Partial Differential Equations

Math 118B, Winter 2018

Midterm: Solutions

1. [10\%] Suppose that $u(r, \theta)$ is harmonic in the open disc of radius 2 and continuous on the closed disc of radius 2 , where (r, θ) are polar coordinates. If

$$
u(2, \theta)=\pi^{2}-\theta^{2} \quad|\theta| \leq \pi
$$

find the value of u at the origin $r=0$.

Solution

- By the mean value theorem for harmonic functions

$$
\begin{aligned}
u(0, \theta) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\pi^{2}-\theta^{2}\right) d \theta \\
& =\frac{2}{3} \pi^{2}
\end{aligned}
$$

2. [25\%] (a) Let $f:[0,1] \rightarrow \mathbb{R}$ is a continuous function. Give a physical interpretation in terms of heat flow of the following boundary value problem for $u(x, y)$ on the unit square:

$$
\begin{array}{lll}
u_{x x}+u_{y y}=0, & 0<x<1, & 0<y<1 \\
u(0, y)=0, & u(1, y)=0, & 0 \leq y \leq 1 \\
u_{y}(x, 0)=0, & u_{y}(x, 1)=f(x), & 0 \leq x \leq 1
\end{array}
$$

(b) Use separation of variables to find a formal solution of the boundary value problem.

Solution

- (a) This BVP describes the steady temperature distribution in a square plate of side one. The left and right hand sides of the plate are held at zero temperature; the bottom side is insulated; and the heat flux through the top side is proportional to $-f(x)$.
- (b) The separated solutions of Laplace's equation that satisfy the homogeneous boundary conditions at $x=0,1$ and $y=0$ are proportional to

$$
u(x, y)=\sin (n \pi x) \cosh (n \pi y), \quad n=1,2,3, \ldots
$$

Superposing these solutions, we get the formal solution

$$
u(x, y)=\sum_{n=1}^{\infty} B_{n} \sin (n \pi x) \cosh (n \pi y)
$$

- Imposition of the nonhomogeneous boundary condition at $y=1$ gives

$$
f(x)=\sum_{n=1}^{\infty} n \pi B_{n} \sinh (n \pi) \sin (n \pi x),
$$

so, by the formula for Fourier sine series coefficients,

$$
n \pi B_{n} \sinh (n \pi)=b_{n}, \quad b_{n}=2 \int_{0}^{1} f(x) \sin (n \pi x) d x
$$

and

$$
u(x, y)=\sum_{n=1}^{\infty} \frac{b_{n}}{n \pi \sinh (n \pi)} \sin (n \pi x) \cosh (n \pi y)
$$

3. [25\%] (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded continuous function. Give a physical interpretation in terms of heat flow of the following initial value problem for $u(x, t)$:

$$
\begin{array}{lc}
u_{t}=u_{x x}+u, & -\infty<x<\infty, t>0, \\
u(x, 0)=f(x), & -\infty<x<\infty
\end{array}
$$

(b) Use Fourier transforms in x to solve the initial value problem for $u(x, t)$. Express your answer as a convolution.

Solution

- (a) This IVP describes heat flow in an infinite rod, with a heat source whose density is proportional to temperature u and inital temperature $f(x)$.
- (b) Let $\hat{u}(\xi, t)=\mathcal{F}[u(x, t)]$ be the Fourier transform of y with respect to x. Then

$$
\begin{aligned}
& \hat{u}_{t}=\left(1-\xi^{2}\right) \hat{u} \\
& \hat{u}(\xi, 0)=\hat{f}(\xi),
\end{aligned}
$$

whose solution is

$$
\hat{u}(\xi, t)=\hat{f}(\xi) e^{\left(1-\xi^{2}\right) t}
$$

- Since t is a parameter in the Fourier transform with respect to x, we have

$$
\begin{aligned}
\mathcal{F}^{-1}\left[e^{\left(1-\xi^{2}\right) t}\right] & =e^{t} \mathcal{F}^{-1}\left[e^{-\xi^{2} t}\right] \\
& =e^{t} \cdot \frac{1}{\sqrt{2 t}} e^{-x^{2} / 4 t}
\end{aligned}
$$

- The convolution theorem then gives that

$$
u(x, t)=\frac{e^{t}}{\sqrt{4 \pi t}} \int_{-\infty}^{\infty} e^{-(x-y)^{2} / 4 t} f(y) d y
$$

- Alternatively, note that writing $u(x, t)=e^{t} v(x, t)$ in the PDE for u gives $v_{t}=v_{x x}$, so the solution of the IVP is simply the usual solution of the heat equation multiplied by e^{t}.

4. [20\%] (a) Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Schwartz function. Use Fourier transforms in x to solve the following initial value problem for $\hat{u}(\xi, t)=\mathcal{F}[u(x, t)]$:

$$
\begin{array}{lr}
u_{t}=u_{x x x}, & -\infty<x<\infty, t>0 \\
u(x, 0)=f(x), & -\infty<x<\infty
\end{array}
$$

You do not need to invert the Fourier transform.
(b) Show that for all $-\infty<t<\infty$ the solution satisfies

$$
\int_{-\infty}^{\infty} u^{2}(x, t) d x=\int_{-\infty}^{\infty} f^{2}(x) d x
$$

Solution

- Taking Fourier transforms in x, we get that

$$
\begin{aligned}
& \hat{u}_{t}=-i \xi^{3} \hat{u} \\
& \hat{u}(\xi, 0)=\hat{f}(\xi)
\end{aligned}
$$

whose solution is

$$
\hat{u}(\xi, t)=\hat{f}(\xi) e^{-i \xi^{2} t}
$$

- Note that $e^{-i \xi^{2} t}$ is a smooth function of ξ with $\left|e^{-i \xi^{2} t}\right|=1$, so $\hat{u}(\cdot, t)$ is a Schwartz function when $\hat{f}(\cdot)$ is a Schwartz function. Since the inverse Fourier transform of a Schwartz function is a Schwartz function, it follows that $u(x, t)$ is a Schwartz function of x for every $t \in \mathbb{R}$.
- Using Parseval's theorem, as the fact that $\left|e^{-i \xi^{2} t}\right|=1$, we get

$$
\begin{aligned}
\int_{-\infty}^{\infty} u^{2}(x, t) d x & =\int_{-\infty}^{\infty}|\hat{u}|^{2}(\xi, t) d \xi \\
& =\int_{-\infty}^{\infty}|\hat{f}|^{2}(\xi) d \xi \\
& =\int_{-\infty}^{\infty} f^{2}(x) d x
\end{aligned}
$$

5. [20\%] Let Ω be a bounded open set in \mathbb{R}^{2} with boundary $\partial \Omega$.
(a) Suppose that $u(x, y)$ is a solution of the PDE

$$
u_{x x}+u_{y y}-u=0 .
$$

Show that u cannot attain a maximum value at any point of Ω where $u>0$, or a minimum value at any point of Ω where $u<0$.
(b) Let $f: \Omega \rightarrow \mathbb{R}$ and $g: \partial \Omega \rightarrow \mathbb{R}$ be given functions. Show that there is at most one solution of the following boundary value problem:

$$
\begin{aligned}
& u_{x x}+u_{y y}-u=f \quad \text { in } \Omega, \\
& u=g \quad \text { on } \partial \Omega,
\end{aligned}
$$

Solution

- (a) Suppose that u attain a (local) maximum at some point in Ω. Since Ω is open, the maximum is attained at an interior point, and the second derivative test implies that $u_{x x} \leq 0$ and $u_{y y} \leq 0$ at this point. It follows from the PDE that $u=u_{x x}+u_{y y} \leq 0$, so u cannot attain a maximum at any point where $u>0$. Similarly, at a minimum we have $u_{x x} \geq 0$ and $u_{y y} \geq 0$, so $u=u_{x x}+u_{y y} \geq 0$, and u cannot attain a minimum at any point in Ω where $u<0$.
- (b) Suppose that u_{1}, u_{2} are solutions of the BVP. Let $v=u_{1}-u_{2}$. Then, by linearity,

$$
v_{x x}+v_{y y}-v=0 \quad \text { in } \Omega, \quad v=0 \quad \text { on } \partial \Omega .
$$

Since $\bar{\Omega}=\Omega \cup \partial \Omega$ is closed and bounded, and a solution v is assumed to be continuous on $\bar{\Omega}, v$ attains its maximum value $M=\max _{\bar{\Omega}} v$ at some point in $\bar{\Omega}$. If $M>0$, then (since $v=0$ on $\partial \Omega$) the maximum would have to be attained at an interior point in Ω where $v=M>0$, contradicting (a). Similarly, if $m=\min _{\bar{\Omega}} v<0$, then the mimimum would have to be attained at an interior point in Ω where $v=m<0$, also contradicting (a). It follows that the maximum and minimum are attained on the boundary $\partial \Omega$, so $m=M=0$, which implies that $v=0$, and $u_{1}=u_{2}$.

Remark. This argument doesn't work for the PDE $u_{x x}+u_{y y}+u=0$, with the opposite sign on u. In that case, the Dirichlet problem might have non-zero solutions. This corresponds to the fact that the eigenvalues of the Dirichlet problem $-\Delta u=\lambda u$ for the Laplacian are always positive $(\lambda>0)$.

