REAL ANALYSIS Math 125A, Fall 2012 Solutions: Midterm 1

1. (a) Suppose that $f : A \to \mathbb{R}$ where $A \subset \mathbb{R}$ and $c \in \mathbb{R}$ is an accumulation point of A. State the ϵ - δ definition of $\lim_{x\to c} f(x)$.

(b) Prove from the definition that if $f, g: A \to \mathbb{R}$ and $\lim_{x \to c} f(x)$, $\lim_{x \to c} g(x)$ exist, then

$$\lim_{x \to c} \left[f(x) + g(x) \right] = \lim_{x \to c} f(x) + \lim_{x \to c} g(x).$$

Solution.

• (a) We have $\lim_{x\to c} f(x) = L$ if for every $\epsilon > 0$ there exists a $\delta > 0$ such that

 $0 < |x - c| < \delta$ and $x \in A$ implies that $|f(x) - L| < \epsilon$.

• (b) Suppose that

$$\lim_{x \to c} f(x) = L, \qquad \lim_{x \to c} g(x) = M.$$

Let $\epsilon > 0$ be given. From the definition of the limit for f and g, there exist $\delta_1, \delta_2 > 0$ such that

$$0 < |x - c| < \delta_1$$
 and $x \in A$ implies that $|f(x) - L| < \frac{\epsilon}{2}$
 $0 < |x - c| < \delta_2$ and $x \in A$ implies that $|g(x) - M| < \frac{\epsilon}{2}$

Let $\delta = \min(\delta_1, \delta_2) > 0$. If $0 < |x - c| < \delta$ and $x \in A$, then

$$|f(x) + g(x) - (L+M)| \le |f(x) - L| + |g(x) - M|$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$< \epsilon.$$

which proves that $\lim_{x\to c} [f(x) + g(x)] = L + M$.

2. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \begin{cases} x^2 & \text{if } x \in \mathbb{Q}, \\ 2x - 1 & \text{if } x \notin \mathbb{Q}, \end{cases}$$

where \mathbb{Q} denotes the rational numbers. Determine, with proof, at which points f is continuous and at which points f is discontinuous.

Solution.

- The function f is continuous at 1 and discontinuous at every other point. Note that $x^2 = 2x 1$ if and only if $(x 1)^2 = 0$ or x = 1.
- To prove that f is discontinuous at $c \neq 1$, choose sequences (x_n) , (y_n) such that $x_n \in \mathbb{Q}$, $y_n \notin \mathbb{Q}$ and $x_n, y_n \to c$ as $n \to \infty$ (possible because both the rational and irrational numbers are dense in \mathbb{R}). Then, using the sequential continuity of the polynomial functions x^2 and 2x 1, we have

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} x_n^2 = c^2,$$
$$\lim_{n \to \infty} f(y_n) = \lim_{n \to \infty} (2y_n - 1) = 2c - 1.$$

Since these limits are different for $c \neq 1$, the sequential definition of continuity implies that f is discontinuous at c.

• To prove that f is continuous at 1, where f(1) = 1, let $\epsilon > 0$ be given. Choose

$$\delta = \min\left(1, \frac{\epsilon}{2}\right).$$

If $|x-1| < \delta$, then

$$|x^{2} - 1| = |x + 1| |x - 1| < 2 \cdot \frac{\epsilon}{2} = \epsilon,$$

$$|(2x - 1) - 1| = 2|x - 1| < \epsilon.$$

Thus, in either of the cases $x \in \mathbb{Q}$ or $x \notin \mathbb{Q}$, we have $|f(x) - f(1)| < \epsilon$, which proves that f is continuous at 1.

3. A function $f : A \to \mathbb{R}$ is *locally bounded* on $A \subset \mathbb{R}$ if for every $c \in A$ there exists $\delta > 0$ such that f is bounded on $(c - \delta, c + \delta) \cap A$.

(a) If $f : [0,1] \to \mathbb{R}$ is locally bounded on the compact interval [0,1], prove that f is bounded on [0,1].

(b) Give an example of a function $f: (0, 1) \to \mathbb{R}$ that is locally bounded but not bounded on the open interval (0, 1).

Solution.

- (a) Suppose for contradiction that f is not bounded on [0, 1]. Then for every $n \in \mathbb{N}$ there exists an $x_n \in [0, 1]$ such that $|f(x_n)| \geq n$. Since [0, 1] is compact, there exists a convergent subsequence (x_{n_k}) with limit $x \in [0, 1]$. Then f is unbounded in any neighborhood of x since x_{n_k} belongs to the neighborhood for all sufficiently large k and the sequence $(f(x_{n_k}))$ is unbounded. It follows that f is not locally bounded, and this contradiction shows that f must be bounded.
- (b) The function $f : (0,1) \to \mathbb{R}$ defined by f(x) = 1/x is locally bounded but not bounded. If $x \in (0,1)$ and $0 < \delta < x$, then f is bounded on the neighborhood $(\delta, 1)$ of x, so f is locally bounded. On the other hand for every $n \in \mathbb{N}$, we have f(x) > n for 0 < x < 1/n, so f is unbounded on (0,1).

Remark. One can also prove (a) from the Heine-Borel property of compact sets. For each $x \in [0, 1]$, there is an open neighborhood I_x of x such that f is bounded on I_x , meaning that there exists $M_x \ge 0$ such that

$$|f(y)| \le M_x$$
 for all $y \in I_x \cap [0, 1]$.

The collection of neighborhoods $\{I_x : x \in [0,1]\}$ is an open cover of [0,1](since $x \in I_x$) so since [0,1] is compact (it's closed and bounded) there is a finite subcover

$$\{I_{x_1}, I_{x_2}, \ldots, I_{x_N}\}$$

of [0, 1]. Then $|f(x)| \leq M$ for all $x \in [0, 1]$ where

$$M = \max\left(M_{x_1}, M_{x_2}, \dots, M_{x_N}\right).$$

Note that we need to extract a finite subcover to ensure that M is finite.

4. (a) State the intermediate value theorem.

(b) A fixed point of a function $f:[0,1] \to [0,1]$ is a point $c \in [0,1]$ such that f(c) = c. Prove that every continuous function $f:[0,1] \to [0,1]$ has a fixed point. (HINT: Note carefully the range of f.)

(c) Give an example of a discontinuous function $f : [0,1] \rightarrow [0,1]$ with no fixed point.

Solution.

- (a) Intermediate Value Theorem. If $f : [a,b] \to \mathbb{R}$ is a continuous function on a closed, bounded interval and f(a) < d < f(b), if f(a) < f(b), or f(b) < d < f(a), if f(a) > f(b), then there exists $c \in (a,b)$ such that f(c) = d.
- (b) Let

$$g(x) = f(x) - x.$$

Then c is a fixed point of f if and only if g(c) = 0. Since $f(x) \ge 0$, we have

$$g(0) = f(0) \ge 0,$$

and since $f(x) \leq 1$, we have

$$g(1) = f(1) - 1 \le 0.$$

If g(0) = 0 or g(1) = 0 then 0 or 1 is a fixed point of f. Otherwise g(0) > 0 and g(1) < 0, so the intermediate value theorem implies that g(c) = 0 for some $c \in (0, 1)$, which proves the result.

• (c) For example, define $f : [0, 1] \rightarrow [0, 1]$ by

$$f(x) = \begin{cases} 1 & \text{if } 0 \le x < 1/2, \\ 0 & \text{if } 1/2 \le x \le 1. \end{cases}$$

Then the only possible fixed points of f are 0 and 1 (the values of f) but $f(0) \neq 0$ and $f(1) \neq 1$, so f has no fixed points.