Ordinary Differential Equations Math 119B, Spring 2017 Midterm: Solutions

1. [15%] Show that the following system has no closed orbits:

 $\dot{x} = \cos y + y \cos x, \qquad \dot{y} = \sin x - x \sin y.$

Solution.

• Since

$$\frac{\partial}{\partial y} \left(\cos y + y \cos x \right) = -\sin y + \cos x$$
$$\frac{\partial}{\partial x} \left(\sin x - x \sin y \right) = \cos x - \sin y$$

are equal (and \mathbb{R}^2 is simply connected), the system is a gradient system (with potential $V(x, y) = -x \cos y - y \sin x$), so it does not have any closed orbits.

2. [25%] (a) State the Poincaré-Bendixson theorem.

(b) Show that the system

$$\dot{x} = y, \qquad \dot{y} = -x + y(4 - x^2 - 4y^2)$$

has at least one closed orbit in the annulus $1 \le x^2 + y^2 \le 4$.

Solution.

- (a) **Poincaré-Bendixson Theorem**: Suppose that $R \subset \mathbb{R}^2$ is a closed, bounded subset of the plane. If a smooth, planar dynamical system has no fixed points in R and there is a trajectory $\mathbf{x}(t)$ that enters R and remains in R for all subsequent times t, then R contains a closed orbit. Moreover, the trajectory $\mathbf{x}(t)$ either is a closed orbit or it approaches a closed orbit as $t \to \infty$. (More precisely, the ω -limit set of $\mathbf{x}(t)$ is a closed orbit.)
- (b) We compute that if (x(t), y(t)) is a solution of the ODE, then

$$\frac{1}{2}\frac{d}{dt}\left(x^2 + y^2\right) = x\dot{x} + y\dot{y} = y^2(4 - x^2 - 4y^2).$$

• On $x^2 + y^2 = 1$, we have $y^2 = 1 - x^2$ and

$$y^{2}(4 - x^{2} - 4y^{2}) = 3x^{2}y^{2} \ge 0,$$

so any trajectory with $x^2 + y^2 = 1$ at some initial time must remain in the region $x^2 + y^2 \ge 1$ for all subsequent times.

• On $x^2 + y^2 = 4$, we have $x^2 = 4 - y^2$ and

$$y^2(4 - x^2 - 4y^2) = -3y^4 \le 0,$$

so any trajectory with $x^2 + y^2 = 4$ at some initial time must remain in the region $x^2 + y^2 \le 4$ for all subsequent times.

• It follows that the annulus $1 \le x^2 + y^2 \le 4$ is a trapping region for the flow. The only fixed point of the system is (x, y) = (0, 0), so this region doesn't contain any fixed points. The Poincaré-Bendixson theorem then implies that the annulus must contain a closed orbit.

3. [30%] Consider the system

$$\dot{x} = y, \qquad \dot{y} = \mu + 2x + x^2 - xy.$$

where μ is a parameter.

(a) Find the fixed points and classify them.

(b) For what value of μ does a bifurcation occur in this system? What kind of bifurcation is it?

Solution.

• The fixed points (\bar{x}, \bar{y}) satisfy $\bar{y} = 0$ and $\bar{x}^2 + 2\bar{x} + \mu = 0$, so

$$\bar{x} = -1 \pm \sqrt{1 - \mu}.$$

For $\mu < 1$, there are two fixed points

$$(\bar{x},\bar{y}) = \left(-1 \pm \sqrt{1-\mu},0\right).$$

For $\mu = 1$, there is one fixed point

$$(\bar{x},\bar{y})=(-1,0),$$

and for $\mu > 1$, there are no fixed points.

• The Jacobian matrix J of the system is

$$J(x,y) = \left(\begin{array}{cc} 0 & 1\\ 2(1+x) - y & -x \end{array}\right)$$

• At the fixed point,

$$J(\bar{x},0) = \begin{pmatrix} 0 & 1\\ 2(1+\bar{x}) & -\bar{x} \end{pmatrix},$$

and, writing $\tau = \operatorname{tr} J$, $\Delta = \det J$, we have

$$\tau = -\bar{x}, \qquad \Delta = -2\left(1 + \bar{x}\right)$$

• If $\bar{x} = -1 + \sqrt{1-\mu}$, then $\Delta < 0$, so the fixed point is a saddle point.

• If $\bar{x} = -1 - \sqrt{1 - \mu}$, then $\Delta > 0$ and $\tau > 0$, so the fixed point is an unstable node or spiral. Moreover, we have

$$\tau^2 - 4\Delta = \bar{x}^2 + 8\bar{x} + 8 = (\bar{x} + 4)^2 - 8.$$

• The fixed point is an unstable spiral if $\tau^2 - 4\Delta < 0$, or $|\bar{x} + 4| < \sqrt{8}$ and

$$-4 - \sqrt{8} < \bar{x} < -4 + \sqrt{8}.$$

This inequality implies that

$$1 - \left(3 + \sqrt{8}\right)^2 < \mu < 1 - \left(3 - \sqrt{8}\right)^2$$
.

• On the other hand, the fixed point is an unstable node if

$$1 - (3 - \sqrt{8})^2 < \mu < 1$$
 or $\mu < 1 - (3 + \sqrt{8})^2$.

• (b) A saddle-node bifurcation occurs at $(x, y; \mu) = (-1, 0; 1)$, where the unstable node coalesces with the saddle point.

4. [30%] Consider the system

$$\dot{x} = x (x - x^2 - y), \qquad \dot{y} = y (x - \mu).$$

where μ is a parameter.

(a) Find the fixed point for which both x and y are nonzero. Determine its stability.

(b) For what value of μ does a bifurcation occur at the fixed point in (a)? What kind of bifurcation is it?

Solution.

• (a) The fixed point (\bar{x}, \bar{y}) with $\bar{x}, \bar{y} \neq 0$ is

$$(\bar{x},\bar{y}) = \left(\mu,\mu-\mu^2\right),\,$$

where $\mu \neq 0, 1$.

• The Jacobian is

$$J(x,y) = \begin{pmatrix} 2x - 3x^2 - y & -x \\ y & x - \mu \end{pmatrix},$$

 \mathbf{SO}

$$J(\bar{x},\bar{y}) = \begin{pmatrix} \mu - 2\mu^2 & -\mu \\ \mu - \mu^2 & 0 \end{pmatrix}.$$

The trace and determinant of this matrix are

$$\tau = \mu (1 - 2\mu), \qquad \Delta = \mu^2 (1 - \mu).$$

- The fixed point is unstable for $0 < \mu < 1/2$ (since $\tau > 0$) and $\mu > 1$ (since $\Delta < 0$).
- The fixed point is stable for $\mu < 0$ and $1/2 < \mu < 1$ (since $\Delta > 0$, $\tau < 0$).
- Excluding the values $\mu = 0, 1$ where one of \bar{x} or \bar{y} is zero, and equilibrium bifurcations occur, we see that the fixed point changes stability at $\mu = 1/2$.

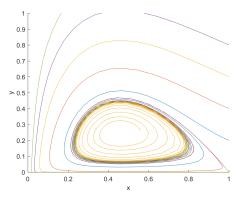


Figure 1: Phase plane for $\mu = 0.46$.

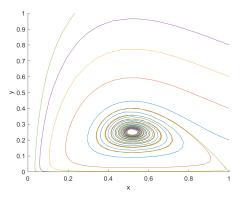


Figure 2: Phase plane for $\mu = 0.52$.

• As μ increases through 1/2, the trace τ decreases through 0 at a nonzero, positive value of $\Delta = 1/8$. It follows that the fixed point changes from an unstable spiral point to a stable spiral point, and the Jacobian matrix has a complex conjugate pair of eigenvalues that cross from the right-half to the left-half of the complex plane. The Hopf bifurcation theorem implies (subject to a genericity condition on the nonlinearity) that a Hopf bifurcation takes place at $(x, y; \mu) = (1/2, 1/4; 1/2)$. Numerical solutions show that there is a stable limit cycle for μ close to 1/2 and $\mu < 1/2$.