
Sample Questions for Midterm 2: Solutions
Math 125A, Fall 2012

1. For α ∈ R, define f : R→ R by

f(x) =

{
|x|α sin(1/x) if x 6= 0,

0 if x = 0.

Determine, with proof, for what values of α: (a) f is continuous at 0; (b) f
is differentiable at 0; (c) f is continuously differentiable at 0.

Solution.

• (a) The function is continuous at 0 if and only if α > 0. If α > 0, then
|f(x)| ≤ |x|α and |x|α → 0 as x→ 0, so the “squeeze” theorem implies

lim
x→0

f(x) = 0.

Since f(0) = 0, it follows that f is continuous at 0. On the other hand,
if α ≤ 0, consider the sequence (xn) defined by

xn =
1

nπ + π/2
.

Then xn → 0 as n→∞ but

f(xn) = |xn|α sin
(
nπ +

π

2

)
= (−1)n|xn|α

does not converge. Therefore, by the sequential characterization of
continuity, f is not continuous at 0.

• (b) The function is differentiable at 0 if and only if α > 1. We have

f ′(0) = lim
h→0

f(h)− f(0)

h

= lim
h→0

|h|α sin(1/h)

h

= lim
h→0

[
(sgnh)|h|α−1 sin

(
1

h

)]
where sgnh = h/|h| for h 6= 0. As in (a), this limit exists if α− 1 > 0,
in which case f ′(0) = 0, and it does not exist if α − 1 ≤ 0, in which
case f is not differentiable at 0.



• (c) The function is continuously differentiable at 0 if α > 2. By the
product and chain rule, f is differentiable for x 6= 0 and

f ′(x) = α(sgnx)|x|α−1 sin

(
1

x

)
− |x|α−2 cos

(
1

x

)
,

where we use (|x|α)′ = α(sgnx)|x|α−1 for x 6= 0. As in (a),

lim
x→0

f ′(x) = 0

if α − 2 > 0, in which case f ′ is continuous at 0 since f ′(0) = 0, and
the limit does not exist if α− 2 ≤ 0, in which case f ′ is not continuous
at 0.



2. (a) State the mean value theorem.

(b) If α > 1, prove that

(1 + x)α ≥ 1 + αx for all x > −1

with equality if and only if x = 0. (You can assume that (xα)′ = αxα−1 if
x > 0 for every α ∈ R.)

Solution.

• (a) Mean value theorem. If f : [a, b] → R is continuous on the closed,
bounded interval [a, b] and differentiable in the open interval (a, b), then
there exists a < c < b such that

f ′(c) =
f(b)− f(a)

b− a
.

• (b) The function f(x) = (1 + x)α is differentiable, and therefore con-
tinuous, in (−1,∞), so we can apply the mean value theorem to f on
the interval [0, x] if x > 0, or [x, 0] if −1 < x < 0. We find that there
exists c between 0 and x such that

α(1 + c)α−1 =
(1 + x)α − 1

x
,

which implies that

(1 + x)α = 1 + α(1 + c)α−1x.

• If 0 < c < x, then (1+c) > 1 and (1+c)α−1 > 1 since α > 1. Therefore
(1 + c)α−1x > x since x > 0 and

(1 + x)α > 1 + αx.

If −1 < x < c < 0, then (1 + c)α−1 < 1. Therefore (1 + c)α−1x > x
since x < 0 and

(1 + x)α > 1 + αx

in this case also.

• If x = 0, we get equality, otherwise the inequality is strict.



• Alternatively, you can use Taylor’s theorem to say that

(1 + x)α = 1 + αx+
1

2
α(α− 1) (1 + ξ)α−2 x2

for some ξ between 0 and x, and observe that the remainder is strictly
positive if −1 < x <∞ and x 6= 0.



3. Let I be an open interval containing 0. Suppose that the functions
f, g : I → R are differentiable at 0 with f(0) = g(0) = 0 and g′(0) 6= 0.
Prove that

lim
x→0

f(x)

g(x)
=
f ′(0)

g′(0)
.

Solution.

• By the linear approximation definition of the derivative, since f , g are
differentiable at 0, there exist functions r, s : I → R such that

f(x) = f(0) + f ′(0)x+ r(x) = f ′(0)x+ r(x), lim
x→0

r(x)

x
= 0,

g(x) = g(0) + g′(0)x+ s(x) = g′(0)x+ s(x), lim
x→0

s(x)

x
= 0.

• Since f(0) = g(0) = 0 and g′(0) 6= 0, it follows that

lim
x→0

f(x)

g(x)
= lim

x→0

f ′(0)x+ r(x)

g′(0)x+ s(x)

= lim
x→0

f ′(0) + r(x)/x

g′(0) + s(x)/x

=
limx→0[f

′(0) + r(x)/x]

limx→0[g′(0) + s(x)/x]

=
f ′(0)

g′(0)
.

• An equivalent way to write this derivation is:

lim
x→0

f(x)

g(x)
= lim

x→0

f(x)− f(0)

g(x)− g(0)

= lim
x→0

[
f(x)−f(0)

x

]
[
g(x)−g(0)

x

]
=

limx→0

[
f(x)−f(0)

x

]
limx→0

[
g(x)−g(0)

x

]
=
f ′(0)

g′(0)
.



4. Prove or disprove the following converse to the Weierstrass M -test: If a
series

∞∑
n=1

fn(x) = f(x)

of bounded functions fn : A → R converges absolutely and uniformly on A
to a function f : A→ R, then there exist constants Mn ≥ 0 such that

|fn(x)| ≤Mn for all x ∈ A,
∞∑
n=1

Mn <∞.

Solution.

• The converse statement is false, and we give a counter-example. The
idea is that the functions fn can equal Mn at different points, so the
sum of the functions at each point is strictly less than the sum of their
bounds, and

∑
fn may converge uniformly even though

∑
Mn diverges.

In our example, at most one function is nonzero at each point.

• For n ∈ N, define fn : [0, 1]→ R by

fn(x) =

{
1/n if 1/2n < x ≤ 1/2n−1

0 otherwise

(Draw graphs of the first few fn!)

• For every x ∈ (0, 1], we have fn(x) 6= 0 for only one n ∈ N, namely
the n for which 1/2n < x ≤ 1/2n−1, and fn(0) = 0 for every n ∈ N.
Therefore the series

∞∑
n=1

fn(x) = f(x)

has at most one non-zero term for each x, so it converges pointwise and
absolutely on [0, 1] to the function

f(x) =

{
1/n if 1/2n < x ≤ 1/2n−1 for some n ∈ N,

0 if x = 0.



• We claim that
∑
fn converges uniformly to f on [0, 1]. To prove this,

we note that

f(x)−
n∑
k=1

fk(x) =


0 if 1/2n < x ≤ 1

1/k if 1/2k < x ≤ 1/2k−1 for some k ≥ n+ 1,

0 if x = 0.

It follows that

0 ≤ f(x)−
n∑
k=1

fk(x) ≤ 1

n+ 1
for all x ∈ [0, 1],

which proves the uniform convergence.

• Explicitly, if ε > 0, let N = 1/ε. (As required for uniform convergence,
N is independent of x!) Then for every n > N we have∣∣∣∣∣f(x)−

n∑
k=1

fk(x)

∣∣∣∣∣ < 1

N + 1
< ε for all x ∈ [0, 1].

• Finally, note that for every n ∈ N,

sup
x∈[0,1]

|fn(x)| = 1

n
,

so the smallest constant we can use in the bound |fn(x)| ≤ Mn is
Mn = 1/n, but the harmonic series

∑
1/n diverges.

• Therefore, the series
∑
fn converges uniformly and absolutely on [0, 1]

and each fn is bounded, but there do not exist constants Mn such that
|fn(x)| ≤Mn on [0, 1] and

∑
Mn converges.

Remark. By changing the step functions in this example to triangular
functions, we can make the fn’s continuous if we wish. Similar examples on
R are a bit simpler e.g.

fn(x) =

{
1/n if n− 1 < x < n,

0 otherwise,

but as the previous example shows, even assuming that the functions are
defined on a compact interval doesn’t help.


