ORDINARY DIFFERENTIAL EQUATIONS
Math 119B, Spring 2017
Midterm: Solutions

1. [15%] Show that the following system has no closed orbits:

T =cosy + ycosz, Yy =sinx — rsiny.
Solution.
e Since
E (cosy+ycosz) = —siny + cosx
Y
o . . :
— (sinz — xsiny) = cosz — siny
x

are equal (and R? is simply connected), the system is a gradient system
(with potential V(z,y) = —zcosy — ysinx), so it does not have any
closed orbits.



2. [25%] (a) State the Poincaré-Bendixson theorem.
(b) Show that the system

t=y, g=-c+yld-a®—4y)
has at least one closed orbit in the annulus 1 < 22 + 3% < 4.

Solution.

e (a) Poincaré-Bendixson Theorem: Suppose that R C R? is a
closed, bounded subset of the plane. If a smooth, planar dynamical
system has no fixed points in R and there is a trajectory x(¢) that
enters R and remains in R for all subsequent times ¢, then R contains
a closed orbit. Moreover, the trajectory x(¢) either is a closed orbit or
it approaches a closed orbit as t — oo. (More precisely, the w-limit set
of x(t) is a closed orbit.)

e (b) We compute that if (x(t),y(t)) is a solution of the ODE, then

1d
37 ($2 + y2) =xi+yy = y2(4 — 2% - 4y2).

e On 22 +y? =1, we have y?> = 1 — 22 and
y* (4 —2® — 4y?) = 32%y* > 0,

so any trajectory with 22 + y? = 1 at some initial time must remain in
the region 22 + 4% > 1 for all subsequent times.

e On 22 +y? = 4, we have 22 = 4 — ¢? and
v (4 —2* —4y*) = =3y* <0,

so any trajectory with 22 + y? = 4 at some initial time must remain in
the region 22 + 3% < 4 for all subsequent times.

e It follows that the annulus 1 < 2?2 + 4? < 4 is a trapping region for the
flow. The only fixed point of the system is (z,y) = (0,0), so this region
doesn’t contain any fixed points. The Poincaré-Bendixson theorem
then implies that the annulus must contain a closed orbit.



3. [30%] Consider the system
T =1, = p+ 2z + 22— ay.

where p is a parameter.
(a) Find the fixed points and classify them.

(b) For what value of u does a bifurcation occur in this system? What kind
of bifurcation is it?

Solution.
e The fixed points (Z,7) satisfy ¥ = 0 and 7° + 27 + = 0, so
T=-1+1- L
For u < 1, there are two fixed points
(7,7) = (—H: 1 —u,0> .
For ;1 = 1, there is one fixed point

(f7 g) - <_17 0)7
and for p > 1, there are no fixed points.

e The Jacobian matrix J of the system is

0 1
J(m’y)_(Z(l—i—m)—y —x)
e At the fixed point,

J(z,0) = ( 2(11@) —1:7: )

and, writing 7 = trJ, A = det J, we have

T = —1ZI, A=-2(1+x)
o If 7 =—1++/1—p, then A <0, so the fixed point is a saddle point.
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Ifz=-1-—+/1—pu,then A >0 and 7 > 0, so the fixed point is an
unstable node or spiral. Moreover, we have

T2 4N =72 + 8T+ 8 = (T +4)° - 8.

The fixed point is an unstable spiral if 72 — 4A < 0, or |Z + 4] < /8

and
4 -8 < T < —4+VS

This inequality implies that

2

2
1—<3+\/§> <u<1—(3—\/§> .
On the other hand, the fixed point is an unstable node if
2 2
1—(3—\/§) <u<1 or u<1—(3+\/§) .

(b) A saddle-node bifurcation occurs at (x,y; u) = (—1,0; 1), where the
unstable node coalesces with the saddle point.



4. [30%)] Consider the system

i—a(o—at—y),  G—ylo—p.

where p is a parameter.

(a) Find the fixed point for which both x and y are nonzero. Determine its
stability.

(b) For what value of p does a bifurcation occur at the fixed point in (a)?
What kind of bifurcation is it?

Solution.
e (a) The fixed point (Z,y) with Z,y # 0 is
(@,9) = (0 — 11%) |
where p # 0, 1.

e The Jacobian is

2r — 312 — —x
J@w)z( Y >,

y T~ p

o= (1 ).

=

The trace and determinant of this matrix are

SO

T=p(l=2pn), A=p*(1-p).

e The fixed point is unstable for 0 < p < 1/2 (since 7 > 0) and p > 1
(since A < 0).

e The fixed point is stable for 4 < 0 and 1/2 < p < 1 (since A > 0,
T <0).

e Excluding the values p = 0,1 where one of z or ¥ is zero, and equilib-
rium bifurcations occur, we see that the fixed point changes stability
at u=1/2.



Figure 2: Phase plane for y = 0.52.

e As p increases through 1/2, the trace 7 decreases through 0 at a
nonzero, positive value of A = 1/8. It follows that the fixed point
changes from an unstable spiral point to a stable spiral point, and the
Jacobian matrix has a complex conjugate pair of eigenvalues that cross
from the right-half to the left-half of the complex plane. The Hopf bifur-
cation theorem implies (subject to a genericity condition on the nonlin-
earity) that a Hopf bifurcation takes place at (z,y;u) = (1/2,1/4;1/2).
Numerical solutions show that there is a stable limit cycle for p close
to 1/2 and p < 1/2.



