## Problem Set 1: Solutions

Math 118B: Winter Quarter, 2018

### 6.1.1

- If

$$
\bar{x}=a x+b y+e, \quad \bar{y}=c x+d y+f
$$

then

$$
\begin{aligned}
\frac{\partial}{\partial x} & =\frac{\partial \bar{x}}{\partial x} \frac{\partial}{\partial \bar{x}}+\frac{\partial \bar{y}}{\partial x} \frac{\partial}{\partial \bar{y}}=a \frac{\partial}{\partial \bar{x}}+c \frac{\partial}{\partial \bar{y}} \\
\frac{\partial}{\partial y} & =\frac{\partial \bar{x}}{\partial y} \frac{\partial}{\partial \bar{x}}+\frac{\partial \bar{y}}{\partial y} \frac{\partial}{\partial \bar{y}},=b \frac{\partial}{\partial \bar{x}}+d \frac{\partial}{\partial \bar{y}}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial^{2}}{\partial x^{2}} & =\left(a \frac{\partial}{\partial \bar{x}}+c \frac{\partial}{\partial \bar{y}}\right)^{2}=a^{2} \frac{\partial^{2}}{\partial \bar{x}^{2}}+2 a c \frac{\partial^{2}}{\partial \bar{x} \partial \bar{y}}+c^{2} \frac{\partial^{2}}{\partial \bar{y}^{2}} \\
\frac{\partial^{2}}{\partial y^{2}} & =\left(b \frac{\partial}{\partial \bar{x}}+d \frac{\partial}{\partial \bar{y}}\right)^{2}=b^{2} \frac{\partial^{2}}{\partial \bar{x}^{2}}+2 b d \frac{\partial^{2}}{\partial \bar{x} \partial \bar{y}}+d^{2} \frac{\partial^{2}}{\partial \bar{y}^{2}}
\end{aligned}
$$

- It follows that

$$
u_{x x}+u_{y y}=\left(a^{2}+b^{2}\right) u_{\bar{x} \bar{x}}+2(a c+b d) u_{\bar{x} \bar{y}}+\left(c^{2}+d^{2}\right) u_{\bar{y} \bar{y}} .
$$

### 6.1.2

- (a) We have

$$
\begin{aligned}
\Delta\left(c_{1} u_{1}+c_{2} u_{2}\right) & =\left(c_{1} u_{1}+c_{2} u_{2}\right)_{x x}+\left(c_{1} u_{1}+c_{2} u_{2}\right)_{y y} \\
& =c_{1} u_{1 x x}+c_{2} u_{2 x x}+c_{1} u_{1 y y}+c_{2} u_{2 y y} \\
& =c_{1}\left(u_{1 x x}+u_{1 y y}\right)+c_{2}\left(u_{2 x x}+u_{2 y y}\right) \\
& =c_{1} \Delta u_{1}+c_{2} \Delta u_{2},
\end{aligned}
$$

meaning that the Laplacian is a linear operator. Hence, if $\Delta u_{1}=0$ and $\Delta u_{2}=0$, then $\Delta\left(c_{1} u_{1}+c_{2} u_{2}\right)=0$.

- (b) If $v(x, y)=x u(x, y)$ where $u$ is harmonic, then

$$
v_{x x}+v_{y y}=x u_{x x}+2 u_{x}+x u_{y y}=2 u_{x} .
$$

Hence, $u_{x}=0$ if $v$ is harmonic, which implies that $u=u(y)$. Then $\Delta u=u_{y y}=0$, so $u(y)=a y+b$.

- (c) For example, $u(x, y)=x y$ is harmonic, but

$$
\Delta u^{2}=2\left(x^{2}+y^{2}\right) \neq 0
$$

so $u^{2}$ is not harmonic.

### 6.1.4

- We have

$$
\begin{aligned}
(x+i y)^{3} & =x^{3}+3 i x^{2} y-3 x y^{2}-i y^{3} \\
& =u(x, y)+i v(x, y)
\end{aligned}
$$

where

$$
u(x, y)=x^{3}-3 x y^{2}, \quad v(x, y)=3 x^{2} y-y^{3} .
$$

Then

$$
\Delta u=6 x-6 x=0, \quad \Delta v=6 y-6 y=0 .
$$

### 6.1.7

- The function $-q$ represents the heat-source density; that is, the rate per unit area at which internal heat sources generate thermal energy.
- The boundary data $-g$ represents the outward heat flux on the boundary; that is, the rate per unit length at which thermal energy leaves the region.
- There can only be a steady state if the rate at which thermal energy is generated inside the region is equal to the rate at which thermal energy leaves the region, meaning that

$$
\int_{D} q d x d y=\int_{C} g d s
$$

- This result can be proved directly from the equations. If there is a solution of the Neumann problem, then the divergence theorem gives

$$
\begin{aligned}
\int_{D} q d x d y & =\int_{D} \Delta u d x d y \\
& =\int_{C} \nabla u \cdot n d s \\
& =\int_{C} g d s
\end{aligned}
$$

### 6.2.5

- Up to a constant factor, the separated solutions of Laplace's equation that vanish at $x=0, \pi$ and $y=0$ are given by

$$
u(x, y)=\sin (n x) \sinh (n y) \quad n \in \mathbb{N}
$$

- Superposing these solutions, we get that

$$
u(x, y)=\sum_{n=1}^{\infty} c_{n} \sin (n x) \sinh (n y)
$$

where the $c_{n}$ are constants, satisfies Laplace's equation in the unit square and the homogeneous boundary conditions.

- The boundary condition at $y=\pi$ is satisfied if

$$
x(x-\pi)=\sum_{n=1}^{\infty} c_{n} \sin (n x) \sinh (n \pi)
$$

Using the expression for Fourier sine coefficients, we have

$$
c_{n} \sinh (n \pi)=\frac{2}{\pi} \int_{0}^{\pi} x(x-\pi) \sin (n x) d x
$$

Integration by parts, or symbolic integration, gives

$$
\begin{aligned}
\int x(x-\pi) \sin (n x) d x & =\frac{1}{n^{2}}[\pi \sin (n x)-2 x \sin (n x)]-\frac{2}{n^{3}} \cos (n x) \\
& +\frac{1}{n}\left[x^{2} \cos (n x)-\pi x \cos (n x)\right]+C .
\end{aligned}
$$

Since $\sin (n \pi)=0$ and $\cos (n \pi)=(-1)^{n}$, it follows that

$$
\int_{0}^{\pi} x(x-\pi) \sin (n x) d x=\frac{2}{n^{3}}\left[1-(-1)^{n}\right]= \begin{cases}0 & \text { if } n \text { is even } \\ 4 / n^{3} & \text { if } n \text { is odd }\end{cases}
$$

- Using the resulting expression for $c_{n}$ in the series for $u$, we get that

$$
\begin{aligned}
u(x, y) & =\frac{8}{\pi} \sum_{n \text { odd }} \frac{\sin (n x) \sinh (n y)}{n^{3} \sinh (n \pi)} \\
& =\frac{8}{\pi} \sum_{k=0}^{\infty} \frac{\sin [(2 k+1) x] \sinh [(2 k+1) y]}{(2 k+1)^{3} \sinh [(2 k+1) \pi]} .
\end{aligned}
$$

- Let $N \in \mathbb{N}$. For $0 \leq y \leq \pi$, we estimate that

$$
\left|u(x, y)-\frac{8}{\pi} \sum_{k=0}^{N} \frac{\sin [(2 k+1) x] \sinh [(2 k+1) y]}{(2 k+1)^{3} \sinh [(2 k+1) \pi]}\right| \leq \frac{8}{\pi} \sum_{k=N+1}^{\infty} \frac{1}{(2 k+1)^{3}} .
$$

- By an integral comparison test,

$$
\sum_{k=N+1}^{\infty} \frac{1}{(2 k+1)^{3}} \leq \int_{N}^{\infty} \frac{1}{(2 x+1)^{3}} d x=\frac{1}{4(2 N+1)^{2}},
$$

so

$$
\left|u(x, y)-\frac{8}{\pi} \sum_{k=0}^{N} \frac{\sin [(2 k+1) x] \sinh [(2 k+1) y]}{(2 k+1)^{3} \sinh [(2 k+1) \pi]}\right| \leq \frac{2}{\pi(2 N+1)^{2}}
$$

- It follows that the $N$ th partial sum approximates $u(x, y)$ within $\epsilon$ if

$$
2 N+1 \geq \sqrt{\frac{2}{\pi \epsilon}} .
$$

- If $\epsilon=0.01$, then $\sqrt{2 / \pi \epsilon} \approx 7.9788$, so $N=4$ is sufficient. In fact, numerical computations show that $N=3$ is enough, with a maximum error less that 0.008. The corresponding sum is shown in Figure 1.
- (c) The Fourier series converges uniformly to $u(x, y)$ on the unit square, and the truncated series approximates the solution everywhere to within 0.01.


Figure 1: The partial sum in 6.3 .5 with $N=3$.

### 6.2.8

- (a) The separated solutions of Laplace's equation in Cartesian coordinates whose normal derivatives vanish on $x=0, L$ and $y=0$ are proportional to

$$
u(x, y)=1, \quad u(x, y)=\cos \left(\frac{n \pi x}{L}\right) \cosh \left(\frac{n \pi y}{L}\right) \quad n \in \mathbb{N} .
$$

- Superposing these solutions, we get that

$$
u(x, y)=\frac{1}{2} c_{0}+\sum_{n=1}^{\infty} c_{n} \cos \left(\frac{n \pi x}{L}\right) \cosh \left(\frac{n \pi y}{L}\right) .
$$

- Assuming that the series converges sufficiently rapidly, we can differentiate it term by term, and it follows that

$$
u_{y}(x, y)=\sum_{n=1}^{\infty} c_{n} \frac{n \pi}{L} \cos \left(\frac{n \pi x}{L}\right) \sinh \left(\frac{n \pi y}{L}\right) .
$$

- Imposition of the boundary condition at $y=M$ gives

$$
g(x)=\sum_{n=1}^{\infty} c_{n} \frac{n \pi}{L} \cos \left(\frac{n \pi x}{L}\right) \sinh \left(\frac{n \pi M}{L}\right) .
$$

The Fourier cosine expansion of $g$ is

$$
\begin{aligned}
g(x) & =\frac{1}{2} a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right), \\
a_{n} & =\frac{2}{L} \int_{0}^{L} g(x) \cos \left(\frac{n \pi x}{L}\right) d x .
\end{aligned}
$$

- It follows that $g$ must satisfy $a_{0}=0$, meaning that

$$
\int_{0}^{M} g(x) d x=0
$$

and for $n \in \mathbb{N}$ we have

$$
c_{n} \frac{n \pi}{L} \sinh \left(\frac{n \pi M}{L}\right)=a_{n}
$$

The constant $c_{0}$ is arbitrary.

- The solutions are then given by

$$
u(x, y)=\frac{1}{2} c_{0}+\frac{L}{\pi} \sum_{n=1}^{\infty} \frac{a_{n}}{n \sinh (n \pi M / L)} \cos \left(\frac{n \pi x}{L}\right) \cosh \left(\frac{n \pi y}{L}\right),
$$

where $c_{0}$ is an arbitrary constant.

- (b) The condition that $\int_{0}^{M} g(x) d x=0$ is the compatibility condition discussed in 6.1.7. Note that a solution does not exist if this condition does not hold; and solutions are not unique if the condition does hold, since we can add an arbitrary constant (which is a solution of the homogeneous Neumann problem) to a solution and get another solution.

