
Problem Set 2: Solutions
Math 118B: Winter Quarter, 2018

6.3.1

• (e) The general solution obtained by a superposition of separable so-
lutions has the form

u(r, θ) = a0 + α0 log r +

∞∑
n=1

un(r, θ) 1 < r < 2,

un(r, θ) =
(
anr

n + αnr
−n) cos(nθ) +

(
bnr

n + βnr
−n) sin(nθ).

• Imposition of the boundary condition at r = 1 gives

a0 +
∞∑
n=1

[(an + αn) cos(nθ) + (bn + βn) sin(nθ)] = 0,

which implies that

a0 = 0, an + αn = 0, bn + βn = 0 for n ∈ N.

• Imposition of the boundary condition at r = 2 then gives

α0 log 2 = 1, a1 · 2 + α1 · 2−1 = 3, b82
8 + β82

−8 = −17,

an2n + αn2−n = 0, bn2n + βn2−n = 0 otherwise.

• It follows that

α0 =
1

log 2
, a1 = 2, α1 = −2,

b8 = − 17

28 + 2−8
, β8 =

17

28 − 2−8
,

and an, αn, bn, βn = 0 otherwise.

• The solution is therefore

u(r, θ) =
log r

log 2
+ 2

(
r − r−1

)
cos θ −

17
(
r8 − r−8

)
28 − 2−8

sin(8θ).
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6.3.3

• (e) The general solution obtained by a superposition of separable so-
lutions that are continuous at r = 0 has the form

u(r, θ) =
1

2
a0 +

∞∑
n=1

[anr
n cos(nθ) + bnr

n sin(nθ)] .

• Imposition of the boundary condition at r = 2 gives

1 + 3 cos θ − 17 sin(8θ) =
1

2
a0 +

∞∑
n=1

[2nan cos(nθ) + 2nbn sin(nθ)] ,

which implies that

1

2
a0 = 1, a1 =

3

2
, b8 = −17

28
,

and an, bn,= 0 otherwise.

• The solution is therefore

u(r, θ) = 1 +
3

2
r cos θ − 17

28
r8 sin(8θ).

• In this solution, we require that the solution is continuous at r = 0.
This is not required in Problem 6.3.1(e) because r = 0 is not in the
domain where we are solving Laplace’s equation; instead we impose a
boundary condition at r = 1.
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6.3.8

• The function
u(r, θ) = P (r, r3, θ)

is harmonic inside the disc 0 ≤ r < r3. It follows that for

0 ≤ r1 < r2 < r3,

the values of u on r = r1 are given in terms of its values on r = r2 by
the Poisson integral formula

u(r1, θ) =
1

2π

∫ 2π

0
P (r1, r2, θ − φ)u(r2, φ) dφ.

• In other words,

P (r1, r3, θ) =
1

2π

∫ 2π

0
P (r1, r2, θ − φ)P (r2, r3, φ) dφ.
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6.3.10

• The general solution of Laplace’s equation in the disc, expressed in
polar coordinates, has the real form

u(r, θ) =
1

2
α0 +

∞∑
n=1

[αnr
n cos(nθ) + βnr

n sin(nθ)] ,

where the αn, βn are constants.

• Assuming that the series converges sufficiently rapidly, we can differ-
entiate it term-by-term to get

ur(r, θ) =

∞∑
n=1

[
nαnr

n−1 cos(nθ) + nβnr
n−1 sin(nθ)

]
.

• The boundary condition ur(r0, θ) = f(θ), where

f(θ) =
1

2
a0 +

∞∑
n=1

[anr
n cos(nθ) + bnr

n sin(nθ)] ,

implies that a0 = 0 and

αn =
an

nrn−10

, βn =
bn

nrn−10

, n ∈ N.

The solution is non-unique up to an arbitrary additive constant 1
2α0.

• The condition a0 = 0 is the compatibility condition∫ 2π

0
f(θ) dθ = 0

for the existence of a solution to the Neumann problem (as in Problems
6.1.7, 6.2.8).
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6.3.12

• (a) Since −1 ≤ cos θ ≤ 1, we have

r20 − 2rr0 cos θ + r2 = (r0 − r)2 + 2rr0(1− cos θ) ≥ (r0 − r)2,
r20 − 2rr0 cos θ + r2 = (r0 + r)2 − 2rr0(1 + cos θ) ≤ (r0 + r)2.

It follows that for 0 ≤ r < r0

r20 − r2

r20 − 2rr0 cos θ + r2
≤ r20 − r2

(r0 − r)2
=
r0 + r

r0 − r
,

r20 − r2

r20 − 2rr0 cos θ + r2
≥ r20 − r2

(r0 + r)2
=
r0 − r
r0 + r

.

• (b) If u is harmonic in r < r0 and continuous on r ≤ r0, then

u(r, θ) =
1

2π

∫ 2π

0

r20 − r2

r20 − 2rr0 cos(θ − φ) + r2
u(r0, φ) dφ

by the Poisson integral formula. If u ≥ 0, then by using the previous
inequalities in this equation, followed by the mean value property of
harmonic functions, we get that

u(r, θ) ≤
(
r0 + r

r0 − r

)
1

2π

∫ 2π

0
u(r0, φ) dφ =

(
r0 + r

r0 − r

)
u(0),

u(r, θ) ≥
(
r0 − r
r0 + r

)
1

2π

∫ 2π

0
u(r0, φ) dφ =

(
r0 − r
r0 + r

)
u(0),

which shows that(
r0 − r
r0 + r

)
u(0) ≤ u(r, θ) ≤

(
r0 + r

r0 − r

)
u(0).

• (c) Suppose u ≥ 0 is harmonic on R2. Fix r ≥ 0. Then for any r0 > r,
we have(

1− ρ
1 + ρ

)
u(0) ≤ u(r, θ) ≤

(
1 + ρ

1− ρ

)
u(0), 0 < ρ =

r

r0
< 1.

Taking the limit of this inequality as ρ→ 0+, we get that

u(0) ≤ u(r, θ) ≤ u(0),

for all (r, θ), meaning that u = u(0) is constant.
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• The assumption that u ≥ 0 is crucial here. For example,

u(x, y) = x2 − y2

is a nonconstant harmonic function on R2, but it’s not nonnegative.

• (d) Suppose that u is a harmonic function on R2. Let M ∈ R be any
constant. If u ≤ M on R2, meaning that u is bounded from above,
then v = M − u is a nonnegative harmonic function on R2, so it is
constant. Similarly, if m ∈ R and u ≥ m on R2, meaning that u
is bounded from below, then v = u − m is a nonnegative harmonic
function, so it is constant.

• In particular, if a harmonic function u is bounded on R2, meaning that
|u(x, y)| ≤M , then it must be constant.

• If u : R2 → R is continuous and u(x1, y1) = c1, u(x2, y2) = c2, then u
takes on all values between c1 and c2 along a continuous curve joining
(x1, y1) and (x2, y2) by the intermediate value theorem. Hence, if
c ∈ R and u(x, y) 6= c for any (x, y) ∈ R2, then the range of u must be
contained in either (−∞, c) or (c,∞).

• If u : R2 → R is a harmonic function that does not take the value c,
then the previous results imply that u is either bounded from above or
from below, so u is constant. It follows that a nonconstant harmonic
function on R2 takes on all real values.
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7.1.1

• (a) The nth complex Fourier coefficient of the function is given for
n 6= 0 by

cn =
1

2L

∫ L

−L
xe−inπx/L dx

=
1

2L

[
− L

inπ
xe−inπx/L +

L2

(inπ)2
e−inπx/L

]L
−L

=
iL

2nπ

(
e−inπ + einπ

)
= − L

nπi
cos(nπ)

=
L

nπi
(−1)n+1

and c0 = 0, so

x =
L

πi

∑
n 6=0

(−1)n+1

n
einπx/L |x| < L.

• (f) We have

eax cos(bx) =
1

2

[
e(a+ib)x + e(a−ib)x

]
.

For λ ∈ C consider the Fourier coefficients of the complex-valued func-
tion eλx:

1

2L

∫ L

−L
eλxe−inπx/L dx =

1

2L

∫ L

−L
e(λ−inπ/L)x dx

=
1

2L

[
e(λ−inπ/L)x

λ− inπ/L

]L
−L

=
eλL−inπ − e−λL+inπ

2(λL− inπ)

Using this result with λ = a+ ib and λ = a− ib, we find that the nth
Fourier coefficient of eax cos(bx) on [−L,L] is given by

cn =
1

2L

∫ L

−L
eax cos(bx)e−inπx/L dx

=
1

4

[
eaL−i(nπ−bL) − e−aL+i(nπ−bL)

aL− i(nπ − bL)
+
eaL−i(nπ+bL) − e−aL+i(nπ+bL)

aL− i(nπ + bL)

]
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7.1.2

• (a) Collecting terms and using Euler’s formula, we have

n=N∑
n=−N

einθ = 1 +
(
eiθ + e−iθ

)
+
(
e2iθ + e−2iθ

)
+ · · ·+

(
eiNθ + e−iNθ

)
= 1 + 2 cos θ + 2 cos(2θ) + · · ·+ 2 cos(Nθ).

• (b) We have
N∑
n=1

zn = z
N−1∑
n=0

zn =
z − zN+1

1− z
.

It follows that

n=N∑
n=−N

einθ = 1 +
N∑
n=1

(
eiθ
)n

+
N∑
n=1

(
e−iθ

)n
= 1 +

eiθ − ei(N+1)θ

1− eiθ
+
e−iθ − e−i(N+1)θ

1− e−iθ

= 1 +
eiθ/2 − ei(N+1/2)θ

e−iθ/2 − eiθ/2
+
e−iθ/2 − e−i(N+1/2)θ

eiθ/2 − e−iθ/2

=
ei(N+1/2)θ − e−i(N+1/2)θ

eiθ/2 − e−iθ/2

=
sin ((N + 1/2)θ)

sin(θ/2)
.

• (c) From (a) and (b), we get

1 + 2 cos θ + 2 cos(2θ) + · · ·+ 2 cos(Nθ) =
sin ((N + 1/2)θ)

sin(θ/2)
.
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