PARTIAL DIFFERENTIAL EQUATIONS
Math 118B, Winter 2018
Midterm: Solutions

1. [10%] Suppose that u(r,d) is harmonic in the open disc of radius 2 and
continuous on the closed disc of radius 2, where (r, ) are polar coordinates.

If
u(2,0) = % — 6* 0| <,

find the value of u at the origin » = 0.

Solution
e By the mean value theorem for harmonic functions

u(0,0) = %/ (* — 6%) do
=20,

3



2. [25%)] (a) Let f : [0,1] — R is a continuous function. Give a physical
interpretation in terms of heat flow of the following boundary value problem
for u(z,y) on the unit square:

Ugg + Uyy = 0, <<l O<y<l,
uy(z,0) =0, uy(z,1) = f(2), 0<z<I1.

(b) Use separation of variables to find a formal solution of the boundary
value problem.

Solution

e (a) This BVP describes the steady temperature distribution in a square
plate of side one. The left and right hand sides of the plate are held
at zero temperature; the bottom side is insulated; and the heat flux
through the top side is proportional to —f(z).

e (b) The separated solutions of Laplace’s equation that satisfy the ho-
mogeneous boundary conditions at x = 0,1 and y = 0 are proportional
to

u(z,y) = sin(nmx) cosh(nmry), n=123,...

Superposing these solutions, we get the formal solution
u(z,y) = Z B, sin(nmzx) cosh(nmy).
n=1
e Imposition of the nonhomogeneous boundary condition at y = 1 gives

f(z) = Z nn B, sinh(n) sin(nrx),

n=1

so, by the formula for Fourier sine series coefficients,
1
nm B, sinh(nm) = by, b, = 2/ f(z)sin(nrz) dz,
0

and

- b
u(x,y) = Zl WZ(WT) sin(nmx) cosh(nmy).



3. [25%] (a) Let f : R — R be a bounded continuous function. Give a
physical interpretation in terms of heat flow of the following initial value

problem for u(x,t):
-0 < x<oo,t >0,

Ut = Ugy + U,

u(z,0) = f(x),

(b) Use Fourier transforms in « to solve the initial value problem for u(z,t).
Express your answer as a convolution.
Solution

e (a) This IVP describes heat flow in an infinite rod, with a heat source
whose density is proportional to temperature v and inital temperature

().
e (b) Let u(&,t) = Flu(x,t)] be the Fourier transform of y with respect

to z. Then
i = (1-&)a,
i€, 0) = f(9),
whose solution is
i, t) = f(€)et ",

e Since t is a parameter in the Fourier transform with respect to x, we

have
F-1 [6(1—52)1:] _ tFl [e—gﬂ
L6_$2/4t
V2t

:et-

e The convolution theorem then gives that

et 00 (o
uat) = —= / @V () dy,

e Alternatively, note that writing u(z,t) = e'v(z,t) in the PDE for u
gives vy = Uy, s0 the solution of the IVP is simply the usual solution

of the heat equation multiplied by e.



4. [20%] (a) Let f: R — R be a Schwartz function. Use Fourier transforms
in z to solve the following initial value problem for u(¢,t) = Flu(z,t)]:

Ut = Uzps, —o0o < x<oo,t>0,
u(z,0) = f(z), —00 < & < 00.

You do not need to invert the Fourier transform.

(b) Show that for all —oco <t < oo the solution satisfies

/Z WXz, t) do = /Z £2(2) do

Solution
e Taking Fourier transforms in x, we get that

U = _253
a(¢,0) = f(9),

whose solution is

(€, t) = f(&)e

e Note that e~%"" is a smooth function of & with |e~%*t| = 1, so 4(-,¢) is a
Schwartz function when f () is a Schwartz function. Since the inverse
Fourier transform of a Schwartz function is a Schwartz function, it
follows that u(z,t) is a Schwartz function of x for every t € R.

e Using Parseval’s theorem, as the fact that |e‘i§2t] =1, we get

/_Z (2, 1) d = /: af? (€, 1) de
GO
= /_O; () dx



5. [20%] Let © be a bounded open set in R? with boundary 9.
(a) Suppose that u(x,y) is a solution of the PDE

Ugy + Uyy — u = 0.

Show that u cannot attain a maximum value at any point of €2 where u > 0,
or a minimum value at any point of €2 where u < 0.

(b) Let f: Q — R and g : 902 — R be given functions. Show that there is at
most one solution of the following boundary value problem:

Upgy + Uyy —U = f in €,

u=g on 012,

Solution

e (a) Suppose that u attain a (local) maximum at some point in €2. Since
() is open, the maximum is attained at an interior point, and the second
derivative test implies that u,, < 0 and u,, < 0 at this point. It follows
from the PDE that u = ug,; + u,, < 0, so u cannot attain a maximum
at any point where v > 0. Similarly, at a minimum we have u,, > 0
and wu,, > 0, S0 U = Uy, + Uy, > 0, and u cannot attain a minimum at
any point in ) where u < 0.

e (b) Suppose that wu;, uy are solutions of the BVP. Let v = u; — us.
Then, by linearity,

Vpg +Vyy —v =0 inQ, v=0 on 0f.

Since Q = QU N is closed and bounded, and a solution v is assumed
to be continuous on ), v attains its maximum value M = maxgv at
some point in Q. If M > 0, then (since v = 0 on 9Q) the maximum
would have to be attained at an interior point in {2 where v = M > 0,
contradicting (a). Similarly, if m = mingv < 0, then the mimimum
would have to be attained at an interior point in 2 where v = m < 0,
also contradicting (a). It follows that the maximum and minimum are
attained on the boundary 02, so m = M = 0, which implies that v = 0,
and u; = us.

Remark. This argument doesn’t work for the PDE w,, + u,, + u = 0,
with the opposite sign on u. In that case, the Dirichlet problem might have
non-zero solutions. This corresponds to the fact that the eigenvalues of the
Dirichlet problem —Awu = Au for the Laplacian are always positive (A > 0).



