
Problem Set 1: Solutions

Math 118B: Winter Quarter, 2014

1. Suppose that C is a positively oriented, simple closed curve in the (x, y)-
plane z = 0 that encloses an area A. Let ~u = u(x, y)~i + v(x, y)~j denote a
vector field in the (x, y)-plane.

(a) Compute curl~u and show that it is in the ~k direction. Use Stokes theorem
to derive the planar version of Green’s theorem

∫

A
(vx − uy) dxdy =

∫

C
(u dx+ v dy) . (1)

(b) Verify this identity explicitly for ~u = −y~i + x~j when C is the circle of
radius a with parametric equation x = a cos t, y = a sin t.

Solution.

• (a) We have

curl~u =

∣

∣

∣

∣

∣

∣

~i ~j ~k
∂/∂x ∂/∂y ∂/∂z
u(x, y) v(x, y) 0

∣

∣

∣

∣

∣

∣

= (vx − uy)~k.

• If C is positively oriented in the (x, y)-plane, then the corresponding
normal to the area A enclosed by C = ∂A is ~n = ~k. It follows that
curl~u · ~n = (vx − uy) and ~u · d~x = u dx+ v dy, so Stokes theorem

∫

A
curl ~u · ~n dS =

∫

∂A
~u · d~x

gives Green’s theorem (1).

• (b) In this case, we have
∫

A
(vx − uy) dxdy =

∫

A
2 dxdy = 2πa2,

∫

C
(u dx+ v dy) =

∫

C
−y dx+ x dy

=

∫

2π

0

{(−a sin t) · (−a cos t) + (a cos t) · (a sin t)} dt

=

∫

2π

0

a2 dt = 2πa2.

which verifies the identity.
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2. Define a scalar field φ in R
2 or R3 by

φ(x, y) = log
(

x2 + y2
)

, φ(x, y, z) =
1

√

x2 + y2 + z2
.

In each case, compute ∇φ and show that ∆φ = 0 for ~x 6= 0.

Solution.

• (a) In each case, we have

∇φ = (φx, φy) =

(

2x

x2 + y2
,

2y

x2 + y2

)

,

∇φ = (φx, φy, φz) = −

(

x
√

x2 + y2 + z2
,

y
√

x2 + y2 + z2
,

z
√

x2 + y2 + z2

)

,

and

∆φ = φxx + φy

=
2

x2 + y2
−

4x2

(x2 + y2)2
+

2

x2 + y2
−

4y2

(x2 + y2)2

= 0,

∆φ = φxx + φyy + φzz

=
1

√

x2 + y2 + z2
−

x2

(x2 + y2 + z2)3/2

+
1

√

x2 + y2 + z2
−

y2

(x2 + y2 + z2)3/2

+
1

√

x2 + y2 + z2
−

z2

(x2 + y2 + z2)3/2

= 0.
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3. (a) If φ is a scalar field and the curve C is the boundary of a surface S,
show that

∫

C
∇φ · d~x = 0.

(b) If ~u is a vector field and the surface ∂Ω is the boundary of a volume Ω,
show that

∫

∂Ω
curl ~u dS = 0.

Solution.

• By Stokes’ theorem,

∫

C
∇φ · d~x =

∫

S
curl∇φdS = 0

since the curl of a gradient is zero.

• Alternatively, note that if C is a curve from P to Q then

∫

C
∇φ · d~x = φ(Q)− φ(P ),

and this is zero since the bounding curve of a surface is closed, so
P = Q.

• By the divergence theorem

∫

∂Ω
curl ~u dS =

∫

Ω

div curl ~u dV = 0

since the divergence of a curl is zero.
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4. We use subscript notation and write ~x = (x1, x2, x3), ~n = (n1, n2, n3).

If u, v are scalar fields and Ω is a volume in R
3 with boundary ∂Ω and

outward normal ~n, use the divergence theorem to show that

∫

Ω

u
∂v

∂xi
dV =

∫

∂Ω
uvni dS −

∫

Ω

v
∂u

∂xi
dV.

(This result shows that the divergence theorem can be regarded as a multi-
dimensional version of integration by parts.)

Solution.

• Let ~w = uv~ei, where ~ei is the ith coordinate vector i.e., the ith com-
ponent of ~w is uv and all its other components are zero. Then

div ~w =
∂

∂xi
(uv) = u

∂v

∂xi
+ v

∂u

∂xi
.

and ~w · ~n = uvni where ni is the ith component of ~n.

• Then the divergence theorem

∫

Ω

div ~w dV =

∫

∂Ω
~w · ~ndS

implies that

∫

Ω

(

u
∂v

∂xi
+ v

∂u

∂xi

)

dV =

∫

∂Ω
uvni dS,

which proves the result.
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5. Suppose a fluid flowing in R
3 has mass-density ρ(~x, t) and velocity ~u(~x, t).

(a) Let Ω ⊂ R
3 be an arbitrary volume. Explain why conservation of mass

implies that
d

dt

∫

Ω

ρ dV = −

∫

∂Ω
ρ~u · ~ndS.

(b) If ρ, ~u are smooth functions, deduce that they satisfy the differential
form of conservation of mass

ρt + div (ρ~u) = 0.

Solution.

• (a) This equation says that the rate of change of the total mass of fluid
inside Ω is equal to the rate at which mass flows out of Ω through its
boundary.

• (b) Since Ω is a fixed spatial volume that does not change in time, we
can bring the time derivative inside the integral:

d

dt

∫

Ω

ρ dV =

∫

Ω

ρt dV.

• We can use the divergence theorem to rewrite the surface integral as
a volume integral:

∫

∂Ω
ρ~u · ~n dS =

∫

Ω

div(ρ~u) dV.

• It follows that
∫

Ω

{ρt + div(ρ~u)} dV = 0

for an arbitrary volume Ω, which implies that the integrand is identi-
cally zero (assuming that it is a continuous function).
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6. Maxwell’s equations for time-dependent electric and magnetic fields
~E(~x, t) and ~B(~x, t) in a vacuum are

~Et − c2 curl ~B = 0,

~Bt + curl ~E = 0,

div ~E = 0,

div ~B = 0,

where c is a constant. Show that

~Ett = c2∆ ~E.

What is the interpretation of c?

Hint. You can assume the vector identity

curl
(

curl ~E
)

= ∇
(

div ~E
)

−∆ ~E,

where the Laplacian of a vector field is defined component-wise in Cartesian

coordinates i.e., ∆
(

E~i+ F~j +H~k
)

= (∆E)~i+ (∆F )~j + (∆H)~k.

Solution.

• Taking the time derivative of the first equation and using the second
equation to eliminate ~Bt, we get

~Ett = c2 curl ~Bt = −c2 curl curl ~E.

From the vector identity and the equation div ~E = 0, we have

curl curl ~E = −∆ ~E,

and the result follows.

• The constant c is the speed of light.

Remark. Maxwell (1865) introduced the term ~Et (called the “displacement
current”) in the first equation, computed the speed c from purely electro-
static and magnetostatic measurements, and used the result to conjecture
that light is an electromagnetic phenomenon. This conjecture was later
verified experimentally by Hertz (1888).
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