Sample Problems: Midterm 1
1. (a) Is the following system a gradient system? A Hamiltonian system?
x'z—y+x3, y:x+y5.
(b) Show that the system has no periodic orbits.

Solution.

e (a) If the system

= f(z,y), y=g9(y)
is a gradient system with
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Here f(z,y) = —y + 23, g(z,y) = x + y° and
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so the system is not a gradient system.
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so the system is not a Hamiltonian system.



e (b) On any orbit (z,y), except the fixed point (z,y) = (0,0), we have

i (x2 + y2) = 221 + 2yy

dt
=2z (—y + x?’) + 2y (x + y5)
= 22" +2¢°
< 0.

e On a closed orbit, we would have both

d d
%E(quLyQ) dt <0 and ]{a(f—kgf) dt =0,

which is a contradiction.



2. Consider the system

t=zlz(l-z)—yl, g=ylz—p),

where p is a parameter.
(a) Find the fixed points and determine their linearized stability.
(b) Find the bifurcation points and classify the bifurcations.

Solution.

e (a) The fixed points for (z,y) are

e The Jacobian matrix is
( 2r — 32 —y —x )
Yy r—p )

e The Jacobian matrix at (0,0) is

(6 %)

with eigenvalues A = 0, —u (a degenerate case with a zero eigenvalue
of multiplicity 2 at © = 0 ). The fixed point is unstable if y < 0 and
linearly stable if p > 0.

e The Jacobian matrix at (1,0) is

-1 -1
0 1—p
with eigenvalues A = —1,1 — pu. The fixed point is unstable (saddle

point) if 4 < 1 and asymptotically stable (stable node) if p > 1.

e The Jacobian matrix at (u, u(1 — p)) is

()



with trace 7 = p(1 — 2u), determinant A = p?(1 — p), and eigenvalues

1
A= su [1—2,ui\/4u2—3].

The equilibrium is asymptotically stable when 7 < 0 and A > 0, which
occurs when p < 0 or 1/2 < o < 1. It is unstable when 0 < p < 1/2 or
w> 1.

We're not asked to classify the fixed points, but one finds the following
classification for this fixed point. Let a = /3/4. Then:

i < —a stable node;

—a < pu < 0 stable spiral;
0 < p<1/2 unstable spiral;

1/2 <t < a stable spiral;

a < pu<1 stable node;

i > 1 saddle point.

(b) The stability of the fixed points changes at u = 0,1/2, 1.

There is a (degenerate) transcritical bifurcation at (z,y;x) = (0,0;0),
and a transcritical bifurcation at (z,y; p) = (1,0;1).

There is a Hopf bifurcation at (x,y;u) = (1/2,1/4;1/2), where the
eigenvalues A of the linearized system are a complex-conjugate pair
that crosses the imaginary A-axis (from the right-half to the left-half of
the complex plane) as u increases through 1/2.



3. (a) Write the scalar ODE
jﬁ+,u($2—4)x'+x:1
as a first order system for (z,y) where
: 3
T x
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(b) Give a qualitative argument for the existence of a limit cycle solution
when p is large and positive. Sketch the limit cycle in the phase plane.

(c) Extra credit: Estimate the period of the limit cycle for large values of p.

Solution.

e (a) The ODE can be written as uy + = = 1, so
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(b) For large u, the trajectory of the limit cycle moves slowly along the
curve
3
x
S 1
y=—5 4 (1)

and x jumps rapidly across the curve from the maximum at (—2,16/3)
to (4,16/3) and from the minimum at (2, —16/3) to (—4, —16/32. Fur-
thermore, if y > %3 — 4z, then z increases rapidly and if y < % — 4z,
then x decreases rapidly. In either case, trajectories approach the slow
curve and the loop described above, which suggests that the system
has a stable limit cycle.

e (c¢) The period T of the limit cycle is given approximately by the time
spent by the trajectory on the slow curve. If ¢ = 0 at (4,16/3) and
t=1T/2 at (2,—16/3), then
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e For a trajectory close to the slow curve (1), we have approximately that
y=(2*—14) 1,

and § = (1 — z)/p from the ODE, so for large p we can use the ap-

proximation
, 1 /1—-2z
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e Using this expressing in (2) and changing the order of the limits, we

get that
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4. Consider the nonlinear system
T=y—ux {(x + ) [
— i

y’z—x—y{(fc +12)’

2+ y?)" - 1] -1}
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(a) Write the system in polar coordinates (r, ).
(b) State the Poincaré-Bendixson theorem.
(

c) For 0 < p < 1, show that 1/2 < r < 2 is a trapping region, and deduce
that it contains a limit cycle.

(d) Show that a Hopf bifurcation occurs at p = 1. Is it subcritical or super-
critical?
Solution.

e (a) since r? = 22 + y? and 6 = tan"'(y/x), we have

T+ Yy . XY — YT
= — = ———.
r 72
It follows that
P=r{l—p+pt—r}, 6 =—1.

e (b) Poincaré-Bendixson Theorem: Suppose that R C R? is a
closed, bounded subset of the plane. If a smooth, planar dynamical
system has no fixed points in R and there is a trajectory x(¢) that
enters R and remains in R for all subsequent times ¢, then R contains
a closed orbit. Moreover, the trajectory x(t) either is a closed orbit or
it approaches a closed orbit as t — 00.!

e (c) Suppose 0 < pu < 1. If0<r <1, then r* — 1 < 0 and
1+u(7’4—1)—7’8>1+(7’4—1)—r8:r4(1—r4)>0.
Similarly, if » > 1, then
1+u(r4—1)—7‘8<1+(7’4—1)—7‘8:7’4(1—T4)<O.

It follows that r(¢) is an increasing function of ¢ when r = 1/2 and
a decreasing function of ¢ when r = 2, so trajectories that enter the
annulus 1/2 < r < 2 remain in the annulus for all subsequent times.

LOptional note: More precisely, the w-limit set of x(¢) is a closed orbit.



The only equilibrium of the system is at » = 0, so the Poincaré-
Bendixson theorem implies that the annulus 1/2 < r < 1 contains
a closed orbit. Moreover, since r(t) is strictly increasing (decreasing)
when r = 1/2 (r = 2), a trajectory that enters the annulus at the circle
r =1/2 (r = 2) cannot return to the circle, so it cannot be closed, and
the trajectory must approach a limit cycle in the annulus as t — oo.

The radial equation can be written as
7'“:7“(1—7’4) (1—,u—|—7“4).

It has fixed points: at r = 0 (unstable if u < 1, stable if y > 1); r =1
(stable if p < 2, unstable if u > 2); and r = (u — 1)¥/4 for p > 1
(unstable if 1 < p < 2, stable if p > 2).

It follows that an unstable limit cycle bifurcates from the fixed point
r =0 at g =1into u > 1, where the fixed point is stable.

If we classify the bifurcation by the stability of the limit cycle, this
Hopf bifurcation is subcritical. (An unstable limits cycle shrinks to a
stable fixed point which loses stability as p decreases through 1, with
a “hard” loss of stability for © < 1 in which the system jumps to a
distant stable limit cycle at r = 1.)



