
Midterm 2: Solutions

Math 118A, Fall 2013

1. [25%] Find all separated solutions u(x, t) = F (x)G(t) of the advection
equation

ut + cux = 0

where c is a constant. Show that the separated solutions have the same form
as the general solution u(x, t) = f(x− ct) for a suitable function f .

Solution.

• Using the separated solution in the PDE, we get

FĠ+ cF ′G = 0.

Separation of variables gives

F ′

F
= −

Ġ

cG
= λ

where λ is a separation constant.

• The ODE for F (x) is F ′ = λF , whose solution is F (x) = Ceλx, where
C is a constant of integration.

• The ODE for G is Ġ+ λcG = 0, whose solution is G(t) = Ce−λct.

• Thus, up to an arbitrary constant factor, the separated solutions are

u(x, t) = eλxe−cλt.

• This solution can be written as u(x, t) = eλ(x−ct), which agrees with the
general solution with f(ξ) = eλξ.
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2. [25%] Let f be the constant function f(x) = 1 defined on the interval
0 ≤ x ≤ 1.

(a) Compute the Fourier sine series of f(x) on 0 ≤ x ≤ 1. (Evaluate the
Fourier sine coefficients explicitly.)

(b) Compute the Fourier cosine series of f(x) on 0 ≤ x ≤ 1. (Evaluate the
Fourier cosine coefficients explicitly.)

(c) On the next page, sketch the sums of the Fourier sine and cosine series
of f(x) for −2 ≤ x ≤ 4.

Solution.

• (a) The Fourier sine series is

f(x) =

∞
∑

n=1

bn sin(nπx) 0 < x < 1

where

bn = 2

∫ 1

0

1 · sin(nπx) dx

= −
2

nπ
[cos(nπx)]10

=
2

nπ
[1− (−1)n]

=

{

4/nπ if n is odd,

0 if n is even.

• The Fourier sine series of f is therefore

f(x) =
∑

n odd

4

nπ
sin(nπx)

=
∞
∑

n=1

4

(2n− 1)π
sin[(2n− 1)πx].

• (b) The Fourier cosine series is

f(x) =
1

2
a0 +

∞
∑

n=1

an cos(nπx) 0 < x < 1
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where

an = 2

∫ 1

0

1 · cos(nπx) dx.

Therefore,

a0 = 2

∫ 1

0

1 dx = 2,

and

an = 2

∫ 1

0

cos(nπx) dx =
2

nπ
[sin(nπx)]10 = 0 n ≥ 1.

(i.e., 1 and cosnπx are orthogonal.)

• The Fourier cosine series of f is therefore just

f(x) = 1.

• (c) The Fourier sine series converges to the odd extension of f (see
the graph). At points where this function has jump discontinuities,
the Fourier series converges to the average values of the left and right
limits, which in this case is 0.

• The Fourier cosine series converges to the even periodic extension of f ,
which is just 1.

3



−2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

y

(a) Sum of the Fourier sine series of 1 on 0 < x < 1.
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(b) Sum of the Fourier cosine series of 1 on 0 < x < 1.

4



3. [20%] Suppose that f(x) is a twice continuously differentiable function
defined on the interval 0 ≤ x ≤ π such that f(0) = 0, f(π) = 0. Let an be
the nth Fourier sine coefficient of f and bn the nth Fourier sine coefficient of
the second derivative f ′′ of f ,

an =
2

π

∫ π

0

f(x) sin(nx) dx, bn =
2

π

∫ π

0

f ′′(x) sin(nx) dx.

Express bn in terms of an. (Hint: Integration by parts.)

Solution.

• Integrating by parts twice in the expression for bn to take derivatives
off f and put them on sin nx or cosnx, we get

bn =
2

π
[f ′(x) sin(nx)]

π

0 −
2

π

∫ π

0

f ′(x) · n cos(nx) dx

= 0−
2n

π

{

[f(x) · cos(nx)]π0 −

∫ π

0

f(x) · (−n) sin(nx) dx

}

= −
2n

π
[f(π) cosn− f(0)]− n2

·
2

π

∫ π

0

f(x) sin(nx) dx

• Since we assume that f(0) = f(π) = 0, we get that

bn = −n2an

Remark. This question show that taking the second derivative of f corre-
sponds to multiplying its Fourier coefficients by −n2. Thus, Fourier series
(or Fourier transforms) convert differentiation into an algebraic operation
(multiplication by n). In particular, Fourier analysis enables us to solve
constant-coefficient, linear differential equations by converting them into al-
gebraic equations.
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4. [30%] (a) Use separation of variables to solve the following initial-boundary
value problem for u(x, t) in 0 < x < L, t > 0:

ut = kuxx + cu 0 < x < L, t > 0

u(0, t) = 0, u(L, t) = 0, t > 0

u(x, 0) = f(x), 0 ≤ x ≤ L

where k, c are positive constants.

(b) Give a physical interpretation of this problem.

(c) Discuss the behavior of the solution as t → +∞.

Solution.

• (a) We look for separated solutions of the form u(x, t) = F (x)G(t).
Then

FĠ = kF ′′G+ cFG.

Dividing by FG and separating variables, we get

F ′′

F
=

Ġ

kG
−

c

k
= −λ,

where λ is a separation constant. (The separation constant could be
defined in other ways, but the final result would be the same. The
choice here is the simplest one for writing the eigenvalue problem.)

• The eigenvalue problem for F (x) is

F ′′ + λF, F (0) = 0, F (L) = 0.

The eigenvalues and eigenfunctions are

Fn(x) = sin
(nπx

L

)

, λn =
(nπ

L

)2

n = 1, 2, 3, . . . . (1)

• The ODE for G is
Ġ+ (kλ− c)G = 0.

Up to an arbitrary constant factor, the solution is

G(t) = e−(kλ−c)t.

The separated solutions are therefore

u(x, t) = sin
(nπx

L

)

e−(kλn−c)t.
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• Taking a linear combination of the separated solutions, we get that the
general solution of the PDE and BCs is

u(x, t) =
∞
∑

n=1

bn sin
(nπx

L

)

e−(kλn−c)t. (2)

Imposition of the initial condition at t = 0 gives

f(x) =
∞
∑

n=1

bn sin
(nπx

L

)

,

so bn is the nth Fourier coefficient of f(x),

bn =
2

L

∫ L

0

f(x) sin
(nπx

L

)

dx. (3)

• In summary, the solution of the IBVP is given by (2), where λn is given
in (1), and bn is given in (3).

• (b) This problem describes the flow of heat in a rod with a heat source
whose strength is proportional to the temperature u. Both endpoints
of the rod are held at a fixed temperature 0, and the initial temperature
is f(x).

• (c) The nth Fourier mode decays in time if c < kλn and grows in time
if c > kλn. The slowest decaying or fastest growing mode is the first
mode with n = 1. Suppose for definiteness that b1 > 0. Then the
solution decays to 0 as t → ∞ if c < kλ1, and grows to ∞ as t → ∞

if c > kλ1. If c = kλ1, then u(x, t) → b1 sin(πx) approaches a steady
state as t → ∞.

• Let’s introduce a dimensionless parameter

R =
π2c

kλ1
=

cL2

k
.

If R < π2, the temperature decays because heat leaks out the ends of
the rod at a faster rate than it is generated by the source. This happens
if the source-coefficient c or the length L of the rod are sufficiently small,
or if the diffusivity k is sufficiently large (which makes sense physically).
On the other hand if R > π2, the source generates heat at a faster rate
than it can leak out the ends and the temperature grows.
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