
Midterm 1: Sample solutions

Math 118A, Fall 2013

1. Say whether the following operators acting on functions u(x, y) are linear
or nonlinear. Justify your answers. (a) Lu = uxx + uyy + 1; (b) Lu =
yuxx + uyy + u; (c) Lu = uuxx + uyy.

Solution.

• (a) Nonlinear because of the nonhomogeneous term 1. For example,

L(u+ v) = Lu+ Lv − 1 6= Lu+ Lv.

• (b) Linear. For every constant c and all functions u, v:

L(cu) = y(cu)xx + (cu)yy + cu

= c (yuxx + uyy + u)

= cLu;

L(u+ v) = y(u+ v)xx + (u+ v)yy + u+ v

= yuxx + uyy + u+ yvxx + vyy + v

= Lu+ Lv.

• (c) Nonlinear because of the uuxx term. For example, if c 6= 1,

L(cu) = c2uuxx + cuyy = c (cuuxx + uyy) 6= cLu.



2. Solve the following IVP for the wave equation

utt = c2uxx, u(x, 0) = 0, ut(x, 0) = cosx.

Solution.

• D’Alembert’s solution of the wave equation with initial data

u(x, 0) = φ(x), ut(x, 0) = ψ(x)

is

u(x, t) =
1

2
[φ(x+ ct) + φ(x− ct)] +

1

2c

∫ x+ct

x−ct

ψ(ξ) dξ.

• Setting φ(x) = 0 and ψ(x) = cos x, we get

u(x, t) =
1

2c

∫ x+ct

x−ct

cos ξ dξ

=
1

2c
[sin(x+ ct)− sin(x− ct)] .



3. Look for solutions of the heat equation

ut = kuxx,

of the form
u(x, t) = f(x)e−a2t

where a > 0 is a constant. Find the most general function f(x) for which
this is a solution. Give a physical explanation, in terms of heat flow, of why
this solution decays exponentially in time.

Solution.

• For functions u of the form given in the question, we have

ut = −a2fe−a2t, uxx = f ′′e−a2t.

Thus, canceling the nonzero exponential factor, we see that u satisfies
the heat equation if and only if −a2f = kf ′′, or

f ′′ +
a2

k
f = 0.

• The general solution of this equation (we assume k > 0) is

f(x) = A cos

(

ax√
k

)

+B sin

(

ax√
k

)

,

where A, B are arbitrary constants. (The characteristic equation is
r2 + a2/k = 0, with roots r = ±ia/

√
k.)

• The solution decays because heat flows from hot spots where f > 0
to cold spots where f < 0. The faster u oscillates in space, the faster
it decays in time. More quantitatively, if u(x, t) has wavelength λ =
2π

√
k/a in x, then it decays at at rate e−βt in time, where β = 4π2k/λ2.

The rate of decay is also larger for larger thermal diffusivities k.



4. For what values of the constants m, n does the PDE

ut + uux + uxxx = 0

have similarity solutions of the form

u(x, t) =
1

tm
f
( x

tn

)

?

In that case, find an ODE for f(z). (Don’t try to solve it!)

Solution.

• For similarity solutions of the form given in the question, we have (by
the chain rule)

ut = − m

tm+1
f − nx

tm+n+1
f ′,

ux =
1

tm+n
f ′,

uxxx =
1

tm+3n
f ′′′.

• It follows that u is a solution of the PDE if

− m

tm+1
f − nx

tm+n+1
f ′ +

1

tm
f · 1

tm+n
f ′ +

1

tm+3n
f ′′′ = 0.

After multiplting this equation by tm+1, we get

−mf − nx

tn
f ′ +

1

tm+n−1
ff ′ +

1

t3n−1
f ′′′ = 0.

• We get a self-consistent solution of the PDE only if f does not depend
on t except through z = x/tn. This is the case only if the powers of t
in front of the terms ff ′ and f ′′′ are zero, meaning that m+ n− 1 = 0
and 3n− 1 = 0, or

m =
2

3
, n =

1

3
.

• In that case, f(z) satisfies the ODE

f ′′′ + ff ′ − 1

3
zf ′ − 2

3
f = 0.



5. Suppose that u(x, t) is a solution of the initial value problem

ut + cux + u = 0, u(x, 0) = φ(x).

such that u and its derivatives approach zero as |x| → ∞. Show that
∫

∞

−∞

u2(x, t) dx = e−2t

∫

∞

−∞

φ2(x) dx.

Solution.

• Multiplying the PDE by u and using uut = (u2/2)t (and similarly for
x-derivatives), we get

(

1

2
u2
)

t

+

(

1

2
cu2

)

x

+ u2 = 0.

Integrating this equation with respect to x and using
∫

∞

−∞

(u2)t dx =
d

dt

∫

∞

−∞

u2 dx,

∫

∞

−∞

(u2)x dx = u2
∣

∣

∞

−∞
= 0,

we get that
d

dt

∫

∞

−∞

u2 dx+ 2

∫

∞

−∞

u2 dx = 0,

or yt + 2y = 0 where y(t) =
∫

∞

−∞
u2(x, t) dx. Solving this ODE, we get

∫

∞

−∞

u2 dx = Ce−2t,

and evaluating this expression at t = 0, we find that

C =

∫

∞

−∞

φ2(x) dx,

which proves the result.

• An alternative method is to solve the IVP exactly, which gives

u(x, t) = e−tφ(x− ct),

and then note that
∫

∞

−∞

u2(x, t) dx = e−2t

∫

∞

−∞

φ2(x− ct) dx = e−2t

∫

∞

−∞

φ2(x) dx,

where we change the integration variable from x − ct to x in the last
step. The first method doesn’t depend on having an explicit solution.



6. Suppose that algae on a (one-dimensional) lake has population density
u(x, t). Assume that the algae grows at a rate proportional to its popula-
tion density and diffuses from high-density to low density regions at a rate
proportional to its population gradient ux. Derive a PDE for u(x, t).

Solution.

• For an arbitray interval a ≤ x ≤ b, we have

rate of change of algae population in a ≤ x ≤ b

= (flux of algae into a ≤ x ≤ b)

+ (growth rate of population in a ≤ x ≤ b)

• Assume that q = −kux is the flux of algae and r = cu is the growth
rate density. Then

d

dt

∫ b

a

u(x, t) dx = q(a, t)− q(b, t) +

∫ b

a

r(x, t) dx

= −kux(a, t) + kux(b, t) +

∫ b

a

cu(x, t) dx.

• Using the fundamental theorem of calculus to write

−kux(a, t) + kux(b, t) =

∫ b

a

kuxx(x, t) dx,

and combining the terms, we get that

∫

∞

−∞

(ut − kuxx − cu) dx = 0.

• Since this equation holds for all a < b, the integrand ut − kuxx − cu
must be zero (assuming it’s continuous), so the PDE is

ut = kuxx + cu.


