
Real Analysis
Math 125A, Fall 2012
Solutions: Midterm 2

1. Suppose that f : (a, b)→ R is differentiable at c ∈ (a, b) and f ′(c) > 0.

(a) Prove that there exists δ > 0 such that f(x) > f(c) for all c < x < c+ δ
and f(x) < f(c) for all c− δ < x < c.

(b) Does f have to be increasing in some neighborhood of c?

Solution.

• (a) Since the limit of the difference quotient

lim
x→c

[
f(x)− f(c)

x− c

]
= f ′(c) > 0

is positive, there is a deleted neighborhood of c in which the difference
quotient is positive.

• Explicitly, take ε = f ′(c)/2 > 0 and choose δ > 0 such that∣∣∣∣f(x)− f(c)

x− c
− f ′(c)

∣∣∣∣ < ε if 0 < |x− c| < δ.

Then, for 0 < |x− c| < δ,

f(x)− f(c)

x− c
= f ′(c) +

[
f(x)− f(c)

x− c
− f ′(c)

]
> f ′(c)− ε > 0.

• It follows that f(x)− f(c) > 0 if 0 < x− c < δ and f(x)− f(c) < 0 is
−δ < x− c < 0, which proves the result.

• (b) No, f does not have to increasing in some neighborhood of c. For
example, the function

f(x) =

{
x/2 + x2 sin(1/x) if x 6= 0,

0 if x = 0,

is differentiable, but not continuously differentiable, at 0 and

f ′(0) = lim
x→0

[
x/2 + x2 sin(1/x)

x

]
=

1

2
+ lim

x→0
x sin

1

x
=

1

2
> 0.
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• However, f is not increasing in any neighborhood of 0. By the chain
and product rule,

f ′(x) =
1

2
− cos

(
1

x

)
+ 2x sin

(
1

x

)
is continuous for x 6= 0 and takes negative values in every neighborhood
of 0, at xn = 1/(2nπ) for n ∈ N sufficiently large. Therefore, f ′ < 0 in
some interval about xn, and the monotonicity theorem implies that f
is strictly decreasing in that interval.
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2. Let (fn) be a sequence of functions fn : R→ R and f : R→ R a function.

(a) Define: (i) fn → f pointwise on R; (ii) fn → f uniformly on R.

(b) Suppose fn : R→ R is bounded for each n ∈ N. (i) If fn → f pointwise
on R does f also have to be bounded? (ii) Prove that if fn → f uniformly
on R, then f is bounded

Solution.

• (a.i) We have fn → f pointwise on R if fn(x) → f(x) as n → ∞ for
every x ∈ R.

• (a.ii) We have fn → f uniformly on R if for every ε > 0 there exists
N ∈ N such that n > N implies that

|fn(x)− f(x)| < ε for all x ∈ R.

• (b.i) The pointwise limit of bounded functions need not be bounded.
For example, let

fn(x) =

{
x if |x| ≤ n,

0 if |x| > n.

Then |fn(x)| ≤ n, so fn is bounded. But fn(x) = x for all n ≥ |x|, so
fn → f pointwise where f(x) = x, and f is not bounded on R. (Note
that N = |x| gets arbitrarily large for large x; this is the non-uniform
convergence.)

• (b.ii) Since fn → f uniformly, there exists N ∈ N such that n > N
implies that

|fn(x)− f(x)| < 1 for all x ∈ R.

(Take ε = 1 in the definition.) Choose any n > N . Since fn is bounded,
there is a constant Mn such that |fn(x)| ≤Mn for all x ∈ R. It follows
that

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| < 1 +Mn for all x ∈ R,

which proves that f is bounded.
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3. A function f : R → R is differentiable if it is differentiable at every
point of R, and Lipschitz continuous if there is a constant M ≥ 0 such that
|f(x)− f(y)| ≤M |x− y| for all x, y ∈ R.

(a) Suppose that f : R → R is differentiable and f ′ : R → R is bounded.
Prove that f is Lipschitz continuous.

(b) Give an example, with proof, of a function f : R→ R that is differentiable
but not Lipschitz continuous.

(c) Give an example, with proof, of a function f : R → R that is Lipschitz
continuous but not differentiable.

Solution.

• (a) Since f is differentiable on R, it is continuous on R. Therefore, for
every x, y ∈ R with x < y, say, we can apply the mean value theorem
to f on the interval [x, y] to get

f(x)− f(y)

x− y
= f ′(c)

for some x < c < y. Since f ′ is bounded, there is a constant M ≥ 0
such that |f ′(x)| ≤M for all x ∈ R and it follows that∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤M

which proves that f is Lipschitz continuous. (The inequality is trivial
if x = y.)

• (b) Let f(x) = x2. Then f is differentiable on R, but

sup
x 6=y∈R

|f(x)− f(y)|
|x− y|

= sup
x 6=y∈R

∣∣∣∣x2 − y2x− y

∣∣∣∣ = sup
x 6=y∈R

|x+ y| =∞,

so f is not Lipschitz continuous on R.

• (c) Let f(x) = |x|. Then the reverse triangle inequality

| |x| − |y| | ≤ |x− y|
implies that f is Lipschitz continuous on R (with Lipschitz constant
M = 1). On the other hand, f is not differentiable at 0 since

lim
h→0

f(h)− f(0)

h
= lim

h→0

|h|
h

= lim
h→0

sgnh

does not exist.

4



4. Let f : R→ R be the Thomae function

f(x) =

{
0 if x = 0 or x is irrational

1/q if x = p/q is nonzero and rational.

Here, if x is nonzero and rational, we write x = p/q where the integers p, q
have no common factors and q > 0 e.g. f(−6/15) = f((−2)/5) = 1/5.

Prove or disprove: f is differentiable at 0.

Solution.

• The Thomae function is not differentiable at 0.

• To show that the limit

f ′(0) = lim
x→0

[
f(x)− f(0)

x

]
= lim

x→0

f(x)

x

does not exist, we consider sequences (xn) and (yn), where xn = 1/n
and yn =

√
2/n. Then xn → 0 and yn → 0 as n→∞. Moreover, since

yn is irrational,

f(xn) =
1

n
, f(yn) = 0

• It follows that

lim
n→∞

[
f(xn)− f(0)

xn

]
= lim

n→∞

1/n

1/n
= 1, lim

n→∞

[
f(yn)− f(0)

yn

]
= 0,

and the sequential characterization of the limit implies that the limit
defining f ′(0) does not exist.
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