
Solutions to Sample Questions
Midterm 1: Math 125A, Fall 2012

1. (a) Suppose that f : (0, 1)→ R is uniformly continuous on (0, 1). If (xn)
is a Cauchy sequence in (0, 1) and yn = f(xn), prove that (yn) is a Cauchy
sequence in R.

(b) Give a counter-example to show that the result in (a) need not be true
if f : (0, 1)→ R is only assumed to be continuous.

Solution.

• (a) Let ε > 0 be given. Since f is uniformly continuous on (0, 1), there
exists δ > 0 such that

|x− y| < δ and x, y ∈ (0, 1) implies that |f(x)− f(y)| < ε.

Since (xn) is a Cauchy sequence, there exists N ∈ N such that

m,n > N implies that |xm − xn| < δ.

It follows that

m,n > N implies that |f(xm)− f(xn)| < ε,

which shows that (f(xn)) is a Cauchy sequence.

• (b) Suppose that f(x) = 1/x for x ∈ (0, 1) and xn = 1/n for n ∈ N.
Then f is continuous on (0, 1) since it is a rational function with nonzero
denominator. The sequence (xn) is Cauchy since it converges to 0 and
every convergent sequence is Cauchy (or give a direct proof). However,
yn = f(xn) = n and

|yn − ym| ≥ 1 for every m,n ∈ N with m 6= n,

so (yn) is not Cauchy.



Remark. Since every Cauchy sequence converges, it follows from this result
that we can extend a uniformly continuous function f : (0, 1) → R to a
uniformly continuous function f̄ : [0, 1]→ R by defining

f̄(0) = lim
n→∞

f(xn)

where (xn) is any sequence in (0, 1) such that xn → 0 as n→∞, and

f̄(1) = lim
n→∞

f(xn)

where (xn) is any sequence in (0, 1) with xn → 1 as n → ∞. (You have to
check that the values f̄(0) and f̄(1) are independent of the choice of sequences
to show that f̄ is well defined.) However, we cannot extend a non-uniformly
continuous function on (0, 1), such as f(x) = 1/x, to a continuous function
on [0, 1].



2. (a) State the ε-δ definition for a function f : R → R to be continuous at
c ∈ R.

(b) Define the floor function f : R→ R by

f(x) = the largest integer n ∈ Z such that n ≤ x.

For example, f(3.14) = 3, f(7) = 7, f(−3.14) = −4. Determine, with proof,
where f is continuous and where it is discontinuous.

Solution.

• (a) A function f : R → R is continuous at c ∈ R if for every ε > 0
there exists δ > 0 such that

|x− c| < δ implies that |f(x)− f(c)| < ε.

• (b) The floor function is discontinuous at every integer c ∈ Z and
continuous at every c /∈ Z.

• If c ∈ Z, define sequences (xn), (yn) by

xn = c− 1

n
, yn = c+

1

n
.

Then xn → c and yn → c as n→∞, but for every n ∈ N

f(xn) = c− 1, f(yn) = c

so f(xn) → c − 1 and f(yn) → c converge to different limits. The
sequential definition of continuity implies that f is discontinuous at c.
(It has a jump discontinuity at c ∈ Z.)

• Suppose that c /∈ Z. Then n < c < n + 1 for some integer n ∈ Z, and
we can define δ > 0 by

δ = min (c− n, n+ 1− c) .

Since |x− c| < δ implies that n < x < n+ 1 and f(x) = n for all such
x, we have

|x− c| < δ implies that |f(x)− f(c)| = 0.

Therefore we can use this δ > 0 for every ε > 0 in the definition of
continuity, and f is continuous at c.



3. Suppose that f : R→ R is a continuous function such that

lim
x→−∞

f(x) = 0, lim
x→∞

f(x) = 0.

(a) Give a precise statement of what these limits mean.

(b) Prove that f is bounded on R and attains either a maximum or minimum
value.

(c) Give examples to show that f may: (i) attain its maximum but not its
infimum; (ii) attain both its maximum and minimum.

Solution.

• (a) The statement limx→−∞ f(x) = 0 means that for every ε > 0 there
exists a ∈ R (sufficiently negative) such that

x < a implies that |f(x)| < ε,

and limx→∞ f(x) = 0 means that for every ε > 0 there exists b ∈ R
(sufficiently positive) such that

x > b implies that |f(x)| < ε.

• (b) If f ≡ 0 is identically zero, then the result follows immediately. If
not, choose c ∈ R such that f(c) 6= 0. Taking ε = |f(c)| > 0 in the
limit definitions, we find that there exist a, b ∈ R such that

|f(x)| < |f(c)| for all x < a and x > b, (1)

where a ≤ c ≤ b (since f(x) 6= f(c) if x < a or x > b).

• Since f is continuous on the compact interval [a, b] it is bounded on
[a, b] and attains its maximum and minimum values on [a, b]. It follows
from (1) that f is bounded on R. Moreover, if f(c) > 0, then

max {f(x) : x ∈ [a, b]} ≥ f(c)

so f attains its global maximum on R at some point in [a, b]. Similarly,
if f(c) < 0, then

min {f(x) : x ∈ [a, b]} ≤ −f(c)

so f attains its global minimum on R at some point in [a, b].



• (c) The function, f : R→ R defined by

f(x) =
1

1 + x2

attains its maximum value, f(0) = 1, but not its infimum 0 on R.

• The function g : R→ R defined by

g(x) =
x

1 + x2
.

attains both its maximum value, g(1) = 1/2, and minimum value,
g(−1) = −1/2, on R.


