
Math 118: PDE
HW 3 Solutions

1.3.3

• By the law of conservation of energy, we have

rate of change of thermal energy = heat flux in− heat flux out. (1)

• Let u(x, t) denote the temperature of the rod at postition x and time
t. The thermal energy density e(x, t) per volume is given by cρu(x, t),
where c is the specific heat capacity of the rod, and ρ the density.

• The heat flux q(x, t) per cross sectional area is proportional to the
negative gradient of temperature, i.e. q(x, t) = −kux for some k > 0.

• The addtional heat loss to the outside through the lateral sides of the
rod is given by h(x, t)Pδx where h(x, t) = µ[u(x, t) − T0] for some
µ > 0, where T0 is the ambient temperature, based on Newton’s law
of cooling.

• By (1), we have

d

dt

∫ b

a
e(x, t)A dx = [q(a, t)A− q(b, t)A]−

∫ b

a
h(x, t)P dx, (2)

which can be simplified to∫ b

a
cρAut −Akuxx + µP [u− T0] dx = 0. (3)

• Since a, b are arbitrary, it follows that

ut =
k

cρ
uxx −

µP

cρA
[u− T0]. (4)

1.3.5

• By the conservation of mass, we have

the rate of change in the fluid mass

= change in flux based on diffusion (i.e.,flow in - flow out)

+ change in flux based on advection (i.e., move in - move out).

(5)



• Let u(x, t) denote the mass of fluid particles at position x and time t.
Then (5) gives

d

dt

∫ b

a
u(x, t) dx = −

∫ b

a
qx(x, t) dx−

∫ b

a
V ux(x, t) dx, (6)

• Since q = −kut and a, b are chosen arbitrarily, we have

ut = kuxx − V ux. (7)

2.2.6

• (a) Substitude the following derivative to the PDE

ut = αf ′(t− β)

utt = αf ′′(t− β)

ur = α′f(t− β)− αβ′f ′(t− β)

urr = α′′f(t− β)− 2α′β′f ′(t− β)− αβ′′f ′(t− β) + α(β′)2f ′′(t− β)

we get

c2(α′′+
n− 1

r
α′)f−c2(2α′β′+αβ′′+n− 1

r
αβ′)f ′+(c2α(β′)2−α)f ′′ = 0

(8)

• (b) Setting the coefficients of f ′′, f ′,and f equal to zero, we obtain

c2(α′′ +
n− 1

r
α′) = 0 (9)

c2(2α′β′ + αβ′′ +
n− 1

r
αβ′) = 0 (10)

c2α(β′)2 − α = 0 (11)

• (c) Suppose that α 6= 0 and c 6= 0, then (11) gives β′ = ±1/c and thus
β′′ = 0. Plug these results to (20), we obtain

2α′ +
n− 1

r
α = 0 (12)

• The equation (9) gives

α′′ +
n− 1

r
α′ = 0. (13)

Solving this ODE, we obtain

α′ = r1−n, α =
1

2− n
r2−n



• Plugging them into (12), we get

r1−n
(

2 +
n− 1

2− n

)
= 0. (14)

It follows that n = 1 or n = 3.

• (d) If n = 1, α(r) = r0 = 1 is a constant.

2.3.1

• Maximum Principle tells that the max or min of u(x, t) occurs on the
boundaries, i.e., t = 0, T , x = 0, 1.

function max min

t = 0 u(x, 0) = 1− x2 1 at x = 0 0 at x = 1

x = 0 u(0, t) = 1− 2kt 1 at t = 0 1− 2kT at t = T

x = 1 u(1, t) = −2kt 0 at t = 0 −2kT at t = T

• Thus, the global max of u(x, t) is 1 at (0, 0), and the global min is
−2kT at (1, T ).

2.4.6

• Let I =
∫∞
0 e−x

2
dx, then

I2 =

∫ ∞
0

e−x
2
dx

∫ ∞
0

e−y
2
dy

=

∫ ∞
0

∫ ∞
0

e−x
2
e−y

2
dx dy

=

∫ π/4

0

∫ ∞
0

e−r
2
r dr dθ

= π/4.

Thus, I =
√
π/2.

2.4.7

•
∫∞
−∞ e

−p2 dp = 2I =
√
π.

• Let p = x/
√

4kt, then dp = dx/
√

4kt, and∫ ∞
−∞

S(x, t) dx =

∫ ∞
−∞

e−p
2

√
π
dp = 1.



2.4.9

• Differentiating both sides of the diffusion equation thrice with respect
to x, we have

(uxxx)t = k(uxxx)xx, (15)

due to the continuity of partial derivatives.

• Differentiating u(x, 0) = x2 thrice with respect to x, we have the initial
condition

uxxx(x, 0) = 0. (16)

• By the uniqueness of solutions, uxxx = 0 is the solution of the IVP
(15) and (16).

• Integrating the result thrice,

u(x, t) = A(t)x2 +B(t)x+ C(t). (17)

• The initial condition u(x, 0) = x2 implies

A(0) = 1, B(0) = C(0) = 0.

• Differentiating (17) with respect to t,

ut = A′x2 +B′x+ C ′ (18)

• Differentiating (17) with respect to x twice,

uxx = 2A. (19)

• Plugging (18) and (19) into the orginal diffusion equation, we obtain

A′(t) = B′(t) = 0, C ′(t) = 2kA(t). (20)

• It follows that A = 1, B = 0, C = 2k, and the solution of the original
problem is u(x, t) = x2 + 2kt.


