Problem Set 2: Solutions
Math 118B: Winter Quarter, 2014

1. (a) Find the Green’s function G(z) for the ODE

—dQ—G—I-sz(:L‘) —00<x <0
dx?
where G(z) — 0 as || — oo.
(b) Write down the Green’s function representation of the solution u(z) of
d*u
da?

where u(z) — 0 as |z| — oo and f(z) is a given (smooth) function that is
zero outside a bounded set.

+u(z) = f(x) —00< T <00

(c) Verify explicitly that the your expression for u(z) in (b) is a solution.

(d) Give a physical interpretation of this problem (in terms of heat flow, for
example).

Solution.

e (a) For —oco <z <0,

d*G
—W—FG:O G(z) - 0 as x — —o0,
and for 0 < x < oo,
G
—W—FG:O G(z) > 0as x — oo.
This gives
Glz) = Ae* %f—oo<x<0,
Be ™™ if0<z < oo,

for some constants A, B.
e At x = 0, we require that: (i) G(x) is continuous; (ii) the derivative

dG /dx jumps by —1. Condition (i) gives A = B; and (ii) gives

dG dG e
l=—|— =—— (0" +—(0")=B+A
[daz]xo da:(o)—I—dx(O) +4

so A= B =1/2. It follows that



e (b) The Green’s function representation of the solution is
1

uw) =5 [ e e (1)

e (c) To verify that (1) is the solution, we write it as

we) =5 ([ er@acs [Tetreac).

Differentiating once, we get

$

iz T de— fa)+ [ e df)
e pas+ [

x

9 =g (s~
(- ( e £() ds)

Differentiating again, we get

@ =g (0 [ En@de- s [T e a)

- f<x>+§/oo IGL:
=—f(z)+u

which shows that u is a solution of (1).

e Suppose that f(x) =0 for |[x| > R. If x > R, then

R
u(z) = 1ex/ S f(&)dE — 0 as T — 09,

2 “R
and if z < —R, then
1 R
u(z) = 56’”/ e tf(&)dE =0 as r — —00.
-R

This shows that (1) satisfies u(z) — 0 as |z| — oo.
e (d) The heat equation
Ut = Ugy — u + f()

describes the flow of heat in a non-insulated rod with temperature wu.
The term wu,, describes the diffusion of heat, the term —u describes
the loss of heat to the surroundings at temperature 0 (Newton’s law
of cooling), and f(x) is the density of internal heat sources. The ODE
describes the resulting steady-state temperature (with u; = 0) in an
infinite rod.



2. (a) Find the Green’s function G(z;€) for the BVP

G(0;§) =0,  G(1;¢) =0,
where 0 < £ < 1. (Note: In this problem G(z;€) isn’t a function of 2 — ¢
because of the boundary conditions.)

(b) Sketch the graph of the Green’s function G(xz;¢) versus x for a few
different values of £. Give a physical interpretation of the BVP in terms of:
(i) heat flow; (ii) an elastic string. Does the Green’s function look the way
you would expect?

(c¢) Use the superposition principle to explain why you expect the solution
of the BVP

to have the Green’s function representation
1
uw) = [ G

(d) Evaluate the Green’s function representation for u(x) in (c) explicitly if
f(x) =sinmz. Verify that it gives the solution of the BVP.

Solution.

e (a) For 0 <z <&,

d’G
~ ez =V G(0;€) =0),
and for £ <z < 1,
d*G
= 0 G(1;¢).
This gives
Az it0 <z <g,
G(z;€) = : :
B(l—x) ifé<x<l,

where the constants of integration A, B can depend on the location &
of the point source.



o At x = &, we require that: (i) G(x) is continuous; (ii) the derivative
dG /dz jumps by —1. Condition (i) gives

A=C(1-¢), B =0C¢

for some constant C; and (ii) gives

__ | _ 4G 4 dG . . B
1__|:%:|$§_ dg;‘(£ ’§)+d$(£ ) =B+ A=0C,

so C' = 1. It follows that

Gla:€) = (1-¢z if0<x <,
S e(l—2) ifE<a <1

e (b) The Green’s function describes: (i) the steady temperature in a
laterally insulated rod, whose endpoints are held at 0 temperature,
due to a unit point heat source located at &; (ii) the equilibrium dis-
placement of an elastic string, whose endpoints are fixed, due to a unit
point force applied at &.

e (c) The Green’s function representation of the solution is the linear
superposition of point source solutions with density f:

1
u(z) = /0 Gl €)f(€) de
2)

1
T

—(1-) /0 “ef(e)de v [ a-or©de

e (d) Using f(z) = sinmz in (2) and integrating by parts in the result,
we get

1
T

u(m):(l—m)/oxﬁsinwgdg—i—x/ (1 —=¢)sinmédg

1

=(1-x) [—écoswﬁ—i— %sinwgr —x [(1 —9) cos € + %sinﬂf]
T T T T

0 T

x 1 . (1—x) 1 .
=(1—=x)|—=cosmz + —sinmr| +x COS L + —5 sin
T ™ T T

= —sin7y,
us

which is the correct solution.



