PARTIAL DIFFERENTIAL EQUATIONS
Math 118B, Winter 2014
Solutions: Midterm 1

1. [15%)] Let
B(0)={ZTeR’: |Z] <€}, OB.(0) = {T € R : |Z| = ¢}

denote the ball and sphere of radius € > 0, respectively, in three space di-
mensions. Evaluate each of the following limits and say if they are 0, finite
and nonzero, or oo:

ol ol

(a) lim —dV; (b) lim —=dS; (c¢) lim log |Z] dS.
0% JB.(0) || e—=0% JoB.(0) |72 e=0% JaB.(0)
Solution.

e (a) Using the fact that dV = 4xwr?dr for integrals of spherically sym-
metric functions in R3, we get

lim = dV = lim 4z [ —rdr
0% J B, (0) | 7| e—0+ o T
= lim 47 (1 —¢°)

e (b) Using the fact that the area of the sphere of radius € is 4we?, we get

|Z| €
lim GTQdS = lim 4mwée® - 6—2
e—0t 9B.(0) ’.CE’ e—0t €
= 4.
(c) Similarly,
lim log |#| dS = lim 47e® - loge
e—0T 9B.(0) e—0+
= 0.



2. [30%] (a) Show that

is a solution of
d*Gp

dx?

(b) Find the Green’s function G(z;¢) on the interval 0 < z <1 such that

= (), —00 < 7 < 00.

d*G

G(0;6) =0,  G(L;£) =0.
(c) Write your solution in (b) as

G(7;8) = Gp(x — &) + ¢(;6).

Give an explicit expression for ¢ and show that it is a solution of the homo-

geneous ODE
2o,

dz?

Solution.

e (a) We have

xz/2  ifz <0
G pu—
#(®) {—x/Q if >0

so d*Gr/dz* = 0 if x # 0. Also, G is continuous at x = 0 and

{dGF} _dGr 4y dGr 11
=0

dr i R T R

so d*Gr/d*x = —6(x).

e (b) As in the solution for Problem 2 of Homework 2, we get

L Ja-92 ito<a<e,
G(x’g)_{gu—x) ife<a<l.



e (c) We find that

o(1;€) = G(a;€) — Grla)
{(1 Er — (v —€)/2 f0<a<E,
¢

(I-2)+(x—-§/2 if{<e <L

1
= <§ —¢ ) T+ 55 )
so ¢ is a linear function of x, which satisfies the homogeneous equation.

Remark. This problem illustrates the general result that the Green’s func-
tion of a BVP is equal to the free-space Green’s function plus a solution
of the homogeneous equation that corrects for the fact that the free-space
Green’s function doesn’t satisfy the boundary conditions.



3. [25%)] Suppose a pollutant with concentration ¢(Z,t) per unit volume is

advected (without diffusion or sources) by a fluid with velocity V (&, ).

(a) Write down: (i) the rate of change with respect to time of the total
amount of pollutant in an arbitrary volume €; (ii) the flux of pollutant out
of Q2. Give an integral form of conservation of pollutant.

(b) Derive a differential equation for conservation of pollutant from the in-
tegral form in (a).

Solution.

e (a) We have

rate of change of pollutant in 2 = % / c(Z,t) d,
Q
flux of pollutant out of Q2 = / o(Z, )V -7 dS.
o9

e Conservation of pollutant implies that

d

— | o(Z,t)dZ, = — / o(Z, )V -7 dS.
dt Jo o9

e (b) Bringing the time derivative inside the integral and using the di-
vergence theorem to rewrite the surface integral as a volume integral,

we get
/ {ct + div(cV)} dz = 0.
Q
e Since (2 is arbitrary, it follows that
¢ + div(eV) = 0.

(We assume these derivatives are continuous.)



4. [30%)] Consider the Dirichlet problem for u(z,y) for the two-dimensional
Laplacian A = 9%/0z* + 0*/9y? in the upper-half space y > 0:

Au=0 iny >0,

u(z,0) = h(x). (1)

Here, h(x) is a continuous function which is zero when |z| is sufficiently large.

(a) If ¥ = (z,y) and £ = (&,m) with n > 0, show that the Green’s function
for this problem corresponding to a point source at & is

—

G(7;€) :_%1Og)f—§‘]+%log)f_g*

where & = (&, —n).

Hint. You can assume, without proof, that Gp(Z) = —(1/27)log|Z| is the
free space Green’s function for the Laplacian, such that —AGg = §(Z).

(b) Use Green’s second identity and a formal calculation with J-functions to
derive an integral representation of the solution u of (1).

Solution.

e (a) We have

— —
*

“AG=6(T—&)—6F—E)=0F—€) iny>0,
sincef%g*ify>0.
e We have

—

T—E=VE-2+y—n? |[T-&l=V@E-8+({y+n2

so |7 — €| = |Z — €] when y = 0, which implies that G = 0 on y = 0.
This shows that G(&;€) is the Green’s function for (1). (Note also that
G — 0 as |Z| = o0.)

e (b) Let

Q={(z,y): —0o <x < oo,y >0}, 90={(z,0): —c0 <z <00}



denote the upper-half plane and the x-axis. From Green’s second iden-
tity,

/Q {G(f;{)Au(f)—u(f)AG(f; )} d7

(We assume that the functions decay sufficiently rapidly for any bound-
ary terms to vanish as || — o0c.)

e Using the equations satisfied by v and G, we get

/Qu(f)a(f—é)dfz —/mu(f)%(f; &) ds.

The outward normal derivative to 2 on 99 is 9/0n = —0/0dy, and

ds = dx, so
. o0 oG -
u(& :/ h(x) —(2; & dz.
(&) - ()ay( )y:o
o Differentiating GG, we find that
8_G(f.ﬂ):_iy—7] 1 y+n
% 2miE g 2m|E- &)
and 50 )
- A n
- (%€ =— =
3y( )y=0 TZ = ¢

e The solution for w is therefore

on [ h(z) .
U(fan)_ﬂ/_oo ,—(x_€)2+n2d

Remark. The Green’s function here is the one given by the method of
images, and the final solution for u is called Poisson’s formula for the half-
plane. It’s closely related to Poisson’s formula for a disc that we derived last
quarter by separation of variables; the formula for a disc can also be derived
by the method of images.



