Solutions to Sample Questions Midterm 1: Math 125A, Fall 2012

1. (a) Suppose that $f: (0,1) \to \mathbb{R}$ is uniformly continuous on (0,1). If (x_n) is a Cauchy sequence in (0,1) and $y_n = f(x_n)$, prove that (y_n) is a Cauchy sequence in \mathbb{R} .

(b) Give a counter-example to show that the result in (a) need not be true if $f: (0,1) \to \mathbb{R}$ is only assumed to be continuous.

Solution.

• (a) Let $\epsilon > 0$ be given. Since f is uniformly continuous on (0, 1), there exists $\delta > 0$ such that

 $|x-y| < \delta$ and $x, y \in (0, 1)$ implies that $|f(x) - f(y)| < \epsilon$.

Since (x_n) is a Cauchy sequence, there exists $N \in \mathbb{N}$ such that

m, n > N implies that $|x_m - x_n| < \delta$.

It follows that

$$m, n > N$$
 implies that $|f(x_m) - f(x_n)| < \epsilon$,

which shows that $(f(x_n))$ is a Cauchy sequence.

• (b) Suppose that f(x) = 1/x for $x \in (0, 1)$ and $x_n = 1/n$ for $n \in \mathbb{N}$. Then f is continuous on (0, 1) since it is a rational function with nonzero denominator. The sequence (x_n) is Cauchy since it converges to 0 and every convergent sequence is Cauchy (or give a direct proof). However, $y_n = f(x_n) = n$ and

 $|y_n - y_m| \ge 1$ for every $m, n \in \mathbb{N}$ with $m \neq n$,

so (y_n) is not Cauchy.

Remark. Since every Cauchy sequence converges, it follows from this result that we can extend a uniformly continuous function $f : (0,1) \to \mathbb{R}$ to a uniformly continuous function $\bar{f} : [0,1] \to \mathbb{R}$ by defining

$$\bar{f}(0) = \lim_{n \to \infty} f(x_n)$$

where (x_n) is any sequence in (0, 1) such that $x_n \to 0$ as $n \to \infty$, and

$$\bar{f}(1) = \lim_{n \to \infty} f(x_n)$$

where (x_n) is any sequence in (0, 1) with $x_n \to 1$ as $n \to \infty$. (You have to check that the values $\overline{f}(0)$ and $\overline{f}(1)$ are independent of the choice of sequences to show that \overline{f} is well defined.) However, we cannot extend a non-uniformly continuous function on (0, 1), such as f(x) = 1/x, to a continuous function on [0, 1].

2. (a) State the ϵ - δ definition for a function $f : \mathbb{R} \to \mathbb{R}$ to be continuous at $c \in \mathbb{R}$.

(b) Define the floor function $f : \mathbb{R} \to \mathbb{R}$ by

f(x) = the largest integer $n \in \mathbb{Z}$ such that $n \leq x$.

For example, f(3.14) = 3, f(7) = 7, f(-3.14) = -4. Determine, with proof, where f is continuous and where it is discontinuous.

Solution.

• (a) A function $f : \mathbb{R} \to \mathbb{R}$ is continuous at $c \in \mathbb{R}$ if for every $\epsilon > 0$ there exists $\delta > 0$ such that

$$|x-c| < \delta$$
 implies that $|f(x) - f(c)| < \epsilon$.

- (b) The floor function is discontinuous at every integer $c \in \mathbb{Z}$ and continuous at every $c \notin \mathbb{Z}$.
- If $c \in \mathbb{Z}$, define sequences (x_n) , (y_n) by

$$x_n = c - \frac{1}{n}, \qquad y_n = c + \frac{1}{n}.$$

Then $x_n \to c$ and $y_n \to c$ as $n \to \infty$, but for every $n \in \mathbb{N}$

$$f(x_n) = c - 1, \qquad f(y_n) = c$$

so $f(x_n) \to c-1$ and $f(y_n) \to c$ converge to different limits. The sequential definition of continuity implies that f is discontinuous at c. (It has a jump discontinuity at $c \in \mathbb{Z}$.)

• Suppose that $c \notin \mathbb{Z}$. Then n < c < n+1 for some integer $n \in \mathbb{Z}$, and we can define $\delta > 0$ by

$$\delta = \min\left(c - n, n + 1 - c\right).$$

Since $|x - c| < \delta$ implies that n < x < n + 1 and f(x) = n for all such x, we have

$$|x - c| < \delta$$
 implies that $|f(x) - f(c)| = 0$.

Therefore we can use this $\delta > 0$ for every $\epsilon > 0$ in the definition of continuity, and f is continuous at c.

3. Suppose that $f : \mathbb{R} \to \mathbb{R}$ is a continuous function such that

$$\lim_{x \to -\infty} f(x) = 0, \qquad \lim_{x \to \infty} f(x) = 0.$$

(a) Give a precise statement of what these limits mean.

(b) Prove that f is bounded on \mathbb{R} and attains either a maximum or minimum value.

(c) Give examples to show that f may: (i) attain its maximum but not its infimum; (ii) attain both its maximum and minimum.

Solution.

• (a) The statement $\lim_{x\to-\infty} f(x) = 0$ means that for every $\epsilon > 0$ there exists $a \in \mathbb{R}$ (sufficiently negative) such that

$$x < a$$
 implies that $|f(x)| < \epsilon$,

and $\lim_{x\to\infty} f(x) = 0$ means that for every $\epsilon > 0$ there exists $b \in \mathbb{R}$ (sufficiently positive) such that

$$x > b$$
 implies that $|f(x)| < \epsilon$.

• (b) If $f \equiv 0$ is identically zero, then the result follows immediately. If not, choose $c \in \mathbb{R}$ such that $f(c) \neq 0$. Taking $\epsilon = |f(c)| > 0$ in the limit definitions, we find that there exist $a, b \in \mathbb{R}$ such that

$$|f(x)| < |f(c)| \qquad \text{for all } x < a \text{ and } x > b, \tag{1}$$

where $a \le c \le b$ (since $f(x) \ne f(c)$ if x < a or x > b).

• Since f is continuous on the compact interval [a, b] it is bounded on [a, b] and attains its maximum and minimum values on [a, b]. It follows from (1) that f is bounded on \mathbb{R} . Moreover, if f(c) > 0, then

$$\max\left\{f(x): x \in [a, b]\right\} \ge f(c)$$

so f attains its global maximum on \mathbb{R} at some point in [a, b]. Similarly, if f(c) < 0, then

$$\min\left\{f(x): x \in [a, b]\right\} \le -f(c)$$

so f attains its global minimum on \mathbb{R} at some point in [a, b].

• (c) The function, $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \frac{1}{1+x^2}$$

attains its maximum value, f(0) = 1, but not its infimum 0 on \mathbb{R} .

• The function $g: \mathbb{R} \to \mathbb{R}$ defined by

$$g(x) = \frac{x}{1+x^2}.$$

attains both its maximum value, g(1) = 1/2, and minimum value, g(-1) = -1/2, on \mathbb{R} .