Math 118: PDE

1.3.3

1.3.5

HW 3 Solutions

By the law of conservation of energy, we have

rate of change of thermal energy = heat flux in — heat flux out. (1)

Let u(z,t) denote the temperature of the rod at postition x and time
t. The thermal energy density e(x,t) per volume is given by cpu(zx,t),
where ¢ is the specific heat capacity of the rod, and p the density.

The heat flux g(x,t) per cross sectional area is proportional to the
negative gradient of temperature, i.e. ¢(z,t) = —ku, for some k > 0.

The addtional heat loss to the outside through the lateral sides of the
rod is given by h(z,t)Pdx where h(z,t) = plu(z,t) — Tp] for some
> 0, where Ty is the ambient temperature, based on Newton’s law
of cooling.

By (1), we have
b

b
G | elaniAde = laa.n)A - av.0)4) - / W )P dz,  (2)

which can be simplified to

b
/ cpAuy — Aktgy + pPlu — To] dx = 0. (3)

Since a, b are arbitrary, it follows that

k uP

By the conservation of mass, we have

the rate of change in the fluid mass
= change in flux based on diffusion (i.e.,flow in - flow out) (5)

+ change in flux based on advection (i.e., move in - move out).



e Let u(z,t) denote the mass of fluid particles at position x and time t.
Then (5) gives

d b b b
7 u(z,t) de = —/ Gz (z,t) dox — / Vg (x,t) de, (6)
e Since ¢ = —ku; and a, b are chosen arbitrarily, we have
U = Kuge — Vug. (7)
2.2.6
e (a) Substitude the following derivative to the PDE
Ut = Oéf/(t -B)

uy = af(t — B)
up =o' f(t = B) —af'f'(t = B)
Upp = " f(t = B) —2a'B'f'(t — B) — aB"f'(t = B) + a(B) " (t — )
we get
a4 1a’)f—62(2a’ﬁ’+ozﬁ”+nT_laﬁ’)f’+(c2a(B’)2—a)f” =0
(8)

e (b) Setting the coefficients of f”, f’.and f equal to zero, we obtain

Ao + L_lo/) =0 (9)
20'f + o'+ " Lap) =0 (10)
ca(f)—a=0 (11)

e (¢) Suppose that « # 0 and ¢ # 0, then (11) gives ' = +1/¢ and thus
B"” = 0. Plug these results to (20), we obtain

n—1

20/ + a=0 (12)

r

e The equation (9) gives
1

"+ o =0. (13)

T

Solving this ODE, we obtain
o = rl—n o = 1 742—71



e Plugging them into (12), we get

1—-n n—1
2 =0.
T ( +2—n> 0

It follows that n =1 or n = 3.

o (d)Ifn=1, a(r) =7° =1 is a constant.

2.3.1

(14)

e Maximum Principle tells that the max or min of u(x,t) occurs on the

boundaries, i.e., t =0,7, x =0, 1.

function max

min

t=0 | w@,0)=1-22[latz=0 ODatx =1

2=0 | u(0,t)=1—2kt | latt=0 | I —2kT at t =1

c=1| u(l,t)=-2kt |Oatt=0| —2kTatt=1T

e Thus, the global max of u(x,t) is 1 at (0,0), and the global min is

—2kT at (1,7).
2.4.6
o Let I = fooo e~ dx, then

o0 2 o0 2
/ e ” dm/ e ¥ dy
0 0

oo oo 2 2
= e eV dx dy
o Jo

w/4 poo )
= / / e " rdrdf
0 0

= 7/4.

I2

Thus, I = \/7/2.
2.4.7
o [% e dp=2I= 7.

o Let p = x/v/4kt, then dp = dx/v/4kt, and

2

00 0o ,—p
/ S(z,t) da::/ ¢ dp = 1.
—0o0 —00 \/’TT



2.4.9

Differentiating both sides of the diffusion equation thrice with respect
to x, we have

due to the continuity of partial derivatives.

Differentiating u(z, 0) = 22 thrice with respect to z, we have the initial
condition
Uzgz(2,0) = 0. (16)

By the uniqueness of solutions, g, = 0 is the solution of the IVP
(15) and (16).

Integrating the result thrice,

u(z,t) = A(t)z? + B(t)x + C(t). (17)

The initial condition u(x,0) = x? implies

Differentiating (17) with respect to t,
uy = Az + Bz + ' (18)
Differentiating (17) with respect to x twice,
Uy = 2A. (19)
Plugging (18) and (19) into the orginal diffusion equation, we obtain
Al(t)y=B'(t) =0, C'(t) =2kA(t). (20)

It follows that A =1, B = 0,C = 2k, and the solution of the original
problem is u(x,t) = 22 + 2kt.



