An Introduction to Real Analysis

John K. Hunter

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT DAVIS

ABSTRACT. These are some notes on introductory real analysis. They cover limits of functions, continuity, differentiability, and sequences and series of functions, but not Riemann integration A background in sequences and series of real numbers and some elementary point set topology of the real numbers is assumed, although some of this material is briefly reviewed.

© John K. Hunter, 2012

Contents

Chapter	1. The Real Numbers	1
1.1.	Completeness of \mathbb{R}	1
1.2.	Open sets	3
1.3.	Closed sets	5
1.4.	Accumulation points and isolated points	6
1.5.	Compact sets	7
Chapter	2. Limits of Functions	11
2.1.	Limits	11
2.2.	Left, right, and infinite limits	14
2.3.	Properties of limits	16
Chapter	3. Continuous Functions	21
3.1.	Continuity	21
3.2.	Properties of continuous functions	25
3.3.	Uniform continuity	27
3.4.	Continuous functions and open sets	29
3.5.	Continuous functions on compact sets	30
3.6.	The intermediate value theorem	32
3.7.	Monotonic functions	35
Chapter	4. Differentiable Functions	39
4.1.	The derivative	39
4.2.	Properties of the derivative	45
4.3.	Extreme values	49
4.4.	The mean value theorem	51
		iii

4.5.	Taylor's theorem	53
Chapter	5. Sequences and Series of Functions	57
5.1.	Pointwise convergence	57
5.2.	Uniform convergence	59
5.3.	Cauchy condition for uniform convergence	60
5.4.	Properties of uniform convergence	61
5.5.	Series	65
5.6.	The Weierstrass M -test	67
5.7.	The sup-norm	69
5.8.	Spaces of continuous functions	70
Chapter	6. Power Series	73
6.1.	Introduction	73
6.2.	Radius of convergence	74
6.3.	Examples of power series	76
6.4.	Differentiation of power series	79
6.5.	The exponential function	82
6.6.	Taylor's theorem and power series	84
6.7.	Appendix: Review of series	89
Chapter	7. Metric Spaces	93
7.1.	Metrics	93
7.2.	Norms	95
7.3.	Sets	97
7.4.	Sequences	99
7.5.	Continuous functions	101
7.6.	Appendix: The Minkowski inequality	102