Solutions: Midterm 2
Math 118B, Winter 2014

1. [25%] (a) Let @ > 0. Compute the inverse Fourier transform s(x) of the
function
1 if — k
g ( k:) _ 1 a < k<a,
0 if |k > a.
(b) Suppose that
1 [ -
f(z) / F(k)e™*™ dk

:% =

has Fourier transform F(k) and f,(z) is the “bandlimited” function

fa(2) ! / ' F(k)e™ dk.

— % »
Express f, in terms of a convolution involving f.

Solution.

e (a) If z # 0, then

and if z = 0, then

e Thus, s(x) = (a/m)sinc(az) where

_ (sinz)/x if x #0,
sincz =
1 it x =0.

is the sinc-function. (See the graph on the next page.)
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Figure 1: Graph of y = sinc z. The dashed lines are y = +1/x.

e (b) The Fourier transform F, = F[f,] is

so the convolution theorem implies that f, = f x s, or

fle) = [ fa=n= 2y,

Remark. Because the sinc-function has such slowly decaying oscillations,
the sharp band-limiting of a function may produce spurious oscillations.
These “ringing artifacts” are often undesirable in signal processing.



2. [25%] (a) Give the definition of the J-function as a distribution on R.
(b) Define the derivative 7" of a distribution 7" on R.
(c) Verify from the definitions that
7L
2

is a distributional solution of the ODE
~T"+T =6.

Solution.

e (a) The d-function is the linear map § : D — R on the space D of test
functions ¢(x) defined by (0, ¢) = ¢(0).

e (b) If T: D — R is a distribution, then its derivative 77 : D — R is
defined by (177, ¢) = —(T, ¢').

e (c) Using the definition (T, ¢) = (T, ¢") of the distributional derivative
and integrating by parts twice to simplify the result, we find that

wﬂwzl/wexqux

2 —00
0 oo
— %/_oo e”¢"(x) dx + %/0 e "¢ (x) dx
0

i@l =5 [ v

+ % [e*%/(a:)]go + %/0 e ¢ (x) dx

0
— 5ot g [ eota)ds
1 o 1 [

+§ [e—w¢( )}0 +§/0 e "o(r) dw
——00)+5 [ eHota) da
—(=0+T,9).

It follows that 7" =T — §, which proves the result.



3. [25%] (a) Define what it means for a sequence of distributions 7,, to
converge weakly to a distribution 7" as n — oo.

(b) Let
n/2 if —1/n<zx<1/n,
fola) = / | / /
0 if |z| > 1/n.
Show that f, — ¢ weakly as n — oo.

Solution.

e (a) We have T,, — T weakly if (T,,,¢) — (T, ¢) in R for every test
function ¢.

e (b) As n — oo, we have

n 1/n

Uty =75 [ olw)ds

= average value of ¢(x) on —1/n <z <1/n
— ¢(0) = (4, 9).
It follows that f,, — ¢ weakly as n — oo.

Remark. Here’s a proof that the average values of a continuous function
converge to the value of the function. Suppose that ¢(z) is continuous at
x = 0. Subtracting and adding ¢(0) inside the integral, we can write

n 1/n n 1/n

2 etwras=3 [ oa) - 6(0)] da -+ o00).
2 —1/n 2 —1/n

Given any € > 0, there exists > 0 such that |¢(z) — ¢(0)| < € when |z| < 0.
(This is the definition of the continuity of ¢(z) at 0.) Choose a positive
integer N € N such that 1/N < 4. If n > N, then |z| < § if |z| < 1/n, so

n 1/n

5 (z) dz — ¢(0)

n 1/n
3 ) 2 [ bote) — o(0)] s

1/n

n 1/n
<5 [ pol) - ()] do

1/n

1/n
< ﬁ/ edxr = e.
2 —1/n

This proves that %fl/n o(z)dx — ¢(0) as n — oo.

—1/n



4. [25%] Use the Fourier transform to find the solution u(x, t) of the following
initial value problem:

U + Upy + Uggge = 0 —oco<zr<oo, t>0,

u(z,0) = f(z).

You should write your answer as a Fourier integral, but you don’t need to
invert the transform. How do you expect the solution to behave as t — +o0?

Solution.

e Taking the Fourier transform with respect to x of the PDE, with

U(k,t):/ u(z,t)e ™ dx,

—0o0

when z-derivatives transform to multiplication by ik, we get
U+ (- + kYU =0,  U(k,0) = F(k),
where ' = F|[f] is the Fourier transform of f.

e The solution of this ODE is U(k,t) = F(k)e® =+ and the solution
for u(x,t) is

1 [ 2 .
u(z,t) = %/ F(k)e® K9tk g

e By the convolution theorem, the solution can also be written as

utet) = [ " o — y)Gly, ) dy,

where the Green’s function G is given by

o

G(x,t) = : / T ke 2k g

e The Fourier modes with |k| < 1 grow exponentially in time, so the
solution will grow exponentially in time (unless F'(k) = 0 for |k| < 1).



Remark. We can derive a more precise description of the long-time behavior
of the solution as follows. The most unstable (positive) wavenumber is k = kg
where kg = 1/4/2, at which the growth rate o(k) = k*> — k* attains its
maximum value of o(ky) = 1/4 and o'(kg) = 0. Suppose, for definiteness,
that F(k) is a smooth, rapidly decaying function (e.g. a Schwartz function)
and F'(ko) # 0, meaning that the initial data contains non-zero, maximally
unstable modes. Since the initial data is real, F(—ko) = F*(ko).

For large times ¢, the dominant contribution to the Fourier integral for u
comes from values of k close to +ky. To leading order, we can approximate
the contribution from k£ = ko by evaluating F(k) at k = ko and Taylor
expanding the growth rate o(k) about k = k¢ up to the quadratic term,

o (k) = o (ko) + 50" (ko) — ho)? + Ol —ho)® = 7 — 2(k — ko)? + Ok — ko)’
Furthermore, we can integrate the resulting approximations over all k, since
the contributions from values of k£ that are not close to kg are negligible.
A similar approximation near k = —kq gives the complex conjugate of the
contribution from k = k.

This procedure gives the large-t asymptotic approximation

1 o 2 4 ;
u(z,t) = —/ F(k)e® —Fteike gp;

2 J_ o

oL /OO F(kg)e/ A2k}t gikoz g 4 ¢ .
27 J_o
1

~ Q—F(ko)eikoxet/4 /OO e~ 2=kt G 4 c.c.,
s

—0o0

where c.c. stands for the complex conjugate of the preceding term. Using the
standard Gaussian integral, we get

—2(k—ko)2t 77, _ / & ge |
e dk = e s dé = .
/oo V2t J oo ¢ 2t

Writing F(ky) = ae®®, where a = |F(ko)| and § = arg F(kg), we get that

ot/4

24/ 27t

aet/4 T s
~ cos | — + as t — +o0.
\2mt (\/§ )

F(l{io)eik(w + c.c.

u(x,t) ~




