
Solutions: Midterm 2

Math 118B, Winter 2014

1. [25%] (a) Let a > 0. Compute the inverse Fourier transform s(x) of the
function

S(k) =

{

1 if −a < k < a,

0 if |k| > a.

(b) Suppose that

f(x) =
1

2π

∫ ∞

−∞

F (k)eikx dk

has Fourier transform F (k) and fa(x) is the “bandlimited” function

fa(x) =
1

2π

∫ a

−a

F (k)eikx dk.

Express fa in terms of a convolution involving f .

Solution.

• (a) If x 6= 0, then

s(x) =
1

2π

∫ a

−a

eikx dk

=
1

2πx

(

eiax − e−iax
)

=
sin ax

πx
,

and if x = 0, then

s(0) =
1

2π

∫ a

−a

dk

=
a

π
.

• Thus, s(x) = (a/π) sinc(ax) where

sinc x =

{

(sin x)/x if x 6= 0,

1 if x = 0.

is the sinc-function. (See the graph on the next page.)
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Figure 1: Graph of y = sinc x. The dashed lines are y = ±1/x.

• (b) The Fourier transform Fa = F [fa] is

Fa(k) = F (k)S(k),

so the convolution theorem implies that fa = f ∗ s, or

fa(x) =

∫ ∞

−∞

f(x− y)
sin ay

πy
dy.

Remark. Because the sinc-function has such slowly decaying oscillations,
the sharp band-limiting of a function may produce spurious oscillations.
These “ringing artifacts” are often undesirable in signal processing.
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2. [25%] (a) Give the definition of the δ-function as a distribution on R.

(b) Define the derivative T ′ of a distribution T on R.

(c) Verify from the definitions that

T =
1

2
e−|x|

is a distributional solution of the ODE

−T ′′ + T = δ.

Solution.

• (a) The δ-function is the linear map δ : D → R on the space D of test
functions φ(x) defined by 〈δ, φ〉 = φ(0).

• (b) If T : D → R is a distribution, then its derivative T ′ : D → R is
defined by 〈T ′, φ〉 = −〈T, φ′〉.

• (c) Using the definition 〈T ′′, φ〉 = 〈T, φ′′〉 of the distributional derivative
and integrating by parts twice to simplify the result, we find that

〈T ′′, φ〉 = 1

2

∫ ∞

−∞

e−|x|φ′′(x) dx

=
1

2

∫ 0

−∞

exφ′′(x) dx+
1

2

∫ ∞

0

e−xφ′′(x) dx

=
1

2
[exφ′(x)]

0
−∞ − 1

2

∫ 0

−∞

exφ′(x) dx

+
1

2

[

e−xφ′(x)
]∞

0
+

1

2

∫ ∞

0

e−xφ′(x) dx

= −1

2
[exφ(x)]0−∞ +

1

2

∫ 0

−∞

exφ(x) dx

+
1

2

[

e−xφ(x)
]∞

0
+

1

2

∫ ∞

0

e−xφ(x) dx

= −φ(0) +
1

2

∫ ∞

−∞

e−|x|φ(x) dx

= 〈−δ + T, φ〉.

It follows that T ′′ = T − δ, which proves the result.
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3. [25%] (a) Define what it means for a sequence of distributions Tn to
converge weakly to a distribution T as n → ∞.

(b) Let

fn(x) =

{

n/2 if −1/n < x < 1/n,

0 if |x| > 1/n.

Show that fn → δ weakly as n → ∞.

Solution.

• (a) We have Tn → T weakly if 〈Tn, φ〉 → 〈T, φ〉 in R for every test
function φ.

• (b) As n → ∞, we have

〈fn, φ〉 =
n

2

∫ 1/n

−1/n

φ(x) dx

= average value of φ(x) on −1/n ≤ x ≤ 1/n

→ φ(0) = 〈δ, φ〉.
It follows that fn → δ weakly as n → ∞.

Remark. Here’s a proof that the average values of a continuous function
converge to the value of the function. Suppose that φ(x) is continuous at
x = 0. Subtracting and adding φ(0) inside the integral, we can write

n

2

∫ 1/n

−1/n

φ(x) dx =
n

2

∫ 1/n

−1/n

[φ(x)− φ(0)] dx+ φ(0).

Given any ǫ > 0, there exists δ > 0 such that |φ(x)−φ(0)| < ǫ when |x| < δ.
(This is the definition of the continuity of φ(x) at 0.) Choose a positive
integer N ∈ N such that 1/N < δ. If n > N , then |x| < δ if |x| ≤ 1/n, so

∣

∣

∣

∣

∣

n

2

∫ 1/n

−1/n

φ(x) dx− φ(0)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

n

2

∫ 1/n

−1/n

[φ(x)− φ(0)] dx

∣

∣

∣

∣

∣

≤ n

2

∫ 1/n

−1/n

|φ(x)− φ(0)| dx

<
n

2

∫ 1/n

−1/n

ǫ dx = ǫ.

This proves that n
2

∫ 1/n

−1/n
φ(x) dx → φ(0) as n → ∞.
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4. [25%] Use the Fourier transform to find the solution u(x, t) of the following
initial value problem:

ut + uxx + uxxxx = 0 −∞ < x < ∞, t > 0,

u(x, 0) = f(x).

You should write your answer as a Fourier integral, but you don’t need to
invert the transform. How do you expect the solution to behave as t → +∞?

Solution.

• Taking the Fourier transform with respect to x of the PDE, with

U(k, t) =

∫ ∞

−∞

u(x, t)e−ikx dx,

when x-derivatives transform to multiplication by ik, we get

Ut + (−k2 + k4)U = 0, U(k, 0) = F (k),

where F = F [f ] is the Fourier transform of f .

• The solution of this ODE is U(k, t) = F (k)e(k
2−k4)t, and the solution

for u(x, t) is

u(x, t) =
1

2π

∫ ∞

−∞

F (k)e(k
2−k4)teikx dk.

• By the convolution theorem, the solution can also be written as

u(x, t) =

∫ ∞

−∞

f(x− y)G(y, t) dy,

where the Green’s function G is given by

G(x, t) =
1

2π

∫ ∞

−∞

eikx+(k2−k4)t dk.

• The Fourier modes with |k| < 1 grow exponentially in time, so the
solution will grow exponentially in time (unless F (k) = 0 for |k| < 1).
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Remark. We can derive a more precise description of the long-time behavior
of the solution as follows. The most unstable (positive) wavenumber is k = k0
where k0 = 1/

√
2, at which the growth rate σ(k) = k2 − k4 attains its

maximum value of σ(k0) = 1/4 and σ′(k0) = 0. Suppose, for definiteness,
that F (k) is a smooth, rapidly decaying function (e.g. a Schwartz function)
and F (k0) 6= 0, meaning that the initial data contains non-zero, maximally
unstable modes. Since the initial data is real, F (−k0) = F ∗(k0).

For large times t, the dominant contribution to the Fourier integral for u
comes from values of k close to ±k0. To leading order, we can approximate
the contribution from k = k0 by evaluating F (k) at k = k0 and Taylor
expanding the growth rate σ(k) about k = k0 up to the quadratic term,

σ(k) = σ(k0) +
1

2
σ′′(k0)(k− k0)

2+O(k− k0)
3 =

1

4
− 2(k− k0)

2+O(k− k0)
3.

Furthermore, we can integrate the resulting approximations over all k, since
the contributions from values of k that are not close to k0 are negligible.
A similar approximation near k = −k0 gives the complex conjugate of the
contribution from k = k0.

This procedure gives the large-t asymptotic approximation

u(x, t) =
1

2π

∫ ∞

−∞

F (k)e(k
2−k4)teikx dk

∼ 1

2π

∫ ∞

−∞

F (k0)e
(1/4−2(k−k0)2)teik0x dk + c.c.

∼ 1

2π
F (k0)e

ik0xet/4
∫ ∞

−∞

e−2(k−k0)2t dk + c.c.,

where c.c. stands for the complex conjugate of the preceding term. Using the
standard Gaussian integral, we get

∫ ∞

−∞

e−2(k−k0)2t dk =
1√
2t

∫ ∞

−∞

e−ξ2 dξ =

√

π

2t
.

Writing F (k0) = aeiδ, where a = |F (k0)| and δ = argF (k0), we get that

u(x, t) ∼ et/4

2
√
2πt

F (k0)e
ik0x + c.c.

∼ aet/4√
2πt

cos

(

x√
2
+ δ

)

as t → +∞.
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