
Problem Set 2: Solutions

Math 118B: Winter Quarter, 2014

1. (a) Find the Green’s function G(x) for the ODE

−
d2G

dx2
+G = δ(x) −∞ < x < ∞

where G(x) → 0 as |x| → ∞.

(b) Write down the Green’s function representation of the solution u(x) of

−
d2u

dx2
+ u(x) = f(x) −∞ < x < ∞

where u(x) → 0 as |x| → ∞ and f(x) is a given (smooth) function that is
zero outside a bounded set.

(c) Verify explicitly that the your expression for u(x) in (b) is a solution.

(d) Give a physical interpretation of this problem (in terms of heat flow, for
example).

Solution.

• (a) For −∞ < x < 0,

−
d2G

dx2
+G = 0 G(x) → 0 as x → −∞,

and for 0 < x < ∞,

−
d2G

dx2
+G = 0 G(x) → 0 as x → ∞.

This gives

G(x) =

{

Aex if −∞ < x < 0,

Be−x if 0 < x < ∞,

for some constants A, B.

• At x = 0, we require that: (i) G(x) is continuous; (ii) the derivative
dG/dx jumps by −1. Condition (i) gives A = B; and (ii) gives

1 = −

[

dG

dx

]

x=0

= −
dG

dx
(0+) +

dG

dx
(0−) = B +A,

so A = B = 1/2. It follows that

G(x) =
1

2
e−|x|.
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• (b) The Green’s function representation of the solution is

u(x) =
1

2

∫ ∞

−∞
e−|x−ξ|f(ξ) dξ. (1)

• (c) To verify that (1) is the solution, we write it as

u(x) =
1

2

(
∫ x

−∞
eξ−xf(ξ) dξ +

∫ ∞

x

ex−ξf(ξ) dξ

)

.

Differentiating once, we get

du

dx
(x) =

1

2

(

f(x)−

∫ x

−∞
eξ−xf(ξ) dξ − f(x) +

∫ ∞

x

ex−ξf(ξ) dξ

)

=
1

2

(

−

∫ x

−∞
eξ−xf(ξ) dξ +

∫ ∞

x

ex−ξf(ξ) dξ

)

Differentiating again, we get

d2u

dx2
(x) =

1

2

(

−f(x) +

∫ x

−∞
eξ−xf(ξ) dξ − f(x) +

∫ ∞

x

ex−ξf(ξ) dξ

)

= −f(x) +
1

2

∫ ∞

−∞
e−|x−ξ|f(ξ) dξ

= −f(x) + u,

which shows that u is a solution of (1).

• Suppose that f(x) = 0 for |x| > R. If x > R, then

u(x) =
1

2
e−x

∫ R

−R

eξf(ξ) dξ → 0 as x → ∞,

and if x < −R, then

u(x) =
1

2
ex

∫ R

−R

e−ξf(ξ) dξ → 0 as x → −∞.

This shows that (1) satisfies u(x) → 0 as |x| → ∞.

• (d) The heat equation

ut = uxx − u+ f(x)

describes the flow of heat in a non-insulated rod with temperature u.
The term uxx describes the diffusion of heat, the term −u describes
the loss of heat to the surroundings at temperature 0 (Newton’s law
of cooling), and f(x) is the density of internal heat sources. The ODE
describes the resulting steady-state temperature (with ut = 0) in an
infinite rod.
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2. (a) Find the Green’s function G(x; ξ) for the BVP

−
d2G

dx2
= δ(x − ξ), 0 < x < 1

G(0; ξ) = 0, G(1; ξ) = 0,

where 0 < ξ < 1. (Note: In this problem G(x; ξ) isn’t a function of x − ξ
because of the boundary conditions.)

(b) Sketch the graph of the Green’s function G(x; ξ) versus x for a few
different values of ξ. Give a physical interpretation of the BVP in terms of:
(i) heat flow; (ii) an elastic string. Does the Green’s function look the way
you would expect?

(c) Use the superposition principle to explain why you expect the solution
of the BVP

−
d2u

dx2
= f(x), 0 < x < 1

u(0) = 0, u(1) = 0

to have the Green’s function representation

u(x) =

∫

1

0

G(x; ξ)f(ξ) dξ.

(d) Evaluate the Green’s function representation for u(x) in (c) explicitly if
f(x) = sinπx. Verify that it gives the solution of the BVP.

Solution.

• (a) For 0 < x < ξ,

−
d2G

dx2
= 0 G(0; ξ) = 0),

and for ξ < x < 1,

−
d2G

dx2
= 0 G(1; ξ).

This gives

G(x; ξ) =

{

Ax if 0 < x < ξ,

B(1− x) if ξ < x < 1,

where the constants of integration A, B can depend on the location ξ
of the point source.
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• At x = ξ, we require that: (i) G(x) is continuous; (ii) the derivative
dG/dx jumps by −1. Condition (i) gives

A = C(1− ξ), B = Cξ

for some constant C; and (ii) gives

1 = −

[

dG

dx

]

x=ξ

= −
dG

dx
(ξ+; ξ) +

dG

dx
(ξ−; ξ) = B +A = C,

so C = 1. It follows that

G(x; ξ) =

{

(1− ξ)x if 0 < x < ξ,

ξ(1− x) if ξ < x < 1.

• (b) The Green’s function describes: (i) the steady temperature in a
laterally insulated rod, whose endpoints are held at 0 temperature,
due to a unit point heat source located at ξ; (ii) the equilibrium dis-
placement of an elastic string, whose endpoints are fixed, due to a unit
point force applied at ξ.

• (c) The Green’s function representation of the solution is the linear
superposition of point source solutions with density f :

u(x) =

∫

1

0

G(x; ξ)f(ξ) dξ

= (1− x)

∫ x

0

ξf(ξ) dξ + x

∫

1

x

(1− ξ)f(ξ) dξ.

(2)

• (d) Using f(x) = sinπx in (2) and integrating by parts in the result,
we get

u(x) = (1− x)

∫ x

0

ξ sinπξ dξ + x

∫

1

x

(1− ξ) sinπξ dξ

= (1− x)

[

−
ξ

π
cos πξ +

1

π2
sinπξ

]x

0

− x

[

(1− ξ)

π
cosπξ +

1

π2
sinπξ

]1

x

= (1− x)

[

−
x

π
cos πx+

1

π2
sinπx

]

+ x

[

(1− x)

π
cos πx+

1

π2
sinπx

]

=
1

π2
sinπx,

which is the correct solution.
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