

Example 3.20. Changing the first hundred terms of the sequence (1/n) from 1/n
to n, we get the sequence

1, 2, 3, . . . , 99, 100,
1

101
,

1

102
,

1

103
, . . . ,

which is still bounded (although by 100 instead of by 1) and still convergent to
0. Similarly, changing the first billion terms in the sequence doesn’t change its
boundedness or convergence.

We introduce some convenient terminology to describe the behavior of “tails”
of a sequence,

Definition 3.21. Let P (x) denote a property of real numbers x ∈ R. If (xn) is a
real sequence, then P (xn) holds eventually if there exists N ∈ N such that P (xn)
holds for all n > N ; and P (xn) holds infinitely often if for every N ∈ N there exists
n > N such that P (xn) holds.
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For example, (xn) is bounded if there exists M ≥ 0 such that |xn| ≤ M
eventually; and (xn) does not converge to x ∈ R if there exists ε0 > 0 such that
|xn − x| ≥ ε0 infinitely often.

Note that if a property P holds infinitely often according to Definition 3.21,
then it does indeed hold infinitely often: If N = 1, then there exists n1 > 1 such
that P (xn1

) holds; if N = n1, then there exists n2 > n1 such that P (xn2
) holds;

then there exists n3 > n2 such that P (xn3
) holds, and so on.

3.4. Properties of limits

In this section, we prove some order and algebraic properties of limits of sequences.

3.4.1. Monotonicity. Limits of convergent sequences preserve (non-strict) in-
equalities.

Theorem 3.22. If (xn) and (yn) are convergent sequences and xn ≤ yn for all
n ∈ N, then

lim
n→∞

xn ≤ lim
n→∞

yn.

Proof. Suppose that xn → x and yn → y as n → ∞. Then for every ε > 0 there
exists P,Q ∈ N such that

|x− xn| <
ε

2
for all n > P,

|y − yn| <
ε

2
for all n > Q.

Choosing n > max{P,Q}, we have

x = xn + x− xn < yn +
ε

2
= y + yn − y +

ε

2
< y + ε.

Since x < y + ε for every ε > 0, it follows that x ≤ y. �

This result, of course, remains valid if the inequality xn ≤ yn holds only for
all sufficiently large n. Limits need not preserve strict inequalities. For example,
1/n > 0 for all n ∈ N but limn→∞ 1/n = 0.

It follows immediately that if (xn) is a convergent sequence with m ≤ xn ≤M
for all n ∈ N, then

m ≤ lim
n→∞

xn ≤M.

The following “squeeze” or “sandwich” theorem is often useful in proving the
convergence of a sequence by bounding it between two simpler convergent sequences
with equal limits.

Theorem 3.23 (Sandwich). Suppose that (xn) and (yn) are convergent sequences
of real numbers with the same limit L. If (zn) is a sequence such that

xn ≤ zn ≤ yn for all n ∈ N,

then (zn) also converges to L.
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Proof. Let ε > 0 be given, and choose P,Q ∈ N such that

|xn − L| < ε for all n > P, |yn − L| < ε for all n > Q.

If N = max{P,Q}, then for all n > N

−ε < xn − L ≤ zn − L ≤ yn − L < ε,

which implies that |zn − L| < ε. This prove the result. �

It is essential here that (xn) and (yn) have the same limit.

Example 3.24. If xn = −1, yn = 1, and zn = (−1)n+1, then xn ≤ zn ≤ yn for all
n ∈ N, the sequence (xn) converges to −1 and (yn) converges 1, but (zn) does not
converge.

As once consequence, we show that we can take absolute values inside limits.

Corollary 3.25. If xn → x as n→∞, then |xn| → |x| as n→∞.

Proof. By the reverse triangle inequality,

0 ≤ | |xn| − |x| | ≤ |xn − x|,
and the result follows from Theorem 3.23. �

3.4.2. Linearity. Limits respect addition and multiplication. In proving the
following theorem, we need to show that the sequences converge, not just get an
expressions for their limits.

Theorem 3.26. Suppose that (xn) and (yn) are convergent real sequences and
c ∈ R. Then the sequences (cxn), (xn + yn), and (xnyn) converge, and

lim
n→∞

cxn = c lim
n→∞

xn,

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn,

lim
n→∞

(xnyn) =
(

lim
n→∞

xn

)(
lim
n→∞

yn

)
.

Proof. We let
x = lim

n→∞
xn, y = lim

n→∞
yn.

The first statement is immediate if c = 0. Otherwise, let ε > 0 be given, and choose
N ∈ N such that

|xn − x| <
ε

|c|
for all n > N.

Then
|cxn − cx| < ε for all n > N,

which proves that (cxn) converges to cx.

For the second statement, let ε > 0 be given, and choose P,Q ∈ N such that

|xn − x| <
ε

2
for all n > P, |yn − y| <

ε

2
for all n > Q.

Let N = max{P,Q}. Then for all n > N , we have

|(xn + yn)− (x+ y)| ≤ |xn − x|+ |yn − y| < ε,

which proves that (xn + yn) converges to x+ y.
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For the third statement, note that since (xn) and (yn) converge, they are
bounded and there exists M > 0 such that

|xn|, |yn| ≤M for all n ∈ N

and |x|, |y| ≤M . Given ε > 0, choose P,Q ∈ N such that

|xn − x| <
ε

2M
for all n > P, |yn − y| <

ε

2M
for all n > Q,

and let N = max{P,Q}. Then for all n > N ,

|xnyn − xy| = |(xn − x)yn + x(yn − y)|
≤ |xn − x| |yn|+ |x| |yn − y|
≤M (|xn − x|+ |yn − y|)
< ε,

which proves that (xnyn) converges to xy. �

Note that the convergence of (xn + yn) does not imply the convergence of (xn)
and (yn) separately; for example, take xn = n and yn = −n. If, however, (xn)
converges then (yn) converges if and only if (xn + yn) converges.

3.5. Monotone sequences

Monotone sequences have particularly simple convergence properties.

Definition 3.27. A sequence (xn) of real numbers is increasing if xn+1 ≥ xn for
all n ∈ N, decreasing if xn+1 ≤ xn for all n ∈ N, and monotone if it is increasing
or decreasing. A sequence is strictly increasing if xn+1 > xn, strictly decreasing if
xn+1 < xn, and strictly monotone if it is strictly increasing or strictly decreasing.

We don’t require a monotone sequence to be strictly monotone, but this us-
age isn’t universal. In some places, “increasing” or “decreasing” is used to mean
“strictly increasing” or “strictly decreasing.” In that case, what we call an increas-
ing sequence is called a nondecreasing sequence and a decreasing sequence is called
nonincreasing sequence. We’ll use the more easily understood direct terminology.

Example 3.28. The sequence

1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, . . .

is monotone increasing but not strictly monotone increasing; the sequence (n3) is
strictly monotone increasing; the sequence (1/n) is strictly monotone decreasing;
and the sequence ((−1)n+1) is not monotone.

Bounded monotone sequences always converge, and unbounded monotone se-
quences diverge to ±∞.

Theorem 3.29. A monotone sequence of real numbers converges if and only if it
is bounded. If (xn) is monotone increasing and bounded, then

lim
n→∞

xn = sup{xn : n ∈ N},
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and if (xn) is monotone decreasing and bounded, then

lim
n→∞

xn = inf{xn : n ∈ N}.

Furthermore, if (xn) is monotone increasing and unbounded, then

lim
n→∞

xn =∞,

and if (xn) is monotone decreasing and unbounded, then

lim
n→∞

xn = −∞.

Proof. If the sequence converges, then by Proposition 3.19 it is bounded.

Conversely, suppose that (xn) is a bounded, monotone increasing sequence.
The set of terms {xn : n ∈ N} is bounded from above, so by Axiom 2.17 it has a
supremum

x = sup{xn : n ∈ N}.
Let ε > 0. From the definition of the supremum, there exists an N ∈ N such that
xN > x− ε. Since the sequence is increasing, we have xn ≥ xN for all n > N , and
therefore x− ε < xn ≤ x. It follows that

|xn − x| < ε for all n > N,

which proves that xn → x as n→∞.

If (xn) is an unbounded monotone increasing sequence, then it is not bounded
from above, since it is bounded from below by its first term x1. Hence, for every
M ∈ R there exists N ∈ N such that xN > M . Since the sequence is increasing, we
have xn ≥ xN > M for all n > N , which proves that xn →∞ as n→∞.

The result for a monotone decreasing sequence (xn) follows similarly, or by
applying the previous result to the monotone increasing sequence (−xn). �

The fact that every bounded monotone sequence has a limit is another way to
express the completeness of R. For example, this is not true in Q: an increasing
sequence of rational numbers that converges to

√
2 is bounded from above in Q (for

example, by 2) but has no limit in Q.

We sometimes use the notation xn ↑ x to indicate that (xn) is a monotone
increasing sequence that converges to x, and xn ↓ x to indicate that (xn) is a
monotone decreasing sequence that converges to x, with a similar notation for
monotone sequences that diverge to ±∞. For example, 1/n ↓ 0 and n3 ↑ ∞ as
n→∞.

The following propositions give some examples of monotone sequences. In the
proofs, we use the binomial theorem, which we state without proof.

Theorem 3.30 (Binomial). If x, y ∈ R and n ∈ N, then

(x+ y)n =

n∑
k=0

(
n

k

)
xn−kyk,

(
n

k

)
=

n!

k!(n− k)!
.

Here, n! = 1 · 2 · 3 · · · · · n and, by convention, 0! = 1. The binomial coefficients(
n

k

)
=
n · (n− 1) · (n− 2) · · · · (n− k + 1)

1 · 2 · 3 · · · · k
,
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read “n choose k,” give the number of ways of choosing k objects from n objects,
order not counting. For example,

(x+ y)2 = x2 + 2xy + y2,

(x+ y)3 = x3 + 3x2y + 3xy2 + y3,

(x+ y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

We also recall the sum of a geometric series: if a 6= 1, then
n∑

k=0

ak =
1− an+1

1− a
.

Proposition 3.31. The geometric sequence (an)∞n=0,

1, a, a2, a3, . . . ,

is strictly monotone decreasing if 0 < a < 1, with

lim
n→∞

an = 0,

and strictly monotone increasing if 1 < a <∞, with

lim
n→∞

an =∞.

Proof. If 0 < a < 1, then 0 < an+1 = a · an < an, so the sequence (an) is strictly
monotone decreasing and bounded from below by zero. Therefore by Theorem 3.29
it has a limit x ∈ R. Theorem 3.26 implies that

x = lim
n→∞

an+1 = lim
n→∞

a · an = a lim
n→∞

an = ax.

Since a 6= 1, it follows that x = 0.

If a > 1, then an+1 = a · an > an, so (an) is strictly increasing. Let a = 1 + δ
where δ > 0. By the binomial theorem, we have

an = (1 + δ)n

=

n∑
k=0

(
n

k

)
δk

= 1 + nδ +
1

2
n(n− 1)δ2 + · · ·+ δn

> 1 + nδ.

Given M ≥ 0, choose N ∈ N such that N > M/δ. Then for all n > N , we have

an > 1 + nδ > 1 +Nδ > M,

so an →∞ as n→∞. �

The next proposition proves the existence of the limit for e in Example 3.16.

Proposition 3.32. The sequence (xn) with

xn =

(
1 +

1

n

)n

is strictly monotone increasing and converges to a limit 2 < e < 3.
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Proof. By the binomial theorem,(
1 +

1

n

)n

=

n∑
k=0

(
n

k

)
1

nk

= 1 + n · 1

n
+
n(n− 1)

2!
· 1

n2
+
n(n− 1)(n− 2)

3!
· 1

n3

+ · · ·+ n(n− 1)(n− 2) . . . 2 · 1
n!

· 1

nn

= 2 +
1

2!

(
1− 1

n

)
+

1

3!

(
1− 1

n

)(
1− 2

n

)
+ · · ·+ 1

n!

(
1− 1

n

)(
1− 2

n

)
. . .

2

n
· 1

n
.

Each of the terms in the sum on the right hand side is a positive increasing func-
tion of n, and the number of terms increases with n. Therefore (xn) is a strictly
increasing sequence, and xn > 2 for every n ≥ 2. Moreover, since 0 ≤ (1−k/n) < 1
for 1 ≤ k ≤ n, we have(

1 +
1

n

)n

< 2 +
1

2!
+

1

3!
+ · · ·+ 1

n!
.

Since n! ≥ 2n−1 for n ≥ 1, it follows that(
1 +

1

n

)n

< 2 +
1

2
+

1

22
+ · · ·+ 1

2n−1
= 2 +

1

2

[
1− (1/2)n−1

1− 1/2

]
< 3,

so (xn) is monotone increasing and bounded from above by a number strictly less
than 3. By Theorem 3.29 the sequence converges to a limit 2 < e < 3. �

3.6. The lim sup and lim inf

The lim sup and lim inf allow us to reduce questions about the convergence and lim-
its of general real sequences to ones about monotone sequences. They are somewhat
subtle concepts, and after defining them we will consider a number of examples.

Unlike the limit, the lim sup and lim inf of every bounded sequence of real
numbers exist. A sequence converges if and only if its lim sup and lim inf are equal,
in which case its limit is their common value. Furthermore, a sequence is unbounded
if and only if at least one of its lim sup or lim inf diverges to ±∞, and it diverges
to ±∞ if and only if both its lim sup and lim inf diverge to ±∞.

In order to define the lim sup and lim inf of a sequence (xn) of real numbers,
we introduce the sequences (yn) and (zn) obtained by taking the supremum and
infimum, respectively, of the “tails” of (xn):

yn = sup {xk : k ≥ n} , zn = inf {xk : k ≥ n} .

As n increases, the supremum and infimum are taken over smaller sets, so (yn) is
monotone decreasing and (zn) is monotone increasing. The limits of these sequences
are the lim sup and lim inf, respectively, of the original sequence.
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Definition 3.33. Suppose that (xn) is a sequence of real numbers. Then

lim sup
n→∞

xn = lim
n→∞

yn, yn = sup {xk : k ≥ n} ,

lim inf
n→∞

xn = lim
n→∞

zn, zn = inf {xk : k ≥ n} .

Note that lim supxn exists and is finite provided that each of the yn is finite
and (yn) is bounded from below; similarly, lim inf xn exists and is finite provided
that each of the zn is finite and (zn) is bounded from above. We may also write

lim sup
n→∞

xn = inf
n∈N

(
sup
k≥n

xk

)
, lim inf

n→∞
xn = sup

n∈N

(
inf
k≥n

xk

)
.

As for the limit of monotone sequences, it is convenient to allow the lim inf or
lim sup to be ±∞, and we state explicitly what this means. We have −∞ < yn ≤ ∞
for every n ∈ N, since the supremum of a non-empty set cannot be −∞, but we
may have yn ↓ −∞; similarly, −∞ ≤ zn < ∞, but we may have zn ↑ ∞. These
possibilities lead to the following cases.

Definition 3.34. Suppose that (xn) is a sequence of real numbers and the se-
quences (yn), (zn) of possibly extended real numbers are given by Definition 3.33.
Then

lim sup
n→∞

xn =∞ if yn =∞ for every n ∈ N,

lim sup
n→∞

xn = −∞ if yn ↓ −∞ as n→∞,

lim inf
n→∞

xn = −∞ if zn = −∞ for every n ∈ N,

lim inf
n→∞

xn =∞ if zn ↑ ∞ as n→∞.

In all cases, we have zn ≤ yn for every n ∈ N, with the usual ordering conven-
tions for ±∞, and by taking the limit as n→∞, we get that

lim inf
n→∞

xn ≤ lim sup
n→∞

xn.

We illustrate the definition of the lim sup and lim inf with a number of examples.

Example 3.35. Consider the bounded, increasing sequence

0,
1

2
,

2

3
,

3

4
, . . . xn = 1− 1

n
.

Defining yn and zn as above, we have

yn = sup

{
1− 1

k
: k ≥ n

}
= 1, zn = inf

{
1− 1

k
: k ≥ n

}
= 1− 1

n
,

and both yn ↓ 1 and zn ↑ 1 converge monotonically to the limit 1 of the original
sequence. Thus,

lim sup
n→∞

xn = lim inf
n→∞

xn = lim
n→∞

xn = 1.

Example 3.36. Consider the bounded, non-monotone sequence

1, −1, 1, −1, . . . xn = (−1)n+1.
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Figure 2. A plot of the first 40 terms in the sequence xn = (−1)n+1(1+1/n)
in Example 3.37. The dashed lines show lim supxn = 1 and lim inf xn = −1.

Then

yn = sup
{

(−1)k+1 : k ≥ n
}

= 1, zn = inf
{

(−1)k+1 : k ≥ n
}

= −1,

and yn ↓ 1, zn ↑ −1 converge to different limits. Thus,

lim sup
n→∞

xn = 1, lim inf
n→∞

xn = −1.

The original sequence does not converge, and limxn is undefined.

Example 3.37. The bounded, non-monotone sequence

2, −3

2
,

4

3
, −5

4
, . . . xn = (−1)n+1

(
1 +

1

n

)
is shown in Figure 2. We have

yn = sup {xk : k ≥ n} =

{
1 + 1/n if n is odd,

1 + 1/(n+ 1) if n is even,

zn = inf {xk : k ≥ n} =

{
−[1 + 1/(n+ 1)] if n is odd,

−[1 + 1/n] if n is even,

and it follows that
lim sup
n→∞

xn = 1, lim inf
n→∞

xn = −1.

The limit of the sequence does not exist. Note that infinitely many terms of the
sequence are strictly greater than lim supxn, so lim supxn does not bound any
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“tail” of the sequence from above. However, every number strictly greater than
lim supxn eventually bounds the sequence from above. Similarly, lim inf xn does
not bound any “tail” of the sequence from below, but every number strictly less
than lim inf xn eventually bounds the sequence from below.

Example 3.38. Consider the unbounded, increasing sequence

1, 2, 3, 4, 5, . . . xn = n.

We have

yn = sup{xk : k ≥ n} =∞, zn = inf{xk : k ≥ n} = n,

so the lim sup, lim inf and lim all diverge to ∞,

lim sup
n→∞

xn = lim inf
n→∞

xn = lim
n→∞

xn =∞.

Example 3.39. Consider the unbounded, non-monotone sequence

1, −2, 3, −4, 5, . . . xn =

{
n if n is odd,

−n if n is even.

We have yn =∞ and zn = −∞ for every n ∈ N, and

lim sup
n→∞

xn =∞, lim inf
n→∞

xn = −∞.

The sequence oscillates and does not diverge to either ∞ or −∞, so limxn is
undefined even as an extended real number.

Example 3.40. Consider the unbounded non-monotone sequence

1,
1

2
, 3,

1

4
, 5, . . . xn =

{
n if n is odd.

1/n if n is even,

Then yn =∞ and

zn =

{
1/n if n even,

1/(n+ 1) if n odd.

Therefore

lim sup
n→∞

xn =∞, lim inf
n→∞

xn = 0.

As noted above, the lim sup of a sequence needn’t bound any tail of the se-
quence, but the sequence is eventually bounded from above by every number that
is strictly greater than the lim sup, and the sequence is greater infinitely often
than every number that is strictly less than the lim sup. This property gives an
alternative characterization of the lim sup, one that we often use in practice.

Theorem 3.41. Let (xn) be a real sequence. Then

y = lim sup
n→∞

xn

if and only if −∞ ≤ y ≤ ∞ satisfies one of the following conditions.

(1) −∞ < y <∞ and for every ε > 0: (a) there exists N ∈ N such that xn < y+ε
for all n > N ; (b) for every N ∈ N there exists n > N such that xn > y − ε.
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(2) y =∞ and for every M ∈ R, there exists n ∈ N such that xn > M , i.e., (xn)
is not bounded from above.

(3) y = −∞ and for every m ∈ R there exists N ∈ N such that xn < m for all
n > N , i.e., xn → −∞ as n→∞.

Similarly,
z = lim inf

n→∞
xn

if and only if −∞ ≤ z ≤ ∞ satisfies one of the following conditions.

(1) −∞ < z <∞ and for every ε > 0: (a) there exists N ∈ N such that xn > z−ε
for all n > N ; (b) for every N ∈ N there exists n > N such that xn < z + ε.

(2) z = −∞ and for every m ∈ R, there exists n ∈ N such that xn < m, i.e., (xn)
is not bounded from below.

(3) z = ∞ and for every M ∈ R there exists N ∈ N such that xn > M for all
n > N , i.e., xn →∞ as n→∞.

Proof. We prove the result for lim sup. The result for lim inf follows by applying
this result to the sequence (−xn).

First, suppose that y = lim supxn and −∞ < y < ∞. Then (xn) is bounded
from above and

yn = sup {xk : k ≥ n} ↓ y as n→∞.
Therefore, for every ε > 0 there exists N ∈ N such that yN < y+ ε. Since xn ≤ yN
for all n > N , this proves (1a). To prove (1b), let ε > 0 and suppose that N ∈ N is
arbitrary. Since yN ≥ y is the supremum of {xn : n ≥ N}, there exists n ≥ N such
that xn > yN − ε ≥ y − ε, which proves (1b).

Conversely, suppose that −∞ < y < ∞ satisfies condition (1) for the lim sup.
Then, given any ε > 0, (1a) implies that there exists N ∈ N such that

yn = sup {xk : k ≥ n} ≤ y + ε for all n > N,

and (1b) implies that yn > y − ε for all n ∈ N. Hence, |yn − y| < ε for all n > N ,
so yn → y as n→∞, which means that y = lim supxn.

We leave the verification of the equivalence for y = ±∞ as an exercise. �

Next we give a necessary and sufficient condition for the convergence of a se-
quence in terms of its lim inf and lim sup.

Theorem 3.42. A sequence (xn) of real numbers converges if and only if

lim inf
n→∞

xn = lim sup
n→∞

xn = x

are finite and equal, in which case

lim
n→∞

xn = x.

Furthermore, the sequence diverges to ∞ if and only if

lim inf
n→∞

xn = lim sup
n→∞

xn =∞

and diverges to −∞ if and only if

lim inf
n→∞

xn = lim sup
n→∞

xn = −∞
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Proof. First suppose that

lim inf
n→∞

xn = lim sup
n→∞

xn = x

for some x ∈ R. Then yn ↓ x and zn ↑ x as n→∞ where

yn = sup {xk : k ≥ n} , zn = inf {xk : k ≥ n} .
Since zn ≤ xn ≤ yn, the “sandwich” theorem implies that

lim
n→∞

xn = x.

Conversely, suppose that the sequence (xn) converges to a limit x ∈ R. Then
for every ε > 0, there exists N ∈ N such that

x− ε < xn < x+ ε for all n > N.

It follows that
x− ε ≤ zn ≤ yn ≤ x+ ε for all n > N.

Therefore yn, zn → x as n→∞, so lim supxn = lim inf xn = x.

The sequence (xn) diverges to ∞ if and only if lim inf xn = ∞, and then
lim supxn = ∞, since lim inf xn ≤ lim supxn. Similarly, (xn) diverges to −∞ if
and only if lim supxn = −∞, and then lim inf xn = −∞. �

If lim inf xn 6= lim supxn, then we say that the sequence (xn) oscillates. The
difference

lim supxn − lim inf xn

provides a measure of the size of the oscillations in the sequence as n→∞.

Every sequence has a finite or infinite lim sup, but not every sequence has a
limit (even if we include sequences that diverge to ±∞). The following corollary
gives a convenient way to prove the convergence of a sequence without having to
refer to the limit before it is known to exist.

Corollary 3.43. Let (xn) be a sequence of real numbers. Then (xn) converges
with limn→∞ xn = x if and only if lim supn→∞ |xn − x| = 0.

Proof. If limn→∞ xn = x, then limn→∞ |xn − x| = 0, so

lim sup
n→∞

|xn − x| = lim
n→∞

|xn − x| = 0.

Conversely, if lim supn→∞ |xn − x| = 0, then

0 ≤ lim inf
n→∞

|xn − x| ≤ lim sup
n→∞

|xn − x| = 0,

so lim infn→∞ xn|xn− x| = lim supn→∞ xn|xn− x| = 0. Theorem 3.42 implies that
limn→∞ |xn − x| = 0, or limn→∞ xn = x. �

Note that the condition lim infn→∞ |xn−x| = 0 doesn’t tell us anything about
the convergence of (xn).

Example 3.44. Let xn = 1 + (−1)n. Then (xn) oscillates between 0 and 2, and

lim inf
n→∞

xn = 0, lim sup
n→∞

xn = 2.

The sequence is non-negative and its lim inf is 0, but the sequence does not converge.
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3.7. Cauchy sequences

Cauchy has become unbearable. Every Monday, broadcasting the known
facts he has learned over the week as a discovery. I believe there is no
historical precedent for such a talent writing so much awful rubbish. This
is why I have relegated him to the rank below us. (Jacobi in a letter to
Dirichlet, 1841)

The Cauchy condition is a necessary and sufficient condition for the convergence
of a real sequence that depends only on the terms of the sequence and not on its
limit. Furthermore, the completeness of R can be defined by the convergence of
Cauchy sequences, instead of by the existence of suprema. This approach defines
completeness in terms of the distance properties of R rather than its order properties
and generalizes to other metric spaces that don’t have a natural ordering.

Roughly speaking, a Cauchy sequence is a sequence whose terms eventually get
arbitrarily close together.

Definition 3.45. A sequence (xn) of real numbers is a Cauchy sequence if for
every ε > 0 there exists N ∈ N such that

|xm − xn| < ε for all m,n > N.

Theorem 3.46. A sequence of real numbers converges if and only if it is a Cauchy
sequence.

Proof. First suppose that (xn) converges to a limit x ∈ R. Then for every ε > 0
there exists N ∈ N such that

|xn − x| <
ε

2
for all n > N.

It follows that if m,n > N , then

|xm − xn| ≤ |xm − x|+ |x− xn| < ε,

which implies that (xn) is Cauchy. (This direction doesn’t use the completeness of
R; for example, it holds equally well for sequence of rational numbers that converge
in Q.)

Conversely, suppose that (xn) is Cauchy. Then there is N1 ∈ N such that

|xm − xn| < 1 for all m,n > N1.

It follows that if n > N1, then

|xn| ≤ |xn − xN1+1|+ |xN1+1| ≤ 1 + |xN1+1|.
Hence the sequence is bounded with

|xn| ≤ max {|x1|, |x2|, . . . , |xN1
|, 1 + |xN1+1|} .

Since the sequence is bounded, its lim sup and lim inf exist. We claim they are
equal. Given ε > 0, choose N ∈ N such that the Cauchy condition in Definition 3.45
holds. Then

xn − ε < xm < xn + ε for all m ≥ n > N.

It follows that for all n > N we have

xn − ε ≤ inf {xm : m ≥ n} , sup {xm : m ≥ n} ≤ xn + ε,
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which implies that

sup {xm : m ≥ n} − ε ≤ inf {xm : m ≥ n}+ ε.

Taking the limit as n→∞, we get that

lim sup
n→∞

xn − ε ≤ lim inf
n→∞

xn + ε,

and since ε > 0 is arbitrary, we have

lim sup
n→∞

xn ≤ lim inf
n→∞

xn.

It follows that lim supxn = lim inf xn, so Theorem 3.42 implies that the sequence
converges. �

3.8. Subsequences

A subsequence of a sequence (xn)

x1, x2, x3, . . . , xn, . . .

is a sequence (xnk
) of the form

xn1 , xn2 , xn3 , . . . , xnk
, . . .

where n1 < n2 < n3 < · · · < nk < . . . .

Example 3.47. A subsequence of the sequence (1/n),

1,
1

2
,

1

3
,

1

4
,

1

5
, . . . .

is the sequence (1/k2)

1,
1

4
,

1

9
,

1

16
,

1

25
, . . . .

Here, nk = k2. On the other hand, the sequences

1, 1,
1

2
,

1

3
,

1

4
,

1

5
, . . . ,

1

2
, 1,

1

3
,

1

4
,

1

5
, . . .

aren’t subsequences of (1/n) since nk is not a strictly increasing function of k in
either case.

The standard short-hand notation for subsequences used above is convenient
but not entirely consistent, and the notion of a subsequence is a bit more involved
than it might appear at first sight. To explain it in more detail, we give the formal
definition of a subsequence as a function on N.

Definition 3.48. Let (xn) be a sequence, where xn = f(n) and f : N → R. A
sequence (yk), where yk = g(k) and g : N→ R, is a subsequence of (xn) if there is
a strictly increasing function φ : N→ N such that g = f ◦ φ. In that case, we write
φ(k) = nk and yk = xnk

.

Example 3.49. In Example 3.47, the sequence (1/n) corresponds to the function
f(n) = 1/n and the subsequence (1/k2) corresponds to g(k) = 1/k2. Here, g = f ◦φ
with φ(k) = k2.

Note that since the indices in a subsequence form a strictly increasing sequence
of integers (nk), it follows that nk →∞ as k →∞.
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Proposition 3.50. Every subsequence of a convergent sequence converges to the
limit of the sequence.

Proof. Suppose that (xn) is a convergent sequence with limn→∞ xn = x and (xnk
)

is a subsequence. Let ε > 0. There exists N ∈ N such that |xn − x| < ε for all
n > N . Since nk →∞ as k →∞, there exists K ∈ N such that nk > N if k > K.
Then k > K implies that |xnk

− x| < ε, so limk→∞ xnk
= x. �

A useful criterion for the divergence of a sequence follows immediately from
this result and the uniqueness of limits.

Corollary 3.51. If a sequence has subsequences that converge to different limits,
then the sequence diverges.

Example 3.52. The sequence ((−1)n+1),

1, −1, 1, −1, 1, . . . ,

has subsequences (1) and (−1) that converge to different limits, so it diverges.

In general, we define the limit set of a sequence to be the set of all limits of its
convergent subsequences.

Definition 3.53. The limit set of a sequence (xn) is the set

{x ∈ R : there is a subsequence (xnk
) such that xnk

→ x as k →∞}

of limits of all of its convergent subsequences.

The limit set of a convergent sequence consists of a single point, namely its
limit.

Example 3.54. The limit set of the divergent sequence ((−1)n+1),

1, −1, 1, −1, 1, . . . ,

contains two points, and is {−1, 1}.

Example 3.55. Let {rn : n ∈ N} be an enumeration of the rational numbers
in [0, 1]. Every x ∈ [0, 1] is a limit of a subsequence (rnk

). To obtain such a
subsequence recursively, choose n1 = 1, and for each k ≥ 2 choose a rational
number rnk

such that |x− rnk
| < 1/k and nk > nk−1. This is always possible since

the rational numbers are dense in [0, 1] and every interval contains infinitely many
terms of the sequence. Conversely, if rnk

→ x, then 0 ≤ x ≤ 1 since 0 ≤ rnk
≤ 1.

Thus, the limit set of (rn) is the interval [0, 1].

Finally, we state a characterization of the lim sup and lim inf of a sequence in
terms of of its limit set, where we use the usual conventions about ±∞. We leave
the proof as an exercise.

Theorem 3.56. Suppose that (xn) is sequence of real numbers with limit set S.
Then

lim sup
n→∞

xn = supS, lim inf
n→∞

xn = inf S.
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3.9. The Bolzano-Weierstrass theorem

The Bolzano-Weierstrass theorem is a fundamental compactness result. It allows
us to deduce the convergence of a subsequence from the boundedness of a sequence
without having to know anything specific about the limit. In this respect, it is anal-
ogous to the result that a monotone increasing sequence converges if it is bounded
from above, and it also provides another way of expressing the completeness of R.

Theorem 3.57 (Bolzano-Weierstrass). Every bounded sequence of real numbers
has a convergent subsequence.

Proof. Suppose that (xn) is a bounded sequence of real numbers. Let

M = sup
n∈N

xn, m = inf
n∈N

xn,

and define the closed interval I0 = [m,M ].

Divide I0 = L0 ∪R0 in half into two closed intervals, where

L0 = [m, (m+M)/2], R0 = [(m+M)/2,M ].

At least one of the intervals L0, R0 contains infinitely many terms of the sequence,
meaning that xn ∈ L0 or xn ∈ R0 for infinitely many n ∈ N (even if the terms
themselves are repeated).

Choose I1 to be one of the intervals L0, R0 that contains infinitely many terms
and choose n1 ∈ N such that xn1

∈ I1. Divide I1 = L1 ∪ R1 in half into two
closed intervals. One or both of the intervals L1, R1 contains infinitely many terms
of the sequence. Choose I2 to be one of these intervals and choose n2 > n1 such
that xn2

∈ I2. This is always possible because I2 contains infinitely many terms
of the sequence. Divide I2 in half, pick a closed half-interval I3 that contains
infinitely many terms, and choose n3 > n2 such that xn3

∈ I3. Continuing in this
way, we get a nested sequence of intervals I1 ⊃ I2 ⊃ I3 ⊃ . . . Ik ⊃ . . . of length
|Ik| = 2−k(M −m), together with a subsequence (xnk

) such that xnk
∈ Ik.

Let ε > 0 be given. Since |Ik| → 0 as k → ∞, there exists K ∈ N such
that |Ik| < ε for all k > K. Furthermore, since xnk

∈ IK for all k > K we have
|xnj
− xnk

| < ε for all j, k > K. This proves that (xnk
) is a Cauchy sequence, and

therefore it converges by Theorem 3.46. �

The subsequence obtained in the proof of this theorem is not unique. In partic-
ular, if the sequence does not converge, then for some k ∈ N both the left and right
intervals Lk and Rk contain infinitely many terms of the sequence. In that case, we
can obtain convergent subsequences with different limits, depending on our choice
of Lk or Rk. This loss of uniqueness is a typical feature of compactness arguments.

We can, however, use the Bolzano-Weierstrass theorem to give a criterion for
the convergence of a sequence in terms of the convergence of its subsequences. It
states that if every convergent subsequence of a bounded sequence has the same
limit, then the entire sequence converges to that limit.

Theorem 3.58. If (xn) is a bounded sequence of real numbers such that every
convergent subsequence has the same limit x, then (xn) converges to x.
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Proof. We will prove that if a bounded sequence (xn) does not converge to x, then
it has a convergent subsequence whose limit is not equal to x.

If (xn) does not converges to x then there exists ε0 > 0 such that |xn− x| ≥ ε0
for infinitely many n ∈ N. We can therefore find a subsequence (xnk

) such that

|xnk
− x| ≥ ε0

for every k ∈ N. The subsequence (xnk
) is bounded, since (xn) is bounded, so by

the Bolzano-Weierstrass theorem, it has a convergent subsequence (xnkj
). If

lim
j→∞

xnkj
= y,

then |x− y| ≥ ε0, so x 6= y, which proves the result. �
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