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EXERCISES

l.

o

L1.

Verify the linearity and nonlinearity of the eight examples of PDEs given
in the text, by checking whether or not equations (3) are valid.

Which of the following operators are linear?

(a) Su =u, + xu,

(b) Pu = u, -+ uu,

(¢) $u=u,+ u%

d) Pu=uy+u,+1

(€) Yu =1+ x2(cos yu, + iy, — [arctan(x/y)lu

For each of the following equations, state the order and whether it
is nonlinear, linear inhomogeneous, or linear homogeneous; provide
reasons.

(@ w—uy+1=0

™ u —uy+xu=20

(€) u — Uy +uu, =0

(d) sy =t +X2=0

) iuy —uy+ujx=0

0wl +u2) P a1 +u2) =

(@) wy+eu, =0 '

(h) “r+14\\n+\/m:0

Shuw that the difference of two solutions of an inhomogeneous linear
equation $u = g with the same g is a solution of the homogeneous
equation $u = 0.

Which of the following collections of 3-vectors [a, b, ¢] are vector
spaces? Provide reasons.

(a) The vectors with b = 0.

(b) The vectors with b = 1.

(¢c) The vectors with ab = 0.

(d) All the linear combinations of the two vectors [1, 1, O] and {2,0, 11.
(e) All the vectors such that ¢ — a = 2b.

Are the three vectors (1, 2, 3], [—2, 0, 1], and [1, 10, 17] linearly depen-
dent or independent? Do they span all vectors or not?

Are the functions | +x, 1 — x, and 1 4+ x + ¥* linearly dependent or
independent? Why?

Find a vector that, together with the vectors [1, 1, 17and [1, 2, 1], forms
a basis of R*.

Show that the functions (¢| + ¢» sin>x + ¢3 cosx) form a vector space.
Find a basis of it. What is its dimension?

Show that the solutions of the differential equation u” — 3u” 4+ 4u =0
tform a vector space. Find a basis of it.

Verify that u(x, y) = f(x)g(y)isasolution of the PDE uu,, = u.u, for
all pairs of (differentiable) functions f and g of one variable.
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12. Verify by direct substitution that
u,(x,y) = sin nx sinh ny

is a solution of uy, + u,, = 0 for every n > 0.

1.2 FIRST-ORDER LINEAR EQUATIONS

We begin our study of PDEs by solving some simple ones. The solution is
quite geometric in spirit.

The simplest possible PDE is du/8x = 0 [where u = u(x, y)]. Its general
solution is u = f(y), where f is any function of one variable. For instance,
u = y?> —y and u = ¢ cos y are two solutions. Because the solutions don’t
depend on x, they are constant on the lines y = constant in the xy plane.

THE CONSTANT COEFFICIENT EQUATION

Let us solve

au, + bu, =0, (D

where a and b are constants not both zero.

Geometric Method The quantity au, -+ bu, is the directional derivative of
u in the direction of the vector V = (a, b) = ai + bj. It must always be zero.
This means that u(x, y) must be constant in the direction of V. The vector
(b, —a) is orthogonal to V. The lines parallel to V (see Figure 1) have the
equations hx — ay = constant. (They are called the characteristic lines.) The
solution is constant on each such line. Therefore, u(x, y) depends on bx — ay
only. Thus the solution is

M(Xs)’):—‘f(b)(—a)’% (2)

where f is any function of one variable. Let’s explain this conclusion more
explicitly. On the line bx — ay = ¢, the solution u has a constant value. Call

g 1
T

Figure 1
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THE VARIABLE COEFFICIENT EQUATION

The equation
[ux +yuy = OJ 4)

is linear and homogeneous but has a variable coefficient (v). We shall illustrate
for equation (4) how to use the geometric method somewhat like Example 1.

The PDE (4) itself asserts that the directional derivative in the direction
of the vector (1, y) is zero. The curves in the xy plane with (1, y) as tangent
vectors have slopes y (see Figure 3). Their equations are

d}Y ‘7
2 5
dx 1 (3)
This ODE has the solutions

y=Ce". (6)

These curves are called the characteristic curves of the PDE (4). As C is
changed, the curves fill out the xy plane perfectly without intersecting. On
each of the curves u(x, y) is a constant because

d%-u(x, Ce') = Z—Z + Ce"'% =u, +yu, =0.
Thus u(x,Ce’) = u(0, Ce® = u(0, C) is independent of x. Putting y = Ce*
and C = ey, we have
u(x,y) = u, e™*y).
It follows that

| w3 = £ ™

is the general solution of this PDE, where again f is an arbitrary function
of only a single variable. This is easily checked by differentiation using
the chain rule (see Exercise 4). Geometrically, the “picture” of the solution
u(x, y) is that it is constant on each characteristic curve in Figure 3.

y
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Example 2.

Find the solution of (4) that satisfies the auxiliary condition u(0, y) = y3.
Indeed, putting x = 0 in (7), we get y? = f(e ™), so that f(y) = y2.
Therefore, u(x, y) = (e=*y)’ = e ¥y o

Example 3.
Solve the PDE

[ux 4+ 2xy%u, = 0. @)

The characteristic curves satisfy the ODE dy/dx = 2xy*/1 = 2xy*.
To solve the ODE, we separate variables: dy/ y? = 2x dx; hence
~1/y = x* = C, so that

y=(C -7 )

These curves are the characteristics. Again, u(x, y) is a constant on each
such curve. (Check it by writing it out.) So u(x, y) = f(C), where f is an
arbitrary function. Therefore, the general solution of (8) is obtained by
solving (9) for C. That is,

u(x, y) = f<x2 + %) ;‘ (10)

Again this is easily checked by differentiation, using the chain
rule:u, = 2x - f/(x¥+ 1/y)andu, = —(1/y?) - f'(x* + 1/y), whence
U, + 2xy2u_y =0. O

In summary, the geometric method works nicely for any PDE of the form
a(x, Yuy, + b(x, y)u, = 0. It reduces the solution of the PDE to the solution
of the ODE dy/dx = b(x, y)/a(x, y). If the ODE can be solved, so can the
PDE. Every solution of the PDE is constant on the solution curves of the ODE.

Moral Solutions of PDEs generally depend on arbitrary functions (instead
of arbitrary constants). You need an auxiliary condition if you want to deter-
mine a unique solution. Such conditions are usually called initial or boundary
conditions. We shall encounter these conditions throughout the book.

EXERCISES

1. Solve the first-order equation 2u, + 3u, = O withthe auxiliary condition
u=sinx whent=0.

2. Solve the equation 3u, + u,, = 0. (Hint: Letv = uy.)
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3. Solve the equation (1 + xu, +uy =0. Sketch some of the character-
istic curves.

Check that (7) indeed solves (4).
Solve the equation xu, + yu, = 0.
Solve the equation v/ 1 — x2u, +uy, =0 with the condition u(0, y) = y.
(a) Solve the equation yu, + xuy = 0 with u(0, y) = e,
(b) Inwhich region of the xy plane is the solution uniquely determined?
Solve au, + buy +cu = 0.
9. Solve the equation uy + uy = 1.
10. Solve u, +uy +u = et with u(x, 0) = 0.

11. Solve au, + bu, = f(x,y), where f(x, y)is a given function. Ifa#0,
write the solution in the form

N o s

o

ux, y) = (@* + bz)ﬂl/2 / fds + glbx —ay),
L

where g is an arbitrary function of one variable, L is the characteristic
line segment from the y axis to the point (x, y), and the integral is a line
integral. (Hint: Use the coordinate method.)

12. Show that the new coordinate axes defined by (3) are orthogonal.
13. Use the coordinate method to solve the equation

Uy 4+ 2uy + (2x — Y =2x" +3xy — 2y%.

1.3 FLOWS, VIBRATIONS, AND DIFFUSIONS

The subject of PDEs was practically a branch of physics until the twentieth
century. In this section we present a series of examples of PDEs as they occur
in physics. They provide the basic motivation for all the PDE problems we
study in the rest of the book. We shall see that most often in physical problems
the independent variables are those of space x, y, z, and time ?.

Example 1. Simple Transport

Consider a fluid, water, say, flowing at a constant rate ¢ along a horizontal
pipe of fixed cross section in the positive x direction. A substance, say

a pollutant, is suspended in the water. Let u(x, f) be its concentration in
grams/centimeter at time ¢. Then

m )

(That is, the rate of change u, of concentration is proportional to the
gradient u,. Diffusion is assumed to be negligible.) Solving this equation
as in Section 1.2, we find that the concentration is a function of (x - ct)




