Problem Set 1: Solutions
Math 118B: Winter Quarter, 2018

6.1.1
o If
T =ax+by+e, g=cx+dy+ f,
then
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o It follows that

Uy + Uyy = (a® + %) uzz + 2 (ac + bd) ugy + (¢ + d?) ugy.



6.1.2

e (a) We have

A (clul + CQUQ) = (01U1 + CQUQ)xx + (clul + CQ’LLQ)yy

= ClUlgg T C2U2zx + ClUlyy + CoU2yy
=1 (ulzz + Ulyy) + co (UQIm + U2yy)
= c1Auy + coAug,

meaning that the Laplacian is a linear operator. Hence, if Au; = 0
and Aug = 0, then A(ciju; + coug) = 0.

e (b) If v(z,y) = zu(x,y) where u is harmonic, then
Vgg + Vyy = TUgz + 2Uz + TUyy = 2Uy.

Hence, u; = 0 if v is harmonic, which implies that u = u(y). Then
Au = uyy =0, so u(y) = ay + 0.

e (c) For example, u(z,y) = xy is harmonic, but
Au? = 2(2? +y?) #0,

so u? is not harmonic.



6.1.4

e We have
(z +1iy)® = 23 + 3iz?y — 3zy® — iy®
= u(z,y) +iv(z,y)
where
u(z,y) =2° — 3z,  v(z,y) =32y — ¢’
Then

Ay =6z — 6x =0, Av =6y — 6y = 0.



6.1.7

e The function —q represents the heat-source density; that is, the rate
per unit area at which internal heat sources generate thermal energy.

e The boundary data —g represents the outward heat flux on the bound-
ary; that is, the rate per unit length at which thermal energy leaves
the region.

e There can only be a steady state if the rate at which thermal energy
is generated inside the region is equal to the rate at which thermal
energy leaves the region, meaning that
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e This result can be proved directly from the equations. If there is a
solution of the Neumann problem, then the divergence theorem gives
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6.2.5

e Up to a constant factor, the separated solutions of Laplace’s equation
that vanish at x = 0,7 and y = 0 are given by

u(zx,y) = sin(nz) sinh(ny) n e N.

e Superposing these solutions, we get that

oo
Z ¢n sin(nx) sinh(ny),

n=1
where the ¢, are constants, satisfies Laplace’s equation in the unit

square and the homogeneous boundary conditions.

e The boundary condition at y = 7 is satisfied if

o
(x —m) Z ¢p sin(nx) sinh(nm).

n=1
Using the expression for Fourier sine coefficients, we have

2 ™
¢ sinh(nm) = / z(x — ) sin(nx) dz.
T Jo

Integration by parts, or symbolic integration, gives
cos(nx
- (n2)

+ % [2? cos(nz) — mwa cos(na)] + C.

1
/w(:c — m)sin(nz) de = — [7sin(nz) — 2z sin(nx)] — 3
Since sin(nm) = 0 and cos(nw) = (—1)", it follows that

0 if n is even,

7r ' 2 ny _
/O z(z — m) sin(nz) de = 3 [1—(-1)"] = {4/n3 if n is odd.

e Using the resulting expression for ¢, in the series for u, we get that

w(z, ) = 8 Z sin(nx) sinh(ny)

3 .
“ n3 sinh(n)

sin[(2k + 1)z] sinh[(2k + 1)y]
- Z (2k 4 1)3 sinh[(2k + 1)7]




Let N € N. For 0 < y <, we estimate that
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By an integral comparison test,
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It follows that the Nth partial sum approximates u(x,y) within € if
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If ¢ = 0.01, then /2/me ~ 7.9788, so N = 4 is sufficient. In fact,
numerical computations show that N = 3 is enough, with a maximum
error less that 0.008. The corresponding sum is shown in Figure 1.

(c) The Fourier series converges uniformly to u(z, y) on the unit square,
and the truncated series approximates the solution everywhere to within
0.01.



Figure 1: The partial sum in 6.3.5 with N = 3.

6.2.8

e (a) The separated solutions of Laplace’s equation in Cartesian coor-
dinates whose normal derivatives vanish on = 0,L and y = 0 are
proportional to

u(z,y) =1, u(z,y) = cos <?) cosh (%) n € N.

e Superposing these solutions, we get that

o0

1
u(z,y) = 50 + Z Cp, COS (?) cosh (%) .
n=1

e Assuming that the series converges sufficiently rapidly, we can differ-
entiate it term by term, and it follows that

o
nm nwry . nmy
uy(z,y) = g Cp—— COS (—) sinh (—) .
ot L L L

e Imposition of the boundary condition at y = M gives

= ar nTT nmM
g(x) = ; Cn 7~ €8 (T) sinh ( 7 > .

The Fourier cosine expansion of g is

1 > nmwx
g(x) = J@0 + E:Ian cos (T) ,
n=

9 L
ap = L/o g(x) cos (n—zx> dx.

7




It follows that g must satisfy ap = 0, meaning that

and for n € N we have

The constant cg is arbitrary.

The solutions are then given by

1 L & G, nwT nmwy
) = 5 _ . h( > )
u(,y) 20T ﬂ;nsmh(mrM/L) COS( L )COS L
where cg is an arbitrary constant.

(b) The condition that fOM g(z)dz = 0 is the compatibility condition
discussed in 6.1.7. Note that a solution does not exist if this condi-
tion does not hold; and solutions are not unique if the condition does
hold, since we can add an arbitrary constant (which is a solution of
the homogeneous Neumann problem) to a solution and get another
solution.



