Problem Set 1: Solutions
Math 118B: Winter Quarter, 2014

1. Suppose that C is a positively oriented, simple closed curve in the (z,y)-
plane z = 0 that encloses an area A. Let @ = u(x,y)i + v(z,y)j denote a
vector field in the (x,y)-plane.

(a) Compute curl @ and show that it is in the k direction. Use Stokes theorem
to derive the planar version of Green’s theorem

/A(% —uy) dedy = / (udx +vdy). (1)

C
(b) Verify this identity explicitly for @ = —yi + zj when C is the circle of
radius a with parametric equation x = acost, y = asint.

Solution.

o (a) We have

i i k
curli = | 9/0x 0/dy 0/0z
u(z,y) v(z,y) 0
= (v — uy)E
e If C is positively oriented in the (x,y)-plane, then the corresponding

normal to the area A enclosed by C' = 04 is 71 = k. Tt follows that
curl@ - 1 = (vy — uy) and @ - dZ = udzr + v dy, so Stokes theorem

/curlﬁ-ﬁdS: U - dT
A 0A

gives Green’s theorem (1).

e (b) In this case, we have
/ (vy — uy) dedy = / 2dxdy = 2wa®,
A A

/(uda:—l—vdy):/—yd:v—i-xdy
c c
21

= ; {(—asint) - (—acost) + (acost) - (asint)} dt

2
:/ a’dt = 2ma’.
0

which verifies the identity.



2. Define a scalar field ¢ in R? or R? by
1
Va2 + 2+ 22

In each case, compute V¢ and show that A¢ = 0 for & # 0.

¢($7y) = log (1:2 + y2) ) ¢($7y7 Z) =

Solution.

e (a) In each case, we have

qu:(qu,qby):( R )
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3. (a) If ¢ is a scalar field and the curve C' is the boundary of a surface S,

show that
/ Vo¢-di =0.
C

(b) If @ is a vector field and the surface 0f is the boundary of a volume €,

show that
/ curl@dS = 0.
o0

Solution.

e By Stokes’ theorem,

/ng)-da}':/cuerqde:O
C S

since the curl of a gradient is zero.

e Alternatively, note that if C is a curve from P to @ then

/C V- di = 6(Q) — 6(P),

and this is zero since the bounding curve of a surface is closed, so

P=0Q.

e By the divergence theorem
/ curldS = / diveurlddV =0
a0 Q

since the divergence of a curl is zero.



4. We use subscript notation and write ¥ = (x1, z2, x3), i = (n1,n2, n3).

If u, v are scalar fields and €2 is a volume in R?® with boundary 99 and
outward normal 77, use the divergence theorem to show that

u@v dV:/ uvnidS—/vau dVv.
o Ox; o0 o Oz

(This result shows that the divergence theorem can be regarded as a multi-
dimensional version of integration by parts.)

Solution.

e Let W = uwvé;, where €; is the ith coordinate vector i.e., the ith com-
ponent of W is uv and all its other components are zero. Then

0 ov ou

(uv) = “axi vaxi.

divw =
z;

and W - 7 = uwvn; where n; is the ith component of 7.

e Then the divergence theorem

/diszdV:/ w-ndS
Q i)

ov ou
/Q <ua$i +U8:1:i> dV = /(muvnidS,

which proves the result.

implies that




5. Suppose a fluid flowing in R? has mass-density p(&, ) and velocity (&, t).

(a) Let Q C R? be an arbitrary volume. Explain why conservation of mass

implies that
d
— pdV:—/ pu - ndS.
dt Jo o9

(b) If p, @ are smooth functions, deduce that they satisfy the differential
form of conservation of mass

pt + div (pi) = 0.

Solution.

e (a) This equation says that the rate of change of the total mass of fluid
inside € is equal to the rate at which mass flows out of €2 through its
boundary.

e (b) Since  is a fixed spatial volume that does not change in time, we
can bring the time derivative inside the integral:

d

— dV = dv.
dtQpV/thV

e We can use the divergence theorem to rewrite the surface integral as
a volume integral:

/ pﬁ'ﬁdS:/diV(pﬁ)dV.
o9 Q

e It follows that
/ {pt +div(pt)} dV =0
Q

for an arbitrary volume €2, which implies that the integrand is identi-
cally zero (assuming that it is a continuous function).



6. Maxwell’s equations for time-dependent electric and magnetic fields
E(Z,t) and B(Z,t) in a vacuum are

E_jt —Fcwrl B = 0,
ét +curl E = 0,
divE = 0,
divB =0,
where ¢ is a constant. Show that
Ett = CQAE.

What is the interpretation of ¢?

Hint. You can assume the vector identity
curl (curl E) =V (div E) — AE,

where the Laplacian of a vector field is defined component-wise in Cartesian
coordinates i.e., A (E;—F Fj+ HE) = (AE)i + (AF)j + (AH)k.

Solution.

e Taking the time derivative of the first equation and using the second
equation to eliminate By, we get

Ett = ¢ curl ét = —c?curlcurl E.
From the vector identity and the equation div E= 0, we have
curl curl E = —AE,

and the result follows.

e The constant c is the speed of light.

Remark. Maxwell (1865) introduced the term E; (called the “displacement
current”) in the first equation, computed the speed ¢ from purely electro-
static and magnetostatic measurements, and used the result to conjecture
that light is an electromagnetic phenomenon. This conjecture was later
verified experimentally by Hertz (1888).



