ADVANCED ANALYSIS Math 121, Fall 2004 Final

NAME	
I.D. NUMBER	

No books, notes, or calculators. Show all your work.

Question	Points	Score
1	20	
2	20	
3	20	
4	20	
5	25	
6	25	
7	20	
8	25	
9	25	
Total	200	

1. [20 pts.] Use Laplace transforms to solve the following initial value problem for y(t),

$$y'' - 6y' + 9y = te^{3t},$$

$$y(0) = 1, \quad y'(0) = 3.$$

2. [20 pts.] (a) Find the Green's function G(t) that satisfies

$$G'' + \omega^2 G = \delta(t),$$

$$G(t) = 0 t < 0,$$

where ω is a nonzero constant. (You can use any method you like to find G.)

(b) Express the solution y(t) of

$$y'' + \omega^2 y = f(t),$$

$$y(0) = y'(0) = 0,$$

where f(t) is an arbitrary function in terms of G(t) and f(t). (You don't have to justify your answer.)

3. [20 pts.] Compute the coefficients $c_0,\ c_1,\ c_2,\ c_3$ in the expansion

$$|x| = \sum_{n=0}^{\infty} c_n P_n(x)$$
 $-1 \le x \le 1.$

of |x| with respect to the Legendre polynomials $P_n(x)$ on the interval [-1,1]. HINT. You can use the formulas:

$$\int_{-1}^{1} P_n(x) P_m(x) dx = \begin{cases} 2/(2n+1) & \text{for } n=m, \\ 0 & \text{for } n \neq m, \end{cases}$$

$$P_0(x) = 1, \quad P_1(x) = x, \quad P_2(x) = \frac{1}{2} (3x^2 - 1), \quad P_3(x) = \frac{1}{2} (5x^3 - 3x).$$

4. [20 pts.] If f(x) is a 2π periodic function with Fourier series expansion $f(x) = \sum_{n=-\infty}^{\infty} c_n e^{inx}$, we define the Hilbert transform g(x) of f(x) by

$$g(x) = -i \sum_{n=-\infty}^{-1} c_n e^{inx} + i \sum_{n=1}^{\infty} c_n e^{inx}.$$

(That is, we get g(x) by multipling the Fourier coefficient c_n of f(x) by -i if n < 0, by 0 if n = 0, and by i if n > 0.)

- (a) Compute the Hilbert transform g(x) of $f(x) = \cos(Nx)$, where N > 0 is a positive integer.
- (b) Show that if g(x) is the Hilbert transform of f(x) and $\int_0^{2\pi} f(x) dx = 0$, then

$$\int_0^{2\pi} f^2(x) \, dx = \int_0^{2\pi} g^2(x) \, dx.$$

- **5.** [25 pts.] Consider the function $f(x) = e^x$ for 0 < x < 1.
- (a) Sketch the graphs of the even and odd periodic extensions of f(x) (with period 2) for -3 < x < 3.
- (b) Write out Fourier sine and cosine series that represent f(x) on the interval 0 < x < 1. Give expressions for the coefficients as integrals, but do not evaluate the integrals.
- (c) What do the Fourier cosine and sine series converge to in -3 < x < 3? Which one converges faster?

6. [25 pts.] Use Fourier series to find the solution u(x, y) of the following boundary value problem for Laplace's equation in the strip 0 < x < 1, y > 0:

$$\begin{split} \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} &= 0, \\ \frac{\partial u}{\partial x}(0,y) &= \frac{\partial u}{\partial x}(1,y) = 0, \\ u(x,0) &= 1 - x, \quad u(x,y) \text{ is bounded as } y \to \infty. \end{split}$$

What does the solution approach as $y \to \infty$?

7. [20 pts.] Use Fourier transforms to find the solution u(x,t) of the the following initial value problem for the heat equation in $-\infty < x < \infty, t > 0$

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2},$$

$$u(x, 0) = f(x),$$

where f(x) is a given function and α is a non-zero constant. Express your answer as a convolution. (You can use the table of Fourier transforms provided.)

8. [25 pts.] Use Laplace transforms in time to find the solution u(x,t) of the following initial-boundary value problem for the wave equation in x > 0, t > 0

$$\begin{split} \frac{\partial^2 u}{\partial^2 t} &= c^2 \frac{\partial^2 u}{\partial x^2}, \\ u(0,t) &= f(t), \\ u(x,0) &= \frac{\partial u}{\partial t}(x,0) = 0, \end{split}$$

where f(t) is a given function defined for t > 0, and c is a non-zero constant. Give your answer as explicitly as possible. (You can use the table of Laplace transforms provided.)

9. [25 pts.] Consider the following initial-boundary value problem for the heat equation with a source in 0 < x < 1, t > 0

$$\frac{\partial u}{\partial t} = \alpha^2 \frac{\partial^2 u}{\partial x^2} + ku,$$

$$u(0, t) = u(1, t) = 0,$$

$$u(x, 0) = f(x),$$

where f(x) is a given function and α , k are non-zero constants.

- (a) Find the separated solutions of the partial differential equation that staisfy the boundary conditions at x = 0, 1.
- (b) Use Fourier series to solve the problem.
- (c) How does the solution behave as $t \to \infty$? Does this behavior depend on the value of the constant k?