
Partial Differential Equations

Math 118B, Winter 2014

Solutions: Midterm 1

1. [15%] Let

Bǫ(0) =
{

~x ∈ R
3 : |~x| < ǫ

}

, ∂Bǫ(0) =
{

~x ∈ R
3 : |~x| = ǫ

}

denote the ball and sphere of radius ǫ > 0, respectively, in three space di-
mensions. Evaluate each of the following limits and say if they are 0, finite
and nonzero, or ∞:

(a) lim
ǫ→0+

∫

Bǫ(0)

e|~x|

|~x|2
dV ; (b) lim

ǫ→0+

∫

∂Bǫ(0)

e|~x|

|~x|2
dS; (c) lim

ǫ→0+

∫

∂Bǫ(0)

log |~x| dS.

Solution.

• (a) Using the fact that dV = 4πr2dr for integrals of spherically sym-
metric functions in R

3, we get

lim
ǫ→0+

∫

Bǫ(0)

e|~x|

|~x|2
dV = lim

ǫ→0+
4π

∫ ǫ

0

er

r2
r2 dr

= lim
ǫ→0+

4π (1− eǫ)

= 0.

• (b) Using the fact that the area of the sphere of radius ǫ is 4πǫ2, we get

lim
ǫ→0+

∫

∂Bǫ(0)

e|~x|

|~x|2
dS = lim

ǫ→0+
4πǫ2 ·

eǫ

ǫ2

= 4π.

(c) Similarly,

lim
ǫ→0+

∫

∂Bǫ(0)

log |~x| dS = lim
ǫ→0+

4πǫ2 · log ǫ

= 0.
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2. [30%] (a) Show that

GF (x) = −
1

2
|x|

is a solution of

−
d2GF

dx2
= δ(x), −∞ < x < ∞.

(b) Find the Green’s function G(x; ξ) on the interval 0 ≤ x ≤ 1 such that

−
d2G

dx2
= δ(x− ξ), 0 < x < 1

G(0; ξ) = 0, G(1; ξ) = 0.

(c) Write your solution in (b) as

G(x; ξ) = GF (x− ξ) + φ(x; ξ).

Give an explicit expression for φ and show that it is a solution of the homo-
geneous ODE

d2φ

dx2
= 0.

Solution.

• (a) We have

GF (x) =

{

x/2 if x < 0

−x/2 if x > 0

so d2GF/dx
2 = 0 if x 6= 0. Also, GF is continuous at x = 0 and

[

dGF

dx

]

x=0

=
dGF

dx
(0+)−

dGF

dx
(0−) = −

1

2
−

1

2
= −1,

so d2GF/d
2x = −δ(x).

• (b) As in the solution for Problem 2 of Homework 2, we get

G(x; ξ) =

{

(1− ξ)x if 0 ≤ x ≤ ξ,

ξ(1− x) if ξ ≤ x ≤ 1.
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• (c) We find that

φ(x; ξ) = G(x; ξ)−GF (x)

=

{

(1− ξ)x− (x− ξ)/2 if 0 ≤ x ≤ ξ,

ξ(1− x) + (x− ξ)/2 if ξ ≤ x ≤ 1.

=

(

1

2
− ξ

)

x+
1

2
ξ,

so φ is a linear function of x, which satisfies the homogeneous equation.

Remark. This problem illustrates the general result that the Green’s func-
tion of a BVP is equal to the free-space Green’s function plus a solution
of the homogeneous equation that corrects for the fact that the free-space
Green’s function doesn’t satisfy the boundary conditions.
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3. [25%] Suppose a pollutant with concentration c(~x, t) per unit volume is

advected (without diffusion or sources) by a fluid with velocity ~V (~x, t).

(a) Write down: (i) the rate of change with respect to time of the total
amount of pollutant in an arbitrary volume Ω; (ii) the flux of pollutant out
of Ω. Give an integral form of conservation of pollutant.

(b) Derive a differential equation for conservation of pollutant from the in-
tegral form in (a).

Solution.

• (a) We have

rate of change of pollutant in Ω =
d

dt

∫

Ω

c(~x, t) d~x,

flux of pollutant out of Ω =

∫

∂Ω

c(~x, t)~V · ~n dS.

• Conservation of pollutant implies that

d

dt

∫

Ω

c(~x, t) d~x,= −

∫

∂Ω

c(~x, t)~V · ~n dS.

• (b) Bringing the time derivative inside the integral and using the di-
vergence theorem to rewrite the surface integral as a volume integral,
we get

∫

Ω

{

ct + div(c~V )
}

d~x = 0.

• Since Ω is arbitrary, it follows that

ct + div(c~V ) = 0.

(We assume these derivatives are continuous.)
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4. [30%] Consider the Dirichlet problem for u(x, y) for the two-dimensional
Laplacian ∆ = ∂2/∂x2 + ∂2/∂y2 in the upper-half space y > 0:

∆u = 0 in y > 0,

u(x, 0) = h(x).
(1)

Here, h(x) is a continuous function which is zero when |x| is sufficiently large.

(a) If ~x = (x, y) and ~ξ = (ξ, η) with η > 0, show that the Green’s function

for this problem corresponding to a point source at ~ξ is

G(~x; ~ξ) = −
1

2π
log

∣

∣

∣
~x− ~ξ

∣

∣

∣
+

1

2π
log

∣

∣

∣
~x− ~ξ∗

∣

∣

∣

where ~ξ∗ = (ξ,−η).

Hint. You can assume, without proof, that GF (~x) = −(1/2π) log |~x| is the
free space Green’s function for the Laplacian, such that −∆GF = δ(~x).

(b) Use Green’s second identity and a formal calculation with δ-functions to
derive an integral representation of the solution u of (1).

Solution.

• (a) We have

−∆G = δ(~x− ~ξ)− δ(~x− ~ξ∗) = δ(~x− ~ξ) in y > 0,

since ~x 6= ~ξ∗ if y > 0.

• We have

|~x− ~ξ| =
√

(x− ξ)2 + (y − η)2, |~x− ~ξ∗| =
√

(x− ξ)2 + (y + η)2,

so |~x − ~ξ| = |~x − ~ξ∗| when y = 0, which implies that G = 0 on y = 0.

This shows that G(~x; ~ξ) is the Green’s function for (1). (Note also that
G → 0 as |~x| → ∞.)

• (b) Let

Ω = {(x, y) : −∞ < x < ∞, y > 0}, ∂Ω = {(x, 0) : −∞ < x < ∞}
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denote the upper-half plane and the x-axis. From Green’s second iden-
tity,

∫

Ω

{

G(~x; ~ξ)∆u(~x)− u(~x)∆G(~x; ~ξ)
}

d~x

=

∫

∂Ω

{

G(~x; ~ξ)
∂u

∂n
(~x)− u(~x)

∂G

∂n
(~x; ~ξ)

}

ds.

(We assume that the functions decay sufficiently rapidly for any bound-
ary terms to vanish as |~x| → ∞.)

• Using the equations satisfied by u and G, we get

∫

Ω

u(~x)δ(~x− ~ξ) d~x = −

∫

∂Ω

u(~x)
∂G

∂n
(~x; ~ξ) ds.

The outward normal derivative to Ω on ∂Ω is ∂/∂n = −∂/∂y, and
ds = dx, so

u(~ξ) =

∫ ∞

−∞

h(x)
∂G

∂y
(~x; ~ξ)

∣

∣

∣

∣

y=0

dx.

• Differentiating G, we find that

∂G

∂y
(~x; ~ξ) = −

1

2π

y − η

|~x− ~ξ|
+

1

2π

y + η

|~x− ~ξ∗|
,

and
∂G

∂y
(~x; ~ξ)

∣

∣

∣

∣

y=0

=
1

π

η

|~x− ~ξ|
.

• The solution for u is therefore

u(ξ, η) =
η

π

∫ ∞

−∞

h(x)
√

(x− ξ)2 + η2
dx.

Remark. The Green’s function here is the one given by the method of
images, and the final solution for u is called Poisson’s formula for the half-
plane. It’s closely related to Poisson’s formula for a disc that we derived last
quarter by separation of variables; the formula for a disc can also be derived
by the method of images.
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