
Problem Set 1: Solutions
Math 118B: Winter Quarter, 2018

6.1.1

• If
x̄ = ax+ by + e, ȳ = cx+ dy + f,

then
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∂ȳ

∂x

∂

∂ȳ
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∂ȳ

∂

∂y
=
∂x̄

∂y

∂

∂x̄
+
∂ȳ
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• It follows that

uxx + uyy =
(
a2 + b2

)
ux̄x̄ + 2 (ac+ bd)ux̄ȳ +

(
c2 + d2

)
uȳȳ.
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6.1.2

• (a) We have

∆ (c1u1 + c2u2) = (c1u1 + c2u2)xx + (c1u1 + c2u2)yy

= c1u1xx + c2u2xx + c1u1yy + c2u2yy

= c1 (u1xx + u1yy) + c2 (u2xx + u2yy)

= c1∆u1 + c2∆u2,

meaning that the Laplacian is a linear operator. Hence, if ∆u1 = 0
and ∆u2 = 0, then ∆(c1u1 + c2u2) = 0.

• (b) If v(x, y) = xu(x, y) where u is harmonic, then

vxx + vyy = xuxx + 2ux + xuyy = 2ux.

Hence, ux = 0 if v is harmonic, which implies that u = u(y). Then
∆u = uyy = 0, so u(y) = ay + b.

• (c) For example, u(x, y) = xy is harmonic, but

∆u2 = 2(x2 + y2) 6= 0,

so u2 is not harmonic.
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6.1.4

• We have

(x+ iy)3 = x3 + 3ix2y − 3xy2 − iy3

= u(x, y) + iv(x, y)

where
u(x, y) = x3 − 3xy2, v(x, y) = 3x2y − y3.

Then
∆u = 6x− 6x = 0, ∆v = 6y − 6y = 0.
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6.1.7

• The function −q represents the heat-source density; that is, the rate
per unit area at which internal heat sources generate thermal energy.

• The boundary data −g represents the outward heat flux on the bound-
ary; that is, the rate per unit length at which thermal energy leaves
the region.

• There can only be a steady state if the rate at which thermal energy
is generated inside the region is equal to the rate at which thermal
energy leaves the region, meaning that∫

D
q dxdy =

∫
C
gds.

• This result can be proved directly from the equations. If there is a
solution of the Neumann problem, then the divergence theorem gives∫

D
q dxdy =

∫
D

∆u dxdy

=

∫
C
∇u · nds

=

∫
C
g ds.
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6.2.5

• Up to a constant factor, the separated solutions of Laplace’s equation
that vanish at x = 0, π and y = 0 are given by

u(x, y) = sin(nx) sinh(ny) n ∈ N.

• Superposing these solutions, we get that

u(x, y) =

∞∑
n=1

cn sin(nx) sinh(ny),

where the cn are constants, satisfies Laplace’s equation in the unit
square and the homogeneous boundary conditions.

• The boundary condition at y = π is satisfied if

x(x− π) =
∞∑
n=1

cn sin(nx) sinh(nπ).

Using the expression for Fourier sine coefficients, we have

cn sinh(nπ) =
2

π

∫ π

0
x(x− π) sin(nx) dx.

Integration by parts, or symbolic integration, gives∫
x(x− π) sin(nx) dx =

1

n2
[π sin(nx)− 2x sin(nx)]− 2

n3
cos(nx)

+
1

n

[
x2 cos(nx)− πx cos(nx)

]
+ C.

Since sin(nπ) = 0 and cos(nπ) = (−1)n, it follows that∫ π

0
x(x− π) sin(nx) dx =

2

n3
[1− (−1)n] =

{
0 if n is even,

4/n3 if n is odd.

• Using the resulting expression for cn in the series for u, we get that

u(x, y) =
8

π

∑
n odd

sin(nx) sinh(ny)

n3 sinh(nπ)

=
8

π

∞∑
k=0

sin[(2k + 1)x] sinh[(2k + 1)y]

(2k + 1)3 sinh[(2k + 1)π]
.
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• Let N ∈ N. For 0 ≤ y ≤ π, we estimate that∣∣∣∣∣u(x, y)− 8

π

N∑
k=0

sin[(2k + 1)x] sinh[(2k + 1)y]

(2k + 1)3 sinh[(2k + 1)π]

∣∣∣∣∣ ≤ 8

π

∞∑
k=N+1

1

(2k + 1)3
.

• By an integral comparison test,

∞∑
k=N+1

1

(2k + 1)3
≤
∫ ∞

N

1

(2x+ 1)3
dx =

1

4(2N + 1)2
,

so ∣∣∣∣∣u(x, y)− 8

π

N∑
k=0

sin[(2k + 1)x] sinh[(2k + 1)y]

(2k + 1)3 sinh[(2k + 1)π]

∣∣∣∣∣ ≤ 2

π(2N + 1)2
.

• It follows that the Nth partial sum approximates u(x, y) within ε if

2N + 1 ≥
√

2

πε
.

• If ε = 0.01, then
√

2/πε ≈ 7.9788, so N = 4 is sufficient. In fact,
numerical computations show that N = 3 is enough, with a maximum
error less that 0.008. The corresponding sum is shown in Figure 1.

• (c) The Fourier series converges uniformly to u(x, y) on the unit square,
and the truncated series approximates the solution everywhere to within
0.01.
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Figure 1: The partial sum in 6.3.5 with N = 3.

6.2.8

• (a) The separated solutions of Laplace’s equation in Cartesian coor-
dinates whose normal derivatives vanish on x = 0, L and y = 0 are
proportional to

u(x, y) = 1, u(x, y) = cos
(nπx
L

)
cosh

(nπy
L

)
n ∈ N.

• Superposing these solutions, we get that

u(x, y) =
1

2
c0 +

∞∑
n=1

cn cos
(nπx
L

)
cosh

(nπy
L

)
.

• Assuming that the series converges sufficiently rapidly, we can differ-
entiate it term by term, and it follows that

uy(x, y) =

∞∑
n=1

cn
nπ

L
cos
(nπx
L

)
sinh

(nπy
L

)
.

• Imposition of the boundary condition at y = M gives

g(x) =

∞∑
n=1

cn
nπ

L
cos
(nπx
L

)
sinh

(
nπM

L

)
.

The Fourier cosine expansion of g is

g(x) =
1

2
a0 +

∞∑
n=1

an cos
(nπx
L

)
,

an =
2

L

∫ L

0
g(x) cos

(nπx
L

)
dx.
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• It follows that g must satisfy a0 = 0, meaning that∫ M

0
g(x) dx = 0,

and for n ∈ N we have

cn
nπ

L
sinh

(
nπM

L

)
= an.

The constant c0 is arbitrary.

• The solutions are then given by

u(x, y) =
1

2
c0 +

L

π

∞∑
n=1

an
n sinh (nπM/L)

cos
(nπx
L

)
cosh

(nπy
L

)
,

where c0 is an arbitrary constant.

• (b) The condition that
∫M

0 g(x) dx = 0 is the compatibility condition
discussed in 6.1.7. Note that a solution does not exist if this condi-
tion does not hold; and solutions are not unique if the condition does
hold, since we can add an arbitrary constant (which is a solution of
the homogeneous Neumann problem) to a solution and get another
solution.

8


