
Sample Problems: Midterm 1

1. (a) Is the following system a gradient system? A Hamiltonian system?

ẋ = −y + x3, ẏ = x+ y5.

(b) Show that the system has no periodic orbits.

Solution.

• (a) If the system
ẋ = f(x, y), ẏ = g(x, y)

is a gradient system with

f = −∂V
∂x

, g = −∂V
∂y

,

then
∂f

∂y
=
∂g

∂x
.

Here f(x, y) = −y + x3, g(x, y) = x+ y5 and

∂f

∂y
= −1,

∂g

∂x
= 1,

so the system is not a gradient system.

• If the system is a Hamiltonian system with

f =
∂H

∂y
, g = −∂H

∂x
,

then
∂f

∂x
+
∂g

∂y
= 0,

but here
∂f

∂x
+
∂g

∂y
= 3x2 + 5y4,

so the system is not a Hamiltonian system.



• (b) On any orbit (x, y), except the fixed point (x, y) = (0, 0), we have

d

dt

(
x2 + y2

)
= 2xẋ+ 2yẏ

= 2x
(
−y + x3

)
+ 2y

(
x+ y5

)
= 2x4 + 2y6

< 0.

• On a closed orbit, we would have both∮
d

dt

(
x2 + y2

)
dt < 0 and

∮
d

dt

(
x2 + y2

)
dt = 0,

which is a contradiction.



2. Consider the system

ẋ = x [x(1− x)− y] , ẏ = y(x− µ),

where µ is a parameter.

(a) Find the fixed points and determine their linearized stability.

(b) Find the bifurcation points and classify the bifurcations.

Solution.

• (a) The fixed points for (x, y) are

(0, 0), (1, 0), (µ, µ(1− µ)) .

• The Jacobian matrix is(
2x− 3x2 − y −x

y x− µ

)
.

• The Jacobian matrix at (0, 0) is(
0 0
0 −µ

)
with eigenvalues λ = 0,−µ (a degenerate case with a zero eigenvalue
of multiplicity 2 at µ = 0 ). The fixed point is unstable if µ < 0 and
linearly stable if µ > 0.

• The Jacobian matrix at (1, 0) is(
−1 −1
0 1− µ

)
with eigenvalues λ = −1, 1 − µ. The fixed point is unstable (saddle
point) if µ < 1 and asymptotically stable (stable node) if µ > 1.

• The Jacobian matrix at (µ, µ(1− µ)) is(
µ(1− 2µ) −µ
µ(1− µ) 0

)



with trace τ = µ(1− 2µ), determinant ∆ = µ2(1− µ), and eigenvalues

λ =
1

2
µ
[
1− 2µ±

√
4µ2 − 3

]
.

The equilibrium is asymptotically stable when τ < 0 and ∆ > 0, which
occurs when µ < 0 or 1/2 < µ < 1. It is unstable when 0 < µ < 1/2 or
µ > 1.

• We’re not asked to classify the fixed points, but one finds the following
classification for this fixed point. Let a =

√
3/4. Then:

µ ≤ −a stable node;

−a < µ < 0 stable spiral;

0 < µ < 1/2 unstable spiral;

1/2 < µ < a stable spiral;

a ≤ µ < 1 stable node;

µ > 1 saddle point.

• (b) The stability of the fixed points changes at µ = 0, 1/2, 1.

• There is a (degenerate) transcritical bifurcation at (x, y;µ) = (0, 0; 0),
and a transcritical bifurcation at (x, y;µ) = (1, 0; 1).

• There is a Hopf bifurcation at (x, y;µ) = (1/2, 1/4; 1/2), where the
eigenvalues λ of the linearized system are a complex-conjugate pair
that crosses the imaginary λ-axis (from the right-half to the left-half of
the complex plane) as µ increases through 1/2.



3. (a) Write the scalar ODE

ẍ+ µ
(
x2 − 4

)
ẋ+ x = 1

as a first order system for (x, y) where

y =
ẋ

µ
+
x3

3
− 4x.

(b) Give a qualitative argument for the existence of a limit cycle solution
when µ is large and positive. Sketch the limit cycle in the phase plane.

(c) Extra credit: Estimate the period of the limit cycle for large values of µ.

Solution.

• (a) The ODE can be written as µẏ + x = 1, so

ẋ = µ

(
y − x3

3
+ 4x

)
, ẏ =

1− x
µ

.

(b) For large µ, the trajectory of the limit cycle moves slowly along the
curve

y =
x3

3
− 4x (1)

and x jumps rapidly across the curve from the maximum at (−2, 16/3)
to (4, 16/3) and from the minimum at (2,−16/3) to (−4,−16/3). Fur-
thermore, if y > x3

3
− 4x, then x increases rapidly and if y < x3

3
− 4x,

then x decreases rapidly. In either case, trajectories approach the slow
curve and the loop described above, which suggests that the system
has a stable limit cycle.

• (c) The period T of the limit cycle is given approximately by the time
spent by the trajectory on the slow curve. If t = 0 at (4, 16/3) and
t = T/2 at (2,−16/3), then

T =

∫ T/2

0

dt =

∫ 2

4

dx

ẋ
(2)



• For a trajectory close to the slow curve (1), we have approximately that

ẏ =
(
x2 − 4

)
ẋ,

and ẏ = (1 − x)/µ from the ODE, so for large µ we can use the ap-
proximation

ẋ =
1

µ

(
1− x
x2 − 4

)
• Using this expressing in (2) and changing the order of the limits, we

get that

T = µ

∫ 4

2

x2 − 4

x− 1
dx

= µ

∫ 4

2

(
x+ 1− 3

x− 1

)
dx

= µ

[
1

2
x2 + x− 3 log |x− 1|

]4
2

= µ (8− 3 log 3) .



4. Consider the nonlinear system

ẋ = y − x
{(
x2 + y2

)4 − µ [(x2 + y2
)2 − 1

]
− 1
}

ẏ = −x− y
{(
x2 + y2

)4 − µ [(x2 + y2
)2 − 1

]
− 1
}

(a) Write the system in polar coordinates (r, θ).

(b) State the Poincaré-Bendixson theorem.

(c) For 0 ≤ µ < 1, show that 1/2 < r < 2 is a trapping region, and deduce
that it contains a limit cycle.

(d) Show that a Hopf bifurcation occurs at µ = 1. Is it subcritical or super-
critical?

Solution.

• (a) since r2 = x2 + y2 and θ = tan−1(y/x), we have

ṙ =
xẋ+ yẏ

r
, θ̇ =

xẏ − yẋ
r2

.

It follows that

ṙ = r
{

1− µ+ µr4 − r8
}
, θ̇ = −1.

• (b) Poincaré-Bendixson Theorem: Suppose that R ⊂ R2 is a
closed, bounded subset of the plane. If a smooth, planar dynamical
system has no fixed points in R and there is a trajectory x(t) that
enters R and remains in R for all subsequent times t, then R contains
a closed orbit. Moreover, the trajectory x(t) either is a closed orbit or
it approaches a closed orbit as t→∞.1

• (c) Suppose 0 ≤ µ < 1. If 0 < r < 1, then r4 − 1 < 0 and

1 + µ
(
r4 − 1

)
− r8 > 1 +

(
r4 − 1

)
− r8 = r4

(
1− r4

)
> 0.

Similarly, if r > 1, then

1 + µ
(
r4 − 1

)
− r8 < 1 +

(
r4 − 1

)
− r8 = r4

(
1− r4

)
< 0.

It follows that r(t) is an increasing function of t when r = 1/2 and
a decreasing function of t when r = 2, so trajectories that enter the
annulus 1/2 ≤ r ≤ 2 remain in the annulus for all subsequent times.

1Optional note: More precisely, the ω-limit set of x(t) is a closed orbit.



• The only equilibrium of the system is at r = 0, so the Poincaré-
Bendixson theorem implies that the annulus 1/2 ≤ r ≤ 1 contains
a closed orbit. Moreover, since r(t) is strictly increasing (decreasing)
when r = 1/2 (r = 2), a trajectory that enters the annulus at the circle
r = 1/2 (r = 2) cannot return to the circle, so it cannot be closed, and
the trajectory must approach a limit cycle in the annulus as t→∞.

• The radial equation can be written as

ṙ = r
(
1− r4

) (
1− µ+ r4

)
.

It has fixed points: at r = 0 (unstable if µ < 1, stable if µ > 1); r = 1
(stable if µ < 2, unstable if µ > 2); and r = (µ − 1)1/4 for µ > 1
(unstable if 1 < µ < 2, stable if µ > 2).

• It follows that an unstable limit cycle bifurcates from the fixed point
r = 0 at µ = 1 into µ > 1, where the fixed point is stable.

• If we classify the bifurcation by the stability of the limit cycle, this
Hopf bifurcation is subcritical. (An unstable limits cycle shrinks to a
stable fixed point which loses stability as µ decreases through 1, with
a “hard” loss of stability for µ < 1 in which the system jumps to a
distant stable limit cycle at r = 1.)


