REAL ANALYSIS
Math 125A, Fall 2012
Solutions: Midterm 1

1. (a) Suppose that f: A — R where A C R and ¢ € R is an accumulation
point of A. State the e definition of lim, . f(x).

(b) Prove from the definition that if f, g : A — R and lim,_,. f(x), lim,_. g(x)
exist, then

lim [ (2) + ()] = lim f(z) + lim g(x).

Tr—cC

Solution.

e (a) We have lim,_,. f(z) = L if for every ¢ > 0 there exists a § > 0
such that

0< |z —c| <dandz e Aimplies that |f(z) — L| <e.

e (b) Suppose that

lim f(z) = L, lim g(z) = M.

Tr—cC Tr—cC

Let € > 0 be given. From the definition of the limit for f and g, there
exist 01, 0o > 0 such that

0 < |z —¢| <6 and x € A implies that |f(z) — L| < <

2

0 < |z —¢| <y and z € A implies that |g(x) — M| < %

Let 6 = min(dy,d2) > 0. If 0 < |z —¢| < 0 and = € A, then

[f(x) +g(x) = (L+ M)| < [f(x) — L] + |g(x) — M|

<€ €
2 2
<€,

which proves that lim,_,.[f(z) + g(x)] = L + M.



2. Define f : R — R by
z? if z € Q,

flx) = .
2 —1 ifz ¢ Q,

where Q denotes the rational numbers. Determine, with proof, at which
points f is continuous and at which points f is discontinuous.

Solution.

e The function f is continuous at 1 and discontinuous at every other
point. Note that 22 = 22 — 1 if and only if (x —1)* =0 or z = 1.

e To prove that f is discontinuous at ¢ # 1, choose sequences (x,,), (y,)
such that z, € Q, y, ¢ Q and z,,,y, — ¢ as n — oo (possible because
both the rational and irrational numbers are dense in R). Then, using
the sequential continuity of the polynomial functions 22 and 2z — 1, we
have

2

lim f(x,) = lim 22 = ¢,

lim f(y,) = lim (2y, — 1) = 2¢ — 1.
n—oo n— o0

Since these limits are different for ¢ # 1, the sequential definition of
continuity implies that f is discontinuous at c.

e To prove that f is continuous at 1, where f(1) = 1, let € > 0 be given.
Choose
d = min (1 E)
72 *
If [z — 1] < 4, then
2 E
|z —1|=|x+1|\x—1|<2-§:€,
(22 —1)—1]| =2z — 1] <e.

Thus, in either of the cases x € Q or x ¢ Q, we have |f(z) — f(1)] <,
which proves that f is continuous at 1.



3. A function f: A — R is locally bounded on A C R if for every ¢ € A there
exists § > 0 such that f is bounded on (¢ — d,c+ §) N A.

(a) If f :[0,1] — R is locally bounded on the compact interval [0, 1], prove
that f is bounded on [0, 1].

(b) Give an example of a function f : (0,1) — R that is locally bounded but
not bounded on the open interval (0, 1).

Solution.

e (a) Suppose for contradiction that f is not bounded on [0, 1]. Then for
every n € N there exists an x,, € [0,1] such that |f(z,)| > n. Since
0, 1] is compact, there exists a convergent subsequence (x,, ) with limit
x € [0,1]. Then f is unbounded in any neighborhood of z since z,,
belongs to the neighborhood for all sufficiently large k£ and the sequence
(f(zy,)) is unbounded. It follows that f is not locally bounded, and
this contradiction shows that f must be bounded.

e (b) The function f : (0,1) — R defined by f(x) = 1/z is locally
bounded but not bounded. If x € (0,1) and 0 < § < z, then f is
bounded on the neighborhood (4, 1) of =, so f is locally bounded. On
the other hand for every n € N, we have f(z) > n for 0 <z < 1/n, so
f is unbounded on (0, 1).

Remark. One can also prove (a) from the Heine-Borel property of compact
sets. For each z € [0, 1], there is an open neighborhood I, of z such that f
is bounded on I, meaning that there exists M, > 0 such that

F@WI <M, forallye LN[o,1]

The collection of neighborhoods {/, : € [0,1]} is an open cover of [0, 1]
(since x € I,) so since [0, 1] is compact (it’s closed and bounded) there is a
finite subcover

{Leyy Lugy o ooy Ly }

of [0,1]. Then |f(z)| < M for all z € [0, 1] where
M =max (M, , My,,...,M,,).

s N

Note that we need to extract a finite subcover to ensure that M is finite.



4. (a) State the intermediate value theorem.
(b) A fized point of a function f : [0,1] — [0,1] is a point ¢ € [0, 1] such that
f(c) = c. Prove that every continuous function f : [0, 1] — [0, 1] has a fixed
point. (HINT: Note carefully the range of f.)

(c) Give an example of a discontinuous function f : [0,1] — [0, 1] with no
fixed point.

Solution.

e (a) Intermediate Value Theorem. If f : [a,b] — R is a continuous
function on a closed, bounded interval and f(a) < d < f(b), if f(a) <
f(b), or f(b) < d < f(a), if f(a) > f(b), then there exists ¢ € (a,b)
such that f(c) = d.

e (b) Let
9(z) = f(z) — =
Then c¢ is a fixed point of f if and only if g(c) = 0. Since f(z) > 0, we
have

and since f(x) < 1, we have

9(1) = f(1) —1<0.

If g(0) = 0 or g(1) = 0 then 0 or 1 is a fixed point of f. Otherwise
g(0) > 0 and ¢g(1) < 0, so the intermediate value theorem implies that
g(c) = 0 for some ¢ € (0, 1), which proves the result.

e (c) For example, define f : [0,1] — [0, 1] by

f(x):{l if0<z<1/2,

0 if1/2<z<1.

Then the only possible fixed points of f are 0 and 1 (the values of f)
but f(0) # 0 and f(1) # 1, so f has no fixed points.



