
Partial Differential Equations
Math 118B, Winter 2018

Midterm: Solutions

1. [10%] Suppose that u(r, θ) is harmonic in the open disc of radius 2 and
continuous on the closed disc of radius 2, where (r, θ) are polar coordinates.
If

u(2, θ) = π2 − θ2 |θ| ≤ π,

find the value of u at the origin r = 0.

Solution

• By the mean value theorem for harmonic functions

u(0, θ) =
1

2π

∫ π

−π

(
π2 − θ2

)
dθ

=
2

3
π2.
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2. [25%] (a) Let f : [0, 1] → R is a continuous function. Give a physical
interpretation in terms of heat flow of the following boundary value problem
for u(x, y) on the unit square:

uxx + uyy = 0, 0 < x < 1, 0 < y < 1,

u(0, y) = 0, u(1, y) = 0, 0 ≤ y ≤ 1,

uy(x, 0) = 0, uy(x, 1) = f(x), 0 ≤ x ≤ 1.

(b) Use separation of variables to find a formal solution of the boundary
value problem.

Solution

• (a) This BVP describes the steady temperature distribution in a square
plate of side one. The left and right hand sides of the plate are held
at zero temperature; the bottom side is insulated; and the heat flux
through the top side is proportional to −f(x).

• (b) The separated solutions of Laplace’s equation that satisfy the ho-
mogeneous boundary conditions at x = 0, 1 and y = 0 are proportional
to

u(x, y) = sin(nπx) cosh(nπy), n = 1, 2, 3, . . .

Superposing these solutions, we get the formal solution

u(x, y) =
∞∑
n=1

Bn sin(nπx) cosh(nπy).

• Imposition of the nonhomogeneous boundary condition at y = 1 gives

f(x) =
∞∑
n=1

nπBn sinh(nπ) sin(nπx),

so, by the formula for Fourier sine series coefficients,

nπBn sinh(nπ) = bn, bn = 2

∫ 1

0

f(x) sin(nπx) dx,

and

u(x, y) =
∞∑
n=1

bn
nπ sinh(nπ)

sin(nπx) cosh(nπy).
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3. [25%] (a) Let f : R → R be a bounded continuous function. Give a
physical interpretation in terms of heat flow of the following initial value
problem for u(x, t):

ut = uxx + u, −∞ < x <∞, t > 0,

u(x, 0) = f(x), −∞ < x <∞.

(b) Use Fourier transforms in x to solve the initial value problem for u(x, t).
Express your answer as a convolution.

Solution

• (a) This IVP describes heat flow in an infinite rod, with a heat source
whose density is proportional to temperature u and inital temperature
f(x).

• (b) Let û(ξ, t) = F [u(x, t)] be the Fourier transform of y with respect
to x. Then

ût =
(
1− ξ2

)
û,

û(ξ, 0) = f̂(ξ),

whose solution is
û(ξ, t) = f̂(ξ)e(1−ξ2)t.

• Since t is a parameter in the Fourier transform with respect to x, we
have

F−1
[
e(1−ξ2)t

]
= etF−1

[
e−ξ

2t
]

= et · 1√
2t
e−x

2/4t

• The convolution theorem then gives that

u(x, t) =
et√
4πt

∫ ∞
−∞

e−(x−y)2/4tf(y) dy.

• Alternatively, note that writing u(x, t) = etv(x, t) in the PDE for u
gives vt = vxx, so the solution of the IVP is simply the usual solution
of the heat equation multiplied by et.
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4. [20%] (a) Let f : R→ R be a Schwartz function. Use Fourier transforms
in x to solve the following initial value problem for û(ξ, t) = F [u(x, t)]:

ut = uxxx, −∞ < x <∞, t > 0,

u(x, 0) = f(x), −∞ < x <∞.

You do not need to invert the Fourier transform.

(b) Show that for all −∞ < t <∞ the solution satisfies∫ ∞
−∞

u2(x, t) dx =

∫ ∞
−∞

f 2(x) dx.

Solution

• Taking Fourier transforms in x, we get that

ût = −iξ3û,

û(ξ, 0) = f̂(ξ),

whose solution is
û(ξ, t) = f̂(ξ)e−iξ

2t.

• Note that e−iξ
2t is a smooth function of ξ with |e−iξ2t| = 1, so û(·, t) is a

Schwartz function when f̂(·) is a Schwartz function. Since the inverse
Fourier transform of a Schwartz function is a Schwartz function, it
follows that u(x, t) is a Schwartz function of x for every t ∈ R.

• Using Parseval’s theorem, as the fact that |e−iξ2t| = 1, we get∫ ∞
−∞

u2(x, t) dx =

∫ ∞
−∞
|û|2 (ξ, t) dξ

=

∫ ∞
−∞
|f̂ |2(ξ) dξ

=

∫ ∞
−∞

f 2(x) dx.
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5. [20%] Let Ω be a bounded open set in R2 with boundary ∂Ω.

(a) Suppose that u(x, y) is a solution of the PDE

uxx + uyy − u = 0.

Show that u cannot attain a maximum value at any point of Ω where u > 0,
or a minimum value at any point of Ω where u < 0.

(b) Let f : Ω→ R and g : ∂Ω→ R be given functions. Show that there is at
most one solution of the following boundary value problem:

uxx + uyy − u = f in Ω,

u = g on ∂Ω,

Solution

• (a) Suppose that u attain a (local) maximum at some point in Ω. Since
Ω is open, the maximum is attained at an interior point, and the second
derivative test implies that uxx ≤ 0 and uyy ≤ 0 at this point. It follows
from the PDE that u = uxx + uyy ≤ 0, so u cannot attain a maximum
at any point where u > 0. Similarly, at a minimum we have uxx ≥ 0
and uyy ≥ 0, so u = uxx + uyy ≥ 0, and u cannot attain a minimum at
any point in Ω where u < 0.

• (b) Suppose that u1, u2 are solutions of the BVP. Let v = u1 − u2.
Then, by linearity,

vxx + vyy − v = 0 in Ω, v = 0 on ∂Ω.

Since Ω̄ = Ω ∪ ∂Ω is closed and bounded, and a solution v is assumed
to be continuous on Ω̄, v attains its maximum value M = maxΩ̄ v at
some point in Ω̄. If M > 0, then (since v = 0 on ∂Ω) the maximum
would have to be attained at an interior point in Ω where v = M > 0,
contradicting (a). Similarly, if m = minΩ̄ v < 0, then the mimimum
would have to be attained at an interior point in Ω where v = m < 0,
also contradicting (a). It follows that the maximum and minimum are
attained on the boundary ∂Ω, so m = M = 0, which implies that v = 0,
and u1 = u2.

Remark. This argument doesn’t work for the PDE uxx + uyy + u = 0,
with the opposite sign on u. In that case, the Dirichlet problem might have
non-zero solutions. This corresponds to the fact that the eigenvalues of the
Dirichlet problem −∆u = λu for the Laplacian are always positive (λ > 0).
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