
Partial Differential Equations
Math 118B, Winter 2018
Problem Set 6: Solutions

1. (a) Define

tanh θ =
sinh θ

cosh θ
, sech θ =

1

cosh θ

Show that

sech2 θ = 1− tanh2 θ, (tanh θ)′ = sech2 θ, (sech θ)′ = − tanh θ sech θ,

and compare with the corresponding identities for trigonometric functions.

(b) Look for solutions of the KdV traveling wave equation

u′′ +
1

2
u2 − cu = 0,

with wave velocity c, of the form

u(θ) = a sech2(bθ).

Show that there is a one-parameter family of solutions and determine b, c in
terms of a.

Solution

• (a) Using the definitions

cosh θ =
eθ + e−θ

2
, sinh θ =

eθ − e−θ

2
,

one verifies that
cosh2 θ − sinh2 θ = 1.

Division by cosh2 θ then gives

1− tanh2 θ = sech2 θ.
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• It also follows directly from the definitions that

(cosh θ)′ = sinh θ, (sinh θ)′ = cosh θ.

Hence

(tanh θ)′ =

(
sinh θ

cosh θ

)′
=

cosh2 θ − sinh2 θ

cosh2 θ
= sech2 θ,

(sech θ)′ =

(
1

cosh θ

)′
= − sinh θ

cosh2 θ
= − tanh θ sech θ.

• The sign differences from the corresponding trigonometric identities
follow from the fact that cos θ = cosh(iθ), sin θ = −i sinh(iθ).

• (b) We have

u′ = −2ab sech bθ · tanh bθ sech bθ

= −2ab tanh bθ + 2ab tanh3 bθ,

u′′ = −2ab2 sech2 bθ + 6ab sech2 bθ tanh2 bθ

= −2ab2 sech2 bθ + 6ab2 sech2 bθ − 6ab2 sech4 bθ,

so

u′′ +
1

2
u2 − cu = 4ab2 sech2 bθ − 6ab2 sech4 bθ

+
1

2
a2 sech4 bθ − ac sech2 bθ.

• We get a solution if a = 12b2, c = 4b2, meaning that

b =

√
a

12
, c =

1

3
a.
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2. (a) Suppose that u(x, t) is a smooth solution of the KdV equation

ut + uux + uxxx = 0

that is a Schwartz function of x ∈ R for every t ∈ R. Show that

∂t

(
u2x −

1

3
u3
)

+ ∂x

(
2uxuxxx − u2xx + 2uu2x − u2uxx −

1

4
u4
)

= 0.

(b) Deduce that the following integral is conserved on solutions of the KdV
equation: ∫ ∞

−∞

(
u2x −

1

3
u3
)
dx = constant.

Solution

• (a) Differentiating the equation with respect to x and multipying the
result by ux, we have

uxuxt + uuxuxx + u3x + uxuxxxx = 0.

We can write

uxuxt =
1

2
∂t
(
u2x
)
,

uuxuxx =
1

2
u∂x

(
u2x
)

=
1

2
∂x
(
uu2x
)
− 1

2
u3x,

uxuxxxx = ∂x (uxuxxx)− uxxuxxx

= ∂x

(
uxuxxx −

1

2
u2xx

)
It follows that

∂t
(
u2x
)

+ ∂x
(
2uxuxxx − u2xx + uu2x

)
+ u3x = 0. (1)

• Multiplying the equation by u2, we have

u2ut + u3ux + u2uxxx = 0.
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which we can write as

∂t

(
1

3
u3
)

+ ∂x

(
1

4
u4 + u2uxx − uu2x

)
+ u3x = 0. (2)

Subtracting (2) from (1), we get the result.

• (b) Integration of the conservation law over −∞ < x <∞ gives

d

dt

∫ ∞
−∞

(
u2x −

1

3
u3
)
dx = 0,

since, for Schwartz functions u(x, t) of x,∫ ∞
−∞

∂x

(
2uxuxxx − u2xx + 2uu2x − u2uxx −

1

4
u4
)
dx

=

[
2uxuxxx − u2xx + 2uu2x − u2uxx −

1

4
u4
]∞
−∞

= 0.

• It follows that ∫ ∞
−∞

(
u2x −

1

3
u3
)
dx = constant

is a constant independent of time.

Remark. It turns out that the KdV equation has infinitely many conserved
quantities, which is one indication of its complete integrability.
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3. Consider similarity solutions of the linearized KdV equation

ut + uxxx = 0, u(x, t) = tαF (xtβ),

where α, β are constants and F : R→ R is a function of a single variable.

(a) Show that the similarity solutions satisfy the linearized KdV equation if
β = −1/3 and F (ξ) satisfies the ODE

F ′′′ − 1

3
ξF ′ + αF = 0.

(b) Show that the similarity solutions can satisfy
∫∞
−∞ u(x, t) dx→ 1 as t→ 0

only if α = β.

(c) If α = β = −1/3 and F (ξ), F ′′(ξ) → 0 sufficiently rapidly as ξ → ∞,
show that

F (ξ) = G(3−1/3ξ),

where G(z) is a solution of Airy’s equation

G′′ − zG = 0.

(d) Deduce that the fundamental solution g(x, t) of the linearized KdV equa-
tion, which satisfies

gt + gxxx = 0,

g(x, 0) = δ(x), g(x, t)→ 0 as |x| → ∞

is given by

g(x, t) =
1

3
√

3t
Ai

(
x

3
√

3t

)
where Ai (z) is the solution of Airy’s equation such that

Ai(z)→ 0 as |z| → ∞,
∫ ∞
−∞

Ai(z) dz = 1.

Solution

• (a) If u = tαF (xtβ), then

ut = αtα−1F + βxtalpha+β−1F ′

= tα−1 (αF + βξF ′) ,

uxxx = tα+3βF ′′′,

where ξ = xtβ.
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• Hence, the similarity solution is compatible with the PDE if

α− 1 = α + 3β,

or β = −1/3, in which case F (ξ) satisfies

F ′′′ − 1

3
ξF ′ + αF = 0.

• (b) Making the change of variables ξ = xtβ in the integral of the simi-
larity solution, we have∫ ∞

−∞
u(x, t) dx = tα

∫ ∞
−∞

F (xtβ) dx

= tα−β
∫ ∞
−∞

F (ξ) dξ,

and this can only have a finite, non-zero limit as t→ 0 if α = β.

• (c) If α = β = −1/3, then the ODE for F becomes

F ′′′ − 1

3
(ξF )′ = 0,

which can be integrated to get

F ′′ − 1

3
ξF = 0.

The constant of integration is zero since we assume that F ′′, ξF → 0
as ξ →∞.

• Introducing a rescaled independent variable z = 3−1/3ξ, we get that
F (ξ) = G(z) where G′′ − zG = 0, as stated.

• Taking G(z) = Ai(z), we have that

u(x, t) =
1

3
√

3t
Ai

(
x

3
√

3t

)
is a solution of the linearized KdV equation ut + uxxx = 0.
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• Moreover for all t 6= 0,∫ ∞
−∞

u(x, t) dx =
1

3
√

3t
Ai

(
x

3
√

3t

)
dx

= Ai (ξ) dξ

= 1

This result is compatible with u(x, t) ⇀ δ(x) as t → 0, but the limit
is rather singular, and we need to know more about the Airy function
(and distribution theory) than what is given in the question to show
this is actually the case.
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4. Burgers equation is
ut + uux = νuxx

where ν > 0 is a constant (with the physical interpretation of a viscosity).

Look for traveling wave solutions of Burgers equation

u(x, t) = U(x− ct)

such that

U(ξ)→ UL as ξ → −∞, U(ξ)→ UR as ξ → +∞,

where UL, UR are constants. Show that such a traveling wave exists only if
UL ≥ UR, solve explicitly for U(ξ), and express the velcocity c of the traveling
wave in terms of UL, UR.

Solution

• The traveling wave equation is

νU ′′ = UU ′ − cU ′.

We can integrate this up once to get

νU ′ =
1

2
U2 − cU + b,

where b is a constant of integration.

• If U(ξ) approaches a constant UR as ξ → ∞, then we must have
U ′(ξ) → 0 as ξ → ∞, so UR must be a root of 1

2
U2 − cU + b = 0;

similarly, UL must also be a root. It follows that

1

2
U2 − cU + b =

1

2
(U − UL)(U − UR),

which implies that b = 1
2
ULUR and

c =
1

2
(UL + UR) .

That is, the speed of the traveling wave is the average of its limiting
values.
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• Looking at the phase line of the ODE

νU ′ =
1

2
(U − UL)(U − UR),

we see that U must be between UL and UR to get a bounded traveling
wave. It that case U ′ < 0, where we assume that ν is positive, and
we only have U(ξ) → UL as ξ → −∞ and U(ξ) → UR as ξ → ∞ if
UL > UR. (If UL = UR, then we get a constant solution.)

• Solving the ODE by separation of variables, we get∫
dU

(U − UL)(U − UR)
=

1

2ν

∫
dξ,

which gives (by partial fractions)

1

UL − UR
log

∣∣∣∣U − URU − UL

∣∣∣∣ =
1

2ν
(ξ − ξ0).

Here, ξ0 is a constant of integration that corresponds to a spatial trans-
lation of the traveling wave, and we set ξ0 = 0 without loss of generality.

• For UR < U < UL, we get that

U − UR
UL − U

= eξ/2a, a =
ν

σ
, σ = UL − UR,

so

U(ξ) =
UR + ULe

ξ/2a

1 + eξ/2a
.

This solution can also be written as

U(ξ) = c+
1

2
σ tanh

(
ξ

4a

)
.

Remark. This traveling wave solution describes the profile (called the Taylor
profile) of a weak viscous shock. Only compressive shocks for the inviscid
Burgers equation with UL > UR can arise as a zero viscosity limit; expansion
shocks with UL < UR are non-physical. Note that the width a of the viscous
shock is proportional to the viscosity ν and inversely proportional to the
shock strength σ, as could have been predicted from dimensional analysis:

[ν] =
L2

T
, [σ] =

L

T
, [a] = L.
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