
Math 118: PDE
HW 7 Solutions

4.1.4

• Using the separated solution in the PDE, we get

FG̈ = c2F ′′G− rFĠ.

Separation of variables gives

G̈+ rĠ

c2G
=
F ′′

F
= −λ,

where λ is a separation constant.

• The eigenvalue problem for F (x) is

F ′′ + λF = 0, F (0) = 0, F (l) = 0.

The eigenvalues and eigenfunctions are

Fn(x) = sin
(nπx

l

)
, λn =

(nπ
l

)2
, n = 1, 2, 3, . . . .

• The ODE for G(t) is

G̈+ rĠ+ c2λG = 0.

Its characteristic equation is w2 + rw + c2λ = 0, which has solutions

w =
−r ±

√
r2 − 4c2λ

2
.

Given that 0 < r < 2πc/l, we have r2 < 4c2λ for all n ≥ 1. This means

the roots are complex. Let wn = α±iβn, where α = − r
2
, βn =

√
4c2λn−r2

2
.

The solution is given by

G(t) = eαt (An cos βnt+Bn sin βnt) .

• The separated solutions are therefore

u(x, t) = sin
(nπx

l

)
eαt (An cos βnt+Bn sin βnt) .



• Taking a linear combination of the separated solutions, we get that the
genral solution of the PDE and BCs is

u(x, t) =
∞∑
n=1

sin
(nπx

l

)
eαt (an cos βnt+ bn sin βnt) .

• Imposition of the initial condition u(x, 0) = φ(x) gives

φ(x) =
∞∑
n=1

an sin
(nπx

l

)
,

so an is the nth Fourier coefficient of φ(x),

an =
2

l

∫ l

0

φ(x) sin
(nπx

l

)
dx.

• Imposition of the initial condition ut(x, 0) = ψ(x) gives

ψ(x) =
∞∑
n=1

bnβn sin
(nπx

l

)
,

so bnβn is the nth Fourier coefficient of ψ(x), and

bn =
2

lβn

∫ l

0

ψ(x) sin
(nπx

l

)
dx.

4.2.1

• Using the separated solution in the PDE, we get

FĠ = kF ′′G.

Separation of variables gives

Ġ

kG
=
F ′′

F
= −λ,

where λ is a separation constant.



• The eigenvalue problem for F (x) is

F ′′ + λF = 0, F (0) = 0, F ′(l) = 0.

The eigenvalues and eigenfunctions are

Fn(x) = sin

(
(n+ 1

2
)πx

l

)
, λn =

(
(n+ 1

2
)π

l

)2

, n = 1, 2, 3, . . . .

• The ODE for G(t) is
Ġ+ kλG = 0.

Up to an arbitrary constant factor, the solution is

G(t) = e−kλt.

• The general solution is therefore

u(x, t) =
∞∑
n=1

bn sin

(
(n+ 1

2
)πx

l

)
e
−k

(
(n+1

2 )π

l

)2

t
.

4.2.4

• Using the separated solution in the PDE, we get

FĠ = kF ′′G.

Separation of variables gives

Ġ

kG
=
F ′′

F
= −λ,

where λ is a separation constant.

• The eigenvalue problem for F (x) is

F ′′ + λF = 0, F (−l) = F (l), F ′(−l) = F ′(l).

– If λ = 0, then F ′′ = 0. The solution is F (x) = Ax+B. Imposition
of the BCs gives A = 0. Therefore F0 = B, where B is an arbitrary
constant is a solution.



– If λ > 0, the solution is F (x) = A cos
√
λx+B sin

√
λx. Since the

cos functions are even, imposition of the BCs implies sin(
√
λl) = 0,

i.e.,
√
λl = nπ for integers n.

– Combining the two cases, the eigenvalues are λn = (nπ/l)2 for
n = 0, 1, 2, 3, . . . .

The solution for F (x) is therefore F (x) = A cos nπx
l

+B sin nπx
l
.

• The ODE for G(t) is
. . . G+ kλG = 0.

Up to an arbitrary constant factor, the solution is G(t) = e−kλt. If
λ = 0, G(t) = 1.

• The general solution is therefore

u(x, t) =
1

2
A0 +

∞∑
n=1

(
An cos

nπx

l
+Bn sin

nπx

l

)
e−kλt.

5.1.4

• The Fourier cosine series is

| sinx| = 1

2
a0 +

∞∑
n=1

an cosnx, −π < x < pi,

where

a0 =
2

π

∫ π

0

sinx dx =
4

π

and

an =
1

π

∫ π

−π
| sinx| · cosnx dx =

2

π

∫ π

0

sinx · cosnx dx,

because | sinx| is even. Since∫ π

0

sinx · cosnx dx =
1

n
sinx sinnx

∣∣∣∣π
0

− 1

n

∫ π

0

cosx sinnx dx

= − 1

n

∫ π

0

cosx sinnx dx

=
1

n2
cosx cosnx

∣∣∣∣π
0

+
1

n2

∫ π

0

sinx cosnx dx,



we have

(1− 1

n2
)

∫ π

0

sinx · cosnx dx =
1

n2
cosx cosnx

∣∣∣∣π
0

= − 1

n2
(cosnπ + 1)

=

{
− 2
n2 if n is even

0 if n is odd

It follows that

an =

{ 4
(1−n2)π

if n is even

0 if n is odd

• The Fourier cosine series of | sinx| is therefore

| sinx| = 2

π
+

4

π

∑
neven

1

1− n2
cosnx

=
2

π
+

4

π

∞∑
n=1

1

1− 4n2
cos 2nx.

• Plugging in x = π into the previous Fourier cosine series, we get

0 =
2

π
− 4

π

∞∑
n=1

1

4n2 − 1
,

and
∞∑
n=1

1

4n2 − 1
=

1

2
.

• Plugging in x = π
2

into the found Fourier cosine series, we get

1 =
2

π
− 4

π

∞∑
n=1

(−1)n

4n2 − 1
,

and
∞∑
n=1

(−1)n

4n2 − 1
=

1

2
− π

4
.



5.1.5

• The Fourier sine series of φ(x) = x is

φ(x) =
2l

π

∞∑
n=1

(−1)n+1

n
sin

nπx

l
.

• Integrating term by term, we get

x2

2
=

2l2

π2

∞∑
n=1

(−1)n

n2
cos

nπx

l
+ C,

where C is the constant of integration.

• The constant term in the cosine series is

a0 =
2

l

∫ l

0

x2

2
dx =

l2

3
.

Thus, C = 1
2
a0 = l2

6
.

• Plugging x = 0 into the Fourier cosine series for x2

2
, we get

0 =
2l2

π2

∞∑
n=1

(−1)n

n2
+
l2

6
,

which gives
∞∑
n=1

(−1)n+1

n2
=
π2

12
.

5.2.4

• Sine is odd; Cosine is even.

• The product of two even (or odd) functions is even; the product of an
even function and an odd function is odd.

• The integral of an odd function over (−l, l) is zero.

5.2.11



• The complex Fourier series of ex is

ex =
∞∑

n=−∞

cne
inπx/l,

where

cn =
1

2l

∫ l

−l
ex · e−inπx/l dx

=
1

2l(1− inπ/l)
e(1−inπ/l)x

∣∣l
−l

=
1

2(l − inπ)

[
el−inπ − e−l+inπ

]
=

(−1)n

l − inπ
el − e−l

2

=
(−1)n(l + inπ)

l2 + n2π2
sinh l.

• To get the real Fourier series of ex, we first rewrite the complex series

ex =
∞∑

n=−∞

(−1)n(l + inπ)

l2 + n2π2
sinh(l)einπx/l

=
sinh l

l
+
∞∑
n=1

(−1)n(l + inπ)

l2 + n2π2
sinh(l)einπx/l +

∞∑
n=1

(−1)n(l − inπ)

l2 + n2π2
sinh(l)e−inπx/l.

The real Fourier series of ex is

ex =
1

2
a0 +

∞∑
n=1

(
an cos

nπx

l
+ bn sin

nπx

l

)
,

where

a0 =
2 sinh l

l
,

an = sinh l

(
(−1)n(l + inπ)

l2 + n2π2
+

(−1)n(l − inπ)

l2 + n2π2

)
=

(−1)n2l sinh l

l2 + n2π2
,

and

an = i sinh l

(
(−1)n(l + inπ)

l2 + n2π2
− (−1)n(l − inπ)

l2 + n2π2

)
=

(−1)n+12nπ sinh l

l2 + n2π2
.



• Note that a0 = 2c0, an = cn + c−n, bn = i(cn − c−n) for n = 1, 2, 3, . . . .

6.2.4

• Using the separated solution u(x, y) = F (x)G(y) in the PDE, we get

F ′′G+GG̈ = 0.

Separation of variables gives

F ′′

F
= −G̈

G
= λ.

• First, we solve the subproblem withBCs: u(x, 0) = u(x, 1) = 0, ux(0, y) =
0, ux(1, y) = y2. The eigenvalue problem for G(y) is

G̈+ λG = 0, G(0) = G(1) = 0.

The eigenvalues and eigenfunctions are

Gn(y) = sinnπy, λn = (nπ)2, n = 1, 2, 3, . . . .

The ODE for F (x) is
F ′′ − λnF = 0,

with solutions

Fn(x) = an coshnπx+ bn sinhnπx.

Imposiition of the BC F ′(0) = 0 givesBn = 0. Thus, F (x) = an coshnπx.
The general solution is

u1(x, y) =
∞∑
n=1

an coshnπx sinnπy,

where an must be chosen such that the solution satisfies the BC ux(1, y) =
y2, i.e.,

an =
2

nπ sinhnπx

∫ 1

0

y2 sinnπy dx.



• Next, we solve the subproblem with BCs: u(x, 0) = x, u(x, 1) = 0, ux(0, y) =
ux(1, y) = 0. Using the same strategy, we find the general solution is

u2(x, y) =
a0
2

(y − 1) +
∞∑
n=1

cosnπx sinhnπ(y − 1),

where

a0 = −1, an = − 2

sinhnπ

∫ 1

0

x cosnπx dx.

• Adding the solutions of the two subproblems, we get our final solution.

6.2.7

• Using the separated solution in the PDE, we get

FG̈+ F ′′G = 0.

Separation of variables gives

−G̈
G

=
F ′′

F
= −λ,

where λ is a separation constant.

• The eigenvalue problem for F (x) is

F ′′ + λF = 0, F (0) = 0, F (π) = 0.

The eigenvalues and eigenfunctions are

Fn(x) = sinnx, λn = n2, n = 1, 2, 3, . . . .

• The ODE for G(y) is
G̈− λG = 0.

The solution is

G(y) = Ae
√
λy +Be−

√
λy = Aeny +Be−ny.

Imposition of the BC limy→∞G(y) = 0 gives A = 0, so

G(y) = Be−ny.



• The general solution is

u(x, y) =
∞∑
n=1

bn sinnxe−ny.

• Setting y = 0 in the series above, we require that

h(x) = u(x, 0) =
∞∑
n=1

bn sinnx,

which gives

bn =
2

π

∫ π

0

h(x) sinnx dx.

6.3.2

• The solution of the Laplace’s equation on the disk is

u(r, θ) =
1

2
A0 +

∞∑
n=1

rn (An cosnθ +Bn sinnθ) .

• Setting r = a in the series above, we require that

1 + 3 sin θ = u(a, θ) =
1

2
A0 +

∞∑
n=1

an (An cosnθ +Bn sinnθ) ,

which gives

A0 = 2, B1 =
3

a
,

and all the other coefficients are zero.

• The solution of the BVP is therefore

u(r, θ) = 1 +
3r

a
sin θ.

6.3.4



• Given

P (r, θ) =
a2 − r2

a2 − 2ar cos θ + r2
,

we want to show

Prr +
1

r
Pr +

1

r2
Pθθ = 0.

• We can do this by direct differentiation, and get

Pr =
2a((s2 + r2) cos θ − 2ar)

(a2 − 2ar cos θ + r2)2
,

Prr =
4a(a3 cos(2θ)− r(3a2 + r2) cos θ + 3ar2)

(a2 − 2ar cos θ + r2)3
,

and

Pθθ =
−2ar(a2 − r2)((a2 + r2) cos θ + ar(cos(2θ)− 3))

(a2 − 2ar cos θ + r2)3
.

• OR we can first write P (r, θ) in its series form

P (r, θ) = 1 + 2
∞∑
n=1

(r
a

)n
cosnθ,

and then integrate term by term.


