
Midterm 2: Sample solutions

Math 118A, Fall 2013

1. Find all separated solutions u(r, t) = F (r)G(t) of the radially symmetric
heat equation

∂u

∂t
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r

∂

∂r

(

r
∂u

∂r

)

.

Solve for G(t) explicitly. Write down an ODE for F (r) but don’t try to
solve it. (What makes the ODE hard to solve explicitly? How many linearly
independent solutions for F are there?)

Solution.

• Using u(r, t) = F (r)G(t) in the equation, we get

FĠ =
k

r
(rF ′)′G,

where dots denote t-derivatives and primes denote r-derivatives. Sep-
aration of variables gives

Ġ

kG
=

(rF ′)′

rF
= −λ

where λ is a separation constant.

• The ODE for G(t) is
Ġ = −kλG,

whose solution is
G(t) = Ce−kλt

where C is an arbitrary constant.

• The ODE for F (r) is
(rF ′)′ + λrF = 0,

or
rF ′′ + F ′ + λrF = 0.

• This is a second order ODE, so it has two linearly independent solu-
tions. Although it’s linear, it has variable coefficients (and it isn’t an
Euler equation), and it can’t be solved in terms of elementary func-
tions. When λ is normalized to 1, this ODE is called Bessel’s equation
of order 0, and its solutions are Bessel functions of order 0.



2. Find all separated solutions of the heat equation

ut = kuxx

on 0 ≤ x ≤ L that satisfy the mixed Dirichlet-Neumann boundary conditions

u(0, t) = 0, ux(L, t) = 0.

Solution.

• Looking for separated solutions u(x, t) = F (x)G(t), we find that

Ġ

kG
=

F ′′

F
= −λ

where λ is a separation constant.

• The ODE for G(t) is
Ġ = −kλG.

Up to an arbitrary constant factor, the solution is

G(t) = e−kλt.

• The eigenvalue problem for F is

F ′′ + λF = 0, F (0) = 0, F ′(L) = 0.

We consider the following three cases: (i) λ = −µ2 < 0; (ii) λ = 0; (iii)
λ = µ2 > 0. We assume that µ > 0 without loss of generality,

• (i) If λ = −µ2, then F ′′ − µ2F = 0 and

F (x) = A coshµx+B sinh µx.

The BC F (0) = 0 implies that A = 0, and the BC F ′(L) = 0 then
implies that µB coshµL = 0. Since µ coshµL 6= 0, we get that B = 0,
so F = 0 and λ is not an eigenvalue.

• (ii) If λ = 0, then F ′′ = 0, so F (x) = A+Bx. The BC F (0) = 0 implies
that A = 0, and the BC F ′(L) = 0 implies that B = 0, so F = 0 and
λ is not an eigenvalue.



• (iii) If λ = µ2 > 0, then F ′′ + µ2F = 0 and

F (x) = A cosµx+B sinµx.

The BC F (0) = 0 implies that A = 0, and then the BC F ′(L) = 0
implies that µB cosµL = 0. We have a solution with B 6= 0 if cosµL =
0 or µ = µn where

µn =

(

n−
1

2

)

π

L
for n = 1, 2, . . . .

In that case, λ = µ2
n is an eigenvalue with eigenfunction sin µnx.

• Up to an arbitrary constant factor, the separated solutions are therefore

u(x, t) = sin

[(

n−
1

2

)

πx

L

]

exp

[

−k

(

n−
1

2

)2
π2t

L2

]

where n = 1, 2, 3, . . . .



3. Suppose that the function f(x) = x2 is expanded in: (i) a Fourier sine
series on 0 < x < 1; (ii) a Fourier cosine series on 0 < x < 1; (iii) a full
Fourier series on 0 < x < 2.

(a) Write down the corresponding Fourier series. (b) Give expressions for the
corresponding Fourier coefficients as integrals (you don’t need to evaluate
them). (c) Sketch graphs of the sums of the Fourier series for −2 < x < 4.

Solution.

• (a)–(b) The Fourier sine series in 0 < x < 1 is

f(x) =
∞
∑

n=1

bn sin(nπx), bn = 2

∫

1

0

x2 sin(nπx) dx.

The Fourier cosine series in 0 < x < 1 is

f(x) =
1

2
a0 +

∞
∑

n=1

an cos(nπx), an = 2

∫

1

0

x2 cos(nπx) dx.

The full Fourier series in 0 < x < 2 is

f(x) =
1

2
a0 +

∞
∑

n=1

{an cos(nπx) + bn sin(nπx)}

an =

∫

2

0

x2 cos(nπx) dx, bn =

∫

2

0

x2 sin(nπx) dx.

• For −∞ < x < ∞, the Fourier sine and cosine series converge to the
odd and even periodic extensions of x2 on 0 < x < 1, respectively.
The full Fourier series converges to the periodic extension of x2 on
0 < x < 2. The graphs are shown on the next page.
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(a) Sum of the sine series.
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(b) Sum of the cosine series.

−2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

(c) Sum of the full Fourier series.



4. Recall the orthogonality relations for the functions sin(nπx) on 0 ≤ x ≤ 1,
where n = 1, 2, 3, . . . :

∫

1

0

sin(mπx) sin(nπx) dx =

{

1/2 if m = n,

0 if m 6= n.

If a function f(x), defined on 0 ≤ x ≤ 1, has the Fourier sine series

f(x) =
∞
∑

n=1

bn sin(nπx),

show that
∫

1

0

f 2(x) dx =
1

2

∞
∑

n=1

b2n.

Solution.

• We have

∫

1

0

f 2(x) dx =

∫

1

0

[

∞
∑

m=1

bm sin(mπx)

][

∞
∑

n=1

bn sin(nπx)

]

dx

=

∫

1

0

[

∞
∑

m=1

∞
∑

n=1

bmbn sin(mπx) sin(nπx)

]

dx

=
∞
∑

m=1

∞
∑

n=1

bmbn

[
∫

1

0

sin(mπx) sin(nπx) dx

]

=
1

2

∞
∑

n=1

b2n,

since the only nonzero terms in the series are the ones with m = n, in
which case the integrals are 1/2.

• This result is called Parseval’s theorem. It can be interpreted as saying
that the “energy” of f can be computed spatially by integrating f 2 or
spectrally by summing the squares b2n of its Fourier components.



5. Solve the following IBVP for u(x, t) in 0 ≤ x ≤ L, t ≥ 0:

utt = c2uxx 0 < x < L, t > 0

ux(0, t) = 0, ux(L, t) = 0 t ≥ 0

u(x, 0) = 0, ut(x, 0) = f(x) 0 ≤ x ≤ L

Give a physical interpretation of this problem.

Solution.

• Looking for separated solutions u(x, t) = F (x)G(t), we get

FG̈ = c2F ′′G

which implies that
G̈

c2G
=

F ′′

F
= −λ

where λ is a separation constant.

• The eigenvalue problem for F (x) in 0 < x < L is

F ′′ + λF = 0, F ′(0) = 0, F ′(L) = 0.

The eigenfunctions and eigenvalues are

F (x) = cos
(nπx

L

)

, λ =
(nπ

L

)2

for n = 0, 1, 2, 3, . . . .

• The corresponding ODE for G(t) is

G̈+
(nπc

L

)2

G = 0.

If n ≥ 1, the general solution is

G(t) = an cos

(

nπct

L

)

+ bn sin

(

nπct

L

)

where an, bn are arbitrary constants. If n = 0, then the general solution
is G(t) = a0 + b0t/2.



• Superposing these separated solutions, we get the general solution of
the PDE and the BCs

u(x, t) = a0 +
1

2
b0t+

∞
∑

n=1

[

an cos

(

nπct

L

)

+ bn sin

(
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L

)]
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)

• Imposing the initial condition for u(x, 0), we get

0 = a0 +
∞
∑

n=1

an cos
(nπx

L

)

which implies that an = 0 for every n. Thus

u(x, t) =
1

2
b0t +

∞
∑
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bn sin

(
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L

)

cos
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)

(1)

• It follows that

ut(x, t) =
1

2
b0 +

∞
∑

n=1

nπc

L
bn cos

(

nπct

L

)

cos
(nπx

L

)

.

Imposing the initial condition for ut(x, 0), we get

f(x) =
1

2
b0 +

∞
∑

n=1

nπc

L
bn cos

(nπx

L

)

,

and the formula for Fourier cosine coefficients gives

b0 =
2

L

∫ L

0

f(x) dx,
nπc

L
bn =

2

L

∫ L

0

f(x) cos
(nπx

L

)

dx.

• The solution is therefore given by (1) with coefficients

b0 =
2

L

∫ L

0

f(x) dx, bn =
2

nπc

∫ L

0

f(x) cos
(nπx

L

)

dx n = 1, 2, . . . .

• This problem describes the vibrations of an elastic string with initial
displacement zero and initial velocity f . The ends of the string are
free to slide up or down. Note that the average of the solution grows
linearly in time with a velocity b0/2 that’s equal to the average of the
initial velocity.



6. Solve the following BVP for u(x, y) on the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1:

uxx + uyy = 0 0 < x < 1, 0 < y < 1

u(0, y) = 0, u(1, y) = y 0 ≤ y < 1

u(x, 0) = 0, u(x, 1) = 0, 0 ≤ x ≤ 1.

Compute the coefficients in your solution explicitly.

Solution.

• We look for separated solutions

u(x, y) = F (x)G(y).

Then F ′′G + FG′′ = 0, where primes denote derivatives with respect
to x or y as appropriate, which implies that

F ′′

F
= −

G′′

G
= λ

where λ is a separation constant.

• We impose BCs in y, since both are homogeneous, which gives

G′′ + λG = 0, G(0) = 0, G(1) = 0.

The eigenfunctions and eigenvalues are

G(y) = sin(nπy), λ = n2π2 for n = 1, 2, 3, . . . .

• The corresponding ODE for F , with homogeneous BC at x = 0, is

F ′′ − n2π2F = 0, F (0) = 0.

It follows that, up to an arbitrary constant factor,

F (x) = sinh(nπx),

and the separated solutions are therefore u(x, y) = sinh(nπx) sin(nπy).



• The general solution satisfying the homogeneous PDE and BCs is

u(x, y) =
∞
∑

n=1

bn sinh(nπx) sin(nπy).

Imposing the nonhomogeneous BC at x = 1, we get

y =
∞
∑

n=1

bn sinh(nπ) sin(nπy) for 0 < y < 1.

• Using the formula for Fourier sine coefficients and integrating by parts,
we get

bn sinh(nπ) = 2

∫

1

0

y sin(nπy) dy

=
2

nπ
[−y cos(nπy)]1

0
+

2

nπ

∫

1

0

1 · cos(nπy) dy

= −
2

nπ
cos(nπ) +

2

(nπ)2
[sin(nπy)]1

0

=
2(−1)n+1

nπ
.

• In summary, the solution is

u(x, y) =

∞
∑

n=1

2(−1)n+1

nπ sinh(nπ)
sinh(nπx) sin(nπy).


