REAL ANALYSIS Math 125A, Fall 2012 Sample Final Questions

1. Define $f : \mathbb{R} \to \mathbb{R}$ by

$$f(x) = \frac{x^3}{1+x^2}$$

Show that f is continuous on \mathbb{R} . Is f uniformly continuous on \mathbb{R} ?

2. Does there exist a differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that f'(0) = 0 but $f'(x) \ge 1$ for all $x \ne 0$?

3. (a) Write out the Taylor polynomial $P_2(x)$ of order two at x = 0 for the function $\sqrt{1+x}$. and give an expression for the remainder $R_2(x)$ in Taylor's formula

$$\sqrt{1+x} = P_2(x) + R_2(x) \qquad -1 < x < \infty.$$

(b) Show that the limit

$$\lim_{x \to 0} \left[\frac{1 + x/2 - \sqrt{1 + x}}{x^2} \right]$$

exists and find its value.

4. (a) Suppose $f_n : A \to \mathbb{R}$ is uniformly continuous on A for every $n \in \mathbb{N}$ and $f_n \to f$ uniformly on A. Prove that f is uniformly continuous on A. (b) Does the result in (a) remain true if $f_n \to f$ pointwise instead of uniformly?

5. Define $f_n: [0, \infty) \to \mathbb{R}$ by

$$f_n(x) = \frac{\sin(nx)}{1+nx}.$$

(a) Show that f_n converges pointwise on $[0, \infty)$ and find the pointwise limit f.

(b) Show that $f_n \to f$ uniformly on $[a, \infty)$ for every a > 0.

(c) Show that f_n does not converge uniformly to f on $[0, \infty)$.

6. Suppose that

$$f(x) = \sum_{n=1}^{\infty} \frac{\sin nx}{n^3}, \qquad g(x) = \sum_{n=1}^{\infty} \frac{\cos nx}{n^2}$$

- (a) Prove that $f, g: \mathbb{R} \to \mathbb{R}$ are continuous.
- (b) Prove that $f : \mathbb{R} \to \mathbb{R}$ is differentiable and f' = g.

7. Let P = {2,3,5,7,11,...} be the set of prime numbers.
(a) Find the radius of convergence R of the power series

$$\sum_{p \in P} x^p = x^2 + x^3 + x^5 + x^7 + x^{11} + \dots$$

(b) Show that

$$0 \le f(x) \le \frac{x^2}{1-x}$$
 for all $0 \le x < 1$.

- 8. Let (X, d) be a metric space.
- (a) Define the open ball $B_r(x)$ of radius r > 0 and center $x \in X$.
- (b) Define an open set $A \subset X$.
- (c) Show that the open ball $B_r(x) \subset X$ is an open set.