
Problem Set 3: Solutions
Math 118B: Winter Quarter, 2018

6.4.1

• Let v = u2 − u1 and w = u3 − u2. Then v, w are harmonic in D and
v, w ≤ 0 on ∂D. The (weak) maximum principle implies that v, w ≤ 0
on D̄, so u1 ≤ u2 ≤ u3 on D̄.

6.4.3

• The functions
u(x, y) = A sinx sinh y

are solutions for any constant A, so solutions are not unique.

• This doesn’t contradict Theorem 2 because the domain

D =
{

(x, y) ∈ R2 : 0 < x < π, 0 < y <∞
}

is not bounded, as would be required for uniqueness in Theorem 2.

6.4.4

• The functions u1(x, y), u2(x, y) are not continuous at (0, 0), so they
are not harmonic in

D =
{

(x, y) ∈ R2 : x2 + y2 < 1
}
,

as would be required for uniqueness in Theorem 2.
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6.4.5

• The normal to the graph z = u(x, y) is (ux, uy), so the equation of the
tangent plane at (x0, y0) is z = `(x, y) where

`(x, y) = a(x− x0) + b(y − y0) + c,

a = ux(x0, y0), b = uy(x0, y0), c = u(x0, y0).

The function ` is linear, so it is harmonic.

• Consider v = u− `. Then v is harmonic in D and

v(x0, y0) = 0, vx(x0, y0) = 0, vy(x0, y0) = 0.

Since D is open, there exists ε > 0 such that the disc Bε(x0, y0) of
radius ε and center (x0, y0) is contained in D.

• There are two possibilities: (a) v has one sign on Bε(x0, y0), meaning
that either v ≥ 0 or v ≤ 0; (b) v changes sign on Bε(x0, y0), meaning
that there exist (x1, y1), (x2, y2) ∈ Bε(x0, y0) such that v(x1, y1) > 0,
v(x2, y2) < 0.

• In case (a), the harmonic function v has a local min or max at (x0, y0),
so the strong maximum principle implies that v = 0 is constant on
Bε(x0, y0), so the graph of u intersects its tangent plane at every point.

• In case (b), there is a continuous curve in Bε(x0, y0) from (x1, y1) to
(x2, y2) that does not pass through (x0, y0). The intermediate value
theorem implies that v must vanish at some point (x3, y3) on this
curve, so the tangent plane intersects the graph of u, at least, at two
points (x0, y0) and (x3, y3).
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6.4.6

• Let

u(x, y) = log
(
x2 + y2

)
.

We compute that, for (x, y) 6= (0, 0),

ux =
2x

x2 + y2
, uxx =

−2x2 + 2y2

x2 + y2
,

uy =
2y

x2 + y2
, uyy =

2x2 − 2y2

x2 + y2
,

so uxx + uyy = 0, and u is harmonic in R2 \ {(0, 0)}.

• If b < 1, then u(x, y) is harmonic in the disc Bb(1, 0) of radius b and
center (1, 0). The value of u at the center of the disc is

u(1, 0) = log 1 = 0.

• The boundary of the disc ∂Bb(1, 0) has the parametric equation

x = 1 + b cos θ, y = b sin θ 0 ≤ θ ≤ 2π.

The mean value theorem for harmonic functions implies that

u(1, 0) =
1

2π

∫ 2π

0
u (1 + b cos θ, b sin θ) dθ,

so if 0 ≤ b < 1, it follows that∫ 2π

0
log
[
(1 + b cos θ)2 + (b sin θ)2

]
dθ = 0.

• If b > 2, then, since cos θ ≥ −1,

(1 + b cos θ)2 + (b sin θ)2 = 1 + 2b cos θ + b2

≥ 1− 2b+ b2

≥ (b− 1)2

> 1,

so log
[
(1 + b cos θ)2 + (b sin θ)2

]
> 0, and∫ 2π

0
log
[
(1 + b cos θ)2 + (b sin θ)2

]
dθ > 0.
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6.4.7

• (a) If u(x, y) is a solution of the Dirichlet problem, then u(x, y) + Ay
is also a solution for any constant A, so solutions are not unique.

• (b) For y > 0, we have

u(x, y) =
1

π

∫ ∞
−∞

K(x− s, y)f(s) ds, K(x, y) =
y

x2 + y2
> 0.

• For (x, y) 6= (0, 0),

Kx(x, y) =
−2xy

(x2 + y2)2
, Kxx(x, y) =

2y(x2 − y2)
(x2 + y2)3

,

Ky(x, y) =
x2 − y2

(x2 + y2)2
, Kyy(x, y) =

2y(y2 − x2)
(x2 + y2)3

,

so Kxx + Kyy = 0. Differentiating under the integral sign, which
is justified by the differentiability of the integrand and fact that its
derivatives are bounded by an integrable function, we get for y > 0
that

uxx + uyy =
1

π

∫ ∞
−∞

[Kxx(x− s, y) +Kyy(x− s, y)] f(s) ds

= 0,

so u is harmonic.

• We will show that u(x, y)→ f(x0) as (x, y)→ (x0, 0
+).

• Suppose that y > 0 and δ > 0. We have

1

π

∫ x+δ

x−δ
K(x− s, y) ds =

1

π

∫ δ

−δ
K(s, y) ds,

and making a change of variable s = yt, we find that

1

π

∫ δ

−δ
K(s, y) ds =

2

π

∫ δ/y

0

1

1 + t2
dt =

2

π
tan−1

(
δ

y

)
.

Hence,

1

π

∫ ∞
−∞

K(s, y) ds = 1, (1)

lim
y→0+

1

π

∫
|s|≥δ

K(s, y) ds = 0. (2)
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• Using (1), we can write

u(x, y)− f(x0) =
1

π

∫ ∞
−∞

K(x− s, y) [f(s)− f(x0)] ds.

We will show that the right-hand side of this equation goes to zero as
(x, y)→ (x0, 0

+).

• Let ε > 0 be given. Since f is continuous, there exists δ > 0, depending
on x0 and ε, such that

|f(s)− f(x0)| <
ε

2
if |s− x0| < δ. (3)

Then

|u(x, y)− f(x0)| ≤
1

π

∫
|s−x0|<δ

K(x− s, y) |f(s)− f(x0)| ds

+
1

π

∫
|s−x0|≥δ

K(x− s, y) |f(s)− f(x0)| ds.
(4)

• Using (3) and (1), we can estimate the first integral in (4) by

1

π

∫
|s−x0|<δ

K(x− s, y) |f(s)− f(x0)| ds

<
ε

2
· 1

π

∫
|s−x0|<δ

K(x− s, y) ds <
ε

2
.

(5)

• If |x− x0| < δ/4, then [x− δ/4, x+ δ/4] ⊂ [x0 − δ, x0 + δ], so

{s : |s− x0| ≥ δ} ⊂ {s : |s− x| ≥ δ/4},

and ∫
|s−x0|≥δ

K(x− s, y) ds ≤
∫
|s−x|≥δ/4

K(x− s, y) ds.

• Since |f(x)| ≤M , we have |f(s)− f(x0)| ≤ 2M , and can we estimate
the second integral in (4) by

1

π

∫
|s−x0|≥δ

K(x− s, y) |f(s)− f(x0)| ds ≤ 2M · 1

π

∫
|s|≥δ/4

K(s, y) ds.

From (2), there exists η > 0 such that

1

π

∫
|s|≥δ/4

K(s, y) ds <
ε

4M
if 0 < y < η,
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in which case

1

π

∫
|s−x0|≥δ

K(x− s, y) |f(s)− f(x0)| ds <
ε

2
. (6)

• Using (5)–(6) in (4), we find that if |x−x0| < δ/4 and 0 < y < η, then

|u(x, y)− f(x0)| < ε,

meaning that u(x, y)→ f(x0) as (x, y)→ (x0, 0
+).

• This continuity result is stronger than the existence of the “vertical”
limit u(x0, y)→ f(x0) as y → 0+ with x0 fixed, which would be a bit
simpler to prove.
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6.4.8

• (a) We have

1 + z

1− z
=

(1 + z)(1− z̄)
(1− z)(1− z̄)

=
1 + z − z̄ − |z|2

1− z − z̄ + |z|2

=
1− r2

1− 2r cos θ + r2
+ i

2r sin θ

1− 2r cos θ + r2

If w = a+ ib, then =(w2) = 2ab, so

U(r, θ) = =
(

1 + z

1− z

)2

=
4r(1− r2) sin θ

(1− 2r cos θ + r2)2
.

• After some algebra, one can check that

1

r
(rUr)r +

1

r2
Uθθ = 0.

This result also follows from the fact that U is the imaginary part of
an analytic function on C \ {1}.

• (b) If θ 6≡ 0, then limr→1−
(
1− 2r cos θ + r2

)
= 2− 2 cos θ 6= 0, so

lim
r→1−

4r(1− r2) sin θ

(1− 2r cos θ + r2)2
= 0.

If θ ≡ 0, then U(r, 0) = 0 for all r < 1. In either case

lim
r→1−

U(r, θ) = 0.

• (c) Although all the radial limits of U(r, θ), in which r → 1− with θ
fixed, exist and are zero, the function is not continuous at (1, 0). In
Cartesian coordinates, we have

u(x, y) =
4y(1− x2 − y2)
[(x− 1)2 + y2]2

.

It follows that

u(1− y, y) =
2(1− y)

y2
→∞ as y → 0+.

The uniqueness theorem does not apply because u is not continuous
on the closed unit disc D̄.
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• Note that the existence and equality of the radial limits is not sufficient
to imply the continuity of u. This illustrates the necessity in 6.4.7 of
proving the limit with (x, y) → (x0, 0), not just (x0, y) → (x0, 0) to
show the continuity of u(x, y) at (x0, 0).
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