Problem Set 2: Solutions

Math 118B: Winter Quarter, 2018

6.3.1

- (e) The general solution obtained by a superposition of separable solutions has the form

$$
\begin{aligned}
u(r, \theta) & =a_{0}+\alpha_{0} \log r+\sum_{n=1}^{\infty} u_{n}(r, \theta) \quad 1<r<2, \\
u_{n}(r, \theta) & =\left(a_{n} r^{n}+\alpha_{n} r^{-n}\right) \cos (n \theta)+\left(b_{n} r^{n}+\beta_{n} r^{-n}\right) \sin (n \theta) .
\end{aligned}
$$

- Imposition of the boundary condition at $r=1$ gives

$$
a_{0}+\sum_{n=1}^{\infty}\left[\left(a_{n}+\alpha_{n}\right) \cos (n \theta)+\left(b_{n}+\beta_{n}\right) \sin (n \theta)\right]=0,
$$

which implies that

$$
a_{0}=0, \quad a_{n}+\alpha_{n}=0, \quad b_{n}+\beta_{n}=0 \quad \text { for } n \in \mathbb{N} .
$$

- Imposition of the boundary condition at $r=2$ then gives

$$
\begin{aligned}
& \alpha_{0} \log 2=1, \quad a_{1} \cdot 2+\alpha_{1} \cdot 2^{-1}=3, \quad b_{8} 2^{8}+\beta_{8} 2^{-8}=-17, \\
& a_{n} 2^{n}+\alpha_{n} 2^{-n}=0, \quad b_{n} 2^{n}+\beta_{n} 2^{-n}=0 \quad \text { otherwise } .
\end{aligned}
$$

- It follows that

$$
\begin{aligned}
& \alpha_{0}=\frac{1}{\log 2}, \quad a_{1}=2, \quad \alpha_{1}=-2, \\
& b_{8}=-\frac{17}{2^{8}+2^{-8}}, \quad \beta_{8}=\frac{17}{2^{8}-2^{-8}},
\end{aligned}
$$

and $a_{n}, \alpha_{n}, b_{n}, \beta_{n}=0$ otherwise.

- The solution is therefore

$$
u(r, \theta)=\frac{\log r}{\log 2}+2\left(r-r^{-1}\right) \cos \theta-\frac{17\left(r^{8}-r^{-8}\right)}{2^{8}-2^{-8}} \sin (8 \theta) .
$$

6.3.3

- (e) The general solution obtained by a superposition of separable solutions that are continuous at $r=0$ has the form

$$
u(r, \theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left[a_{n} r^{n} \cos (n \theta)+b_{n} r^{n} \sin (n \theta)\right] .
$$

- Imposition of the boundary condition at $r=2$ gives

$$
1+3 \cos \theta-17 \sin (8 \theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left[2^{n} a_{n} \cos (n \theta)+2^{n} b_{n} \sin (n \theta)\right],
$$

which implies that

$$
\frac{1}{2} a_{0}=1, \quad a_{1}=\frac{3}{2}, \quad b_{8}=-\frac{17}{2^{8}}
$$

and $a_{n}, b_{n},=0$ otherwise.

- The solution is therefore

$$
u(r, \theta)=1+\frac{3}{2} r \cos \theta-\frac{17}{2^{8}} r^{8} \sin (8 \theta) .
$$

- In this solution, we require that the solution is continuous at $r=0$. This is not required in Problem 6.3.1(e) because $r=0$ is not in the domain where we are solving Laplace's equation; instead we impose a boundary condition at $r=1$.

6.3.8

- The function

$$
u(r, \theta)=P\left(r, r_{3}, \theta\right)
$$

is harmonic inside the disc $0 \leq r<r_{3}$. It follows that for

$$
0 \leq r_{1}<r_{2}<r_{3},
$$

the values of u on $r=r_{1}$ are given in terms of its values on $r=r_{2}$ by the Poisson integral formula

$$
u\left(r_{1}, \theta\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P\left(r_{1}, r_{2}, \theta-\phi\right) u\left(r_{2}, \phi\right) d \phi .
$$

- In other words,

$$
P\left(r_{1}, r_{3}, \theta\right)=\frac{1}{2 \pi} \int_{0}^{2 \pi} P\left(r_{1}, r_{2}, \theta-\phi\right) P\left(r_{2}, r_{3}, \phi\right) d \phi
$$

6.3.10

- The general solution of Laplace's equation in the disc, expressed in polar coordinates, has the real form

$$
u(r, \theta)=\frac{1}{2} \alpha_{0}+\sum_{n=1}^{\infty}\left[\alpha_{n} r^{n} \cos (n \theta)+\beta_{n} r^{n} \sin (n \theta)\right],
$$

where the α_{n}, β_{n} are constants.

- Assuming that the series converges sufficiently rapidly, we can differentiate it term-by-term to get

$$
u_{r}(r, \theta)=\sum_{n=1}^{\infty}\left[n \alpha_{n} r^{n-1} \cos (n \theta)+n \beta_{n} r^{n-1} \sin (n \theta)\right] .
$$

- The boundary condition $u_{r}\left(r_{0}, \theta\right)=f(\theta)$, where

$$
f(\theta)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left[a_{n} r^{n} \cos (n \theta)+b_{n} r^{n} \sin (n \theta)\right],
$$

implies that $a_{0}=0$ and

$$
\alpha_{n}=\frac{a_{n}}{n r_{0}^{n-1}}, \quad \beta_{n}=\frac{b_{n}}{n r_{0}^{n-1}}, \quad n \in \mathbb{N} .
$$

The solution is non-unique up to an arbitrary additive constant $\frac{1}{2} \alpha_{0}$.

- The condition $a_{0}=0$ is the compatibility condition

$$
\int_{0}^{2 \pi} f(\theta) d \theta=0
$$

for the existence of a solution to the Neumann problem (as in Problems 6.1.7, 6.2.8).

6.3.12

- (a) Since $-1 \leq \cos \theta \leq 1$, we have

$$
\begin{aligned}
r_{0}^{2}-2 r r_{0} \cos \theta+r^{2} & =\left(r_{0}-r\right)^{2}+2 r r_{0}(1-\cos \theta) \geq\left(r_{0}-r\right)^{2}, \\
r_{0}^{2}-2 r r_{0} \cos \theta+r^{2} & =\left(r_{0}+r\right)^{2}-2 r r_{0}(1+\cos \theta) \leq\left(r_{0}+r\right)^{2} .
\end{aligned}
$$

It follows that for $0 \leq r<r_{0}$

$$
\begin{aligned}
& \frac{r_{0}^{2}-r^{2}}{r_{0}^{2}-2 r r_{0} \cos \theta+r^{2}} \leq \frac{r_{0}^{2}-r^{2}}{\left(r_{0}-r\right)^{2}}=\frac{r_{0}+r}{r_{0}-r} \\
& \frac{r_{0}^{2}-r^{2}}{r_{0}^{2}-2 r r_{0} \cos \theta+r^{2}} \geq \frac{r_{0}^{2}-r^{2}}{\left(r_{0}+r\right)^{2}}=\frac{r_{0}-r}{r_{0}+r}
\end{aligned}
$$

- (b) If u is harmonic in $r<r_{0}$ and continuous on $r \leq r_{0}$, then

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{r_{0}^{2}-r^{2}}{r_{0}^{2}-2 r r_{0} \cos (\theta-\phi)+r^{2}} u\left(r_{0}, \phi\right) d \phi
$$

by the Poisson integral formula. If $u \geq 0$, then by using the previous inequalities in this equation, followed by the mean value property of harmonic functions, we get that

$$
\begin{aligned}
& u(r, \theta) \leq\left(\frac{r_{0}+r}{r_{0}-r}\right) \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r_{0}, \phi\right) d \phi=\left(\frac{r_{0}+r}{r_{0}-r}\right) u(0), \\
& u(r, \theta) \geq\left(\frac{r_{0}-r}{r_{0}+r}\right) \frac{1}{2 \pi} \int_{0}^{2 \pi} u\left(r_{0}, \phi\right) d \phi=\left(\frac{r_{0}-r}{r_{0}+r}\right) u(0),
\end{aligned}
$$

which shows that

$$
\left(\frac{r_{0}-r}{r_{0}+r}\right) u(0) \leq u(r, \theta) \leq\left(\frac{r_{0}+r}{r_{0}-r}\right) u(0) .
$$

- (c) Suppose $u \geq 0$ is harmonic on \mathbb{R}^{2}. Fix $r \geq 0$. Then for any $r_{0}>r$, we have

$$
\left(\frac{1-\rho}{1+\rho}\right) u(0) \leq u(r, \theta) \leq\left(\frac{1+\rho}{1-\rho}\right) u(0), \quad 0<\rho=\frac{r}{r_{0}}<1 .
$$

Taking the limit of this inequality as $\rho \rightarrow 0^{+}$, we get that

$$
u(0) \leq u(r, \theta) \leq u(0)
$$

for all (r, θ), meaning that $u=u(0)$ is constant.

- The assumption that $u \geq 0$ is crucial here. For example,

$$
u(x, y)=x^{2}-y^{2}
$$

is a nonconstant harmonic function on \mathbb{R}^{2}, but it's not nonnegative.

- (d) Suppose that u is a harmonic function on \mathbb{R}^{2}. Let $M \in \mathbb{R}$ be any constant. If $u \leq M$ on \mathbb{R}^{2}, meaning that u is bounded from above, then $v=M-u$ is a nonnegative harmonic function on \mathbb{R}^{2}, so it is constant. Similarly, if $m \in \mathbb{R}$ and $u \geq m$ on \mathbb{R}^{2}, meaning that u is bounded from below, then $v=u-m$ is a nonnegative harmonic function, so it is constant.
- In particular, if a harmonic function u is bounded on \mathbb{R}^{2}, meaning that $|u(x, y)| \leq M$, then it must be constant.
- If $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is continuous and $u\left(x_{1}, y_{1}\right)=c_{1}, u\left(x_{2}, y_{2}\right)=c_{2}$, then u takes on all values between c_{1} and c_{2} along a continuous curve joining $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ by the intermediate value theorem. Hence, if $c \in \mathbb{R}$ and $u(x, y) \neq c$ for any $(x, y) \in \mathbb{R}^{2}$, then the range of u must be contained in either $(-\infty, c)$ or (c, ∞).
- If $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a harmonic function that does not take the value c, then the previous results imply that u is either bounded from above or from below, so u is constant. It follows that a nonconstant harmonic function on \mathbb{R}^{2} takes on all real values.

7.1.1

- (a) The nth complex Fourier coefficient of the function is given for $n \neq 0$ by

$$
\begin{aligned}
c_{n} & =\frac{1}{2 L} \int_{-L}^{L} x e^{-i n \pi x / L} d x \\
& =\frac{1}{2 L}\left[-\frac{L}{i n \pi} x e^{-i n \pi x / L}+\frac{L^{2}}{(i n \pi)^{2}} e^{-i n \pi x / L}\right]_{-L}^{L} \\
& =\frac{i L}{2 n \pi}\left(e^{-i n \pi}+e^{i n \pi}\right) \\
& =-\frac{L}{n \pi i} \cos (n \pi) \\
& =\frac{L}{n \pi i}(-1)^{n+1}
\end{aligned}
$$

and $c_{0}=0$, so

$$
x=\frac{L}{\pi i} \sum_{n \neq 0} \frac{(-1)^{n+1}}{n} e^{i n \pi x / L} \quad|x|<L .
$$

- (f) We have

$$
e^{a x} \cos (b x)=\frac{1}{2}\left[e^{(a+i b) x}+e^{(a-i b) x}\right]
$$

For $\lambda \in \mathbb{C}$ consider the Fourier coefficients of the complex-valued function $e^{\lambda x}$:

$$
\begin{aligned}
\frac{1}{2 L} \int_{-L}^{L} e^{\lambda x} e^{-i n \pi x / L} d x & =\frac{1}{2 L} \int_{-L}^{L} e^{(\lambda-i n \pi / L) x} d x \\
& =\frac{1}{2 L}\left[\frac{e^{(\lambda-i n \pi / L) x}}{\lambda-i n \pi / L}\right]_{-L}^{L} \\
& =\frac{e^{\lambda L-i n \pi}-e^{-\lambda L+i n \pi}}{2(\lambda L-i n \pi)}
\end{aligned}
$$

Using this result with $\lambda=a+i b$ and $\lambda=a-i b$, we find that the nth Fourier coefficient of $e^{a x} \cos (b x)$ on $[-L, L]$ is given by

$$
\begin{aligned}
c_{n} & =\frac{1}{2 L} \int_{-L}^{L} e^{a x} \cos (b x) e^{-i n \pi x / L} d x \\
& =\frac{1}{4}\left[\frac{e^{a L-i(n \pi-b L)}-e^{-a L+i(n \pi-b L)}}{a L-i(n \pi-b L)}+\frac{e^{a L-i(n \pi+b L)}-e^{-a L+i(n \pi+b L)}}{a L-i(n \pi+b L)}\right]
\end{aligned}
$$

7.1.2

- (a) Collecting terms and using Euler's formula, we have

$$
\begin{aligned}
\sum_{n=-N}^{n=N} e^{i n \theta} & =1+\left(e^{i \theta}+e^{-i \theta}\right)+\left(e^{2 i \theta}+e^{-2 i \theta}\right)+\cdots+\left(e^{i N \theta}+e^{-i N \theta}\right) \\
& =1+2 \cos \theta+2 \cos (2 \theta)+\cdots+2 \cos (N \theta)
\end{aligned}
$$

- (b) We have

$$
\sum_{n=1}^{N} z^{n}=z \sum_{n=0}^{N-1} z^{n}=\frac{z-z^{N+1}}{1-z}
$$

It follows that

$$
\begin{aligned}
\sum_{n=-N}^{n=N} e^{i n \theta} & =1+\sum_{n=1}^{N}\left(e^{i \theta}\right)^{n}+\sum_{n=1}^{N}\left(e^{-i \theta}\right)^{n} \\
& =1+\frac{e^{i \theta}-e^{i(N+1) \theta}}{1-e^{i \theta}}+\frac{e^{-i \theta}-e^{-i(N+1) \theta}}{1-e^{-i \theta}} \\
& =1+\frac{e^{i \theta / 2}-e^{i(N+1 / 2) \theta}}{e^{-i \theta / 2}-e^{i \theta / 2}}+\frac{e^{-i \theta / 2}-e^{-i(N+1 / 2) \theta}}{e^{i \theta / 2}-e^{-i \theta / 2}} \\
& =\frac{e^{i(N+1 / 2) \theta}-e^{-i(N+1 / 2) \theta}}{e^{i \theta / 2}-e^{-i \theta / 2}} \\
& =\frac{\sin ((N+1 / 2) \theta)}{\sin (\theta / 2)} .
\end{aligned}
$$

- (c) From (a) and (b), we get

$$
1+2 \cos \theta+2 \cos (2 \theta)+\cdots+2 \cos (N \theta)=\frac{\sin ((N+1 / 2) \theta)}{\sin (\theta / 2)}
$$

