
Ordinary Differential Equations
Math 119B, Spring 2017

Midterm: Solutions

1. [15%] Show that the following system has no closed orbits:

ẋ = cos y + y cosx, ẏ = sinx− x sin y.

Solution.

• Since

∂

∂y
(cos y + y cosx) = − sin y + cosx

∂

∂x
(sinx− x sin y) = cos x− sin y

are equal (and R2 is simply connected), the system is a gradient system
(with potential V (x, y) = −x cos y − y sinx), so it does not have any
closed orbits.
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2. [25%] (a) State the Poincaré-Bendixson theorem.

(b) Show that the system

ẋ = y, ẏ = −x+ y(4− x2 − 4y2)

has at least one closed orbit in the annulus 1 ≤ x2 + y2 ≤ 4.

Solution.

• (a) Poincaré-Bendixson Theorem: Suppose that R ⊂ R2 is a
closed, bounded subset of the plane. If a smooth, planar dynamical
system has no fixed points in R and there is a trajectory x(t) that
enters R and remains in R for all subsequent times t, then R contains
a closed orbit. Moreover, the trajectory x(t) either is a closed orbit or
it approaches a closed orbit as t→∞. (More precisely, the ω-limit set
of x(t) is a closed orbit.)

• (b) We compute that if (x(t), y(t)) is a solution of the ODE, then

1

2

d

dt

(
x2 + y2

)
= xẋ+ yẏ = y2(4− x2 − 4y2).

• On x2 + y2 = 1, we have y2 = 1− x2 and

y2(4− x2 − 4y2) = 3x2y2 ≥ 0,

so any trajectory with x2 + y2 = 1 at some initial time must remain in
the region x2 + y2 ≥ 1 for all subsequent times.

• On x2 + y2 = 4, we have x2 = 4− y2 and

y2(4− x2 − 4y2) = −3y4 ≤ 0,

so any trajectory with x2 + y2 = 4 at some initial time must remain in
the region x2 + y2 ≤ 4 for all subsequent times.

• It follows that the annulus 1 ≤ x2 + y2 ≤ 4 is a trapping region for the
flow. The only fixed point of the system is (x, y) = (0, 0), so this region
doesn’t contain any fixed points. The Poincaré-Bendixson theorem
then implies that the annulus must contain a closed orbit.
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3. [30%] Consider the system

ẋ = y, ẏ = µ+ 2x+ x2 − xy.

where µ is a parameter.

(a) Find the fixed points and classify them.

(b) For what value of µ does a bifurcation occur in this system? What kind
of bifurcation is it?

Solution.

• The fixed points (x̄, ȳ) satisfy ȳ = 0 and x̄2 + 2x̄+ µ = 0, so

x̄ = −1±
√

1− µ.

For µ < 1, there are two fixed points

(x̄, ȳ) =
(
−1±

√
1− µ, 0

)
.

For µ = 1, there is one fixed point

(x̄, ȳ) = (−1, 0),

and for µ > 1, there are no fixed points.

• The Jacobian matrix J of the system is

J(x, y) =

(
0 1

2(1 + x)− y −x

)
• At the fixed point,

J(x̄, 0) =

(
0 1

2(1 + x̄) −x̄

)
,

and, writing τ = trJ , ∆ = det J , we have

τ = −x̄, ∆ = −2 (1 + x̄)

• If x̄ = −1 +
√

1− µ, then ∆ < 0, so the fixed point is a saddle point.
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• If x̄ = −1 −
√

1− µ, then ∆ > 0 and τ > 0, so the fixed point is an
unstable node or spiral. Moreover, we have

τ 2 − 4∆ = x̄2 + 8x̄+ 8 = (x̄+ 4)2 − 8.

• The fixed point is an unstable spiral if τ 2 − 4∆ < 0, or |x̄+ 4| <
√

8
and

−4−
√

8 < x̄ < −4 +
√

8.

This inequality implies that

1−
(

3 +
√

8
)2
< µ < 1−

(
3−
√

8
)2
.

• On the other hand, the fixed point is an unstable node if

1−
(

3−
√

8
)2
< µ < 1 or µ < 1−

(
3 +
√

8
)2
.

• (b) A saddle-node bifurcation occurs at (x, y;µ) = (−1, 0; 1), where the
unstable node coalesces with the saddle point.
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4. [30%] Consider the system

ẋ = x
(
x− x2 − y

)
, ẏ = y (x− µ) .

where µ is a parameter.

(a) Find the fixed point for which both x and y are nonzero. Determine its
stability.

(b) For what value of µ does a bifurcation occur at the fixed point in (a)?
What kind of bifurcation is it?

Solution.

• (a) The fixed point (x̄, ȳ) with x̄, ȳ 6= 0 is

(x̄, ȳ) =
(
µ, µ− µ2

)
,

where µ 6= 0, 1.

• The Jacobian is

J(x, y) =

(
2x− 3x2 − y −x

y x− µ

)
,

so

J(x̄, ȳ) =

(
µ− 2µ2 −µ
µ− µ2 0

)
.

The trace and determinant of this matrix are

τ = µ(1− 2µ), ∆ = µ2 (1− µ) .

• The fixed point is unstable for 0 < µ < 1/2 (since τ > 0) and µ > 1
(since ∆ < 0).

• The fixed point is stable for µ < 0 and 1/2 < µ < 1 (since ∆ > 0,
τ < 0).

• Excluding the values µ = 0, 1 where one of x̄ or ȳ is zero, and equilib-
rium bifurcations occur, we see that the fixed point changes stability
at µ = 1/2.

5



Figure 1: Phase plane for µ = 0.46.

Figure 2: Phase plane for µ = 0.52.

• As µ increases through 1/2, the trace τ decreases through 0 at a
nonzero, positive value of ∆ = 1/8. It follows that the fixed point
changes from an unstable spiral point to a stable spiral point, and the
Jacobian matrix has a complex conjugate pair of eigenvalues that cross
from the right-half to the left-half of the complex plane. The Hopf bifur-
cation theorem implies (subject to a genericity condition on the nonlin-
earity) that a Hopf bifurcation takes place at (x, y;µ) = (1/2, 1/4; 1/2).
Numerical solutions show that there is a stable limit cycle for µ close
to 1/2 and µ < 1/2.
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