
MAT125B Lecture Notes

Steve Shkoller
Department of Mathematics

University of California at Davis
Davis, CA 95616 USA

email: shkoller@math.ucdavis.edu

May 26, 2011

Contents

1 Riemann integration 2
1.1 Partitions and Riemann sums . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 A criterion for integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Upper and Lower Riemann Sums . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 The refinement of a partition . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Properties of upper and lower sums . . . . . . . . . . . . . . . . . . . . . . . 8
1.6 Definition 1.4 implies Definition 1.11 . . . . . . . . . . . . . . . . . . . . . . 10
1.7 Monotonic and piecewise continuous functions are integrable . . . . . . . . 10
1.8 The Riemann integral is linear . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.9 Further properties of the Riemann integral . . . . . . . . . . . . . . . . . . . 13
1.10 Interchanging limits with integrals . . . . . . . . . . . . . . . . . . . . . . . 15
1.11 The fundamental theorem of calculus . . . . . . . . . . . . . . . . . . . . . . 16
1.12 Improper integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Differentiable mappings of Rn to Rm 28
2.1 The derivative f : Rn → Rm . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.2 A reminder of the mean-value theorem for functions of one variable . . . . . 32
2.3 Matrix representation for the derivative Df(x) . . . . . . . . . . . . . . . . 33
2.4 Continuity of differentiable mappings and differentiable paths . . . . . . . . 36
2.5 Criteria for differentiability . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 The directional derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 The chain-rule and product-rule . . . . . . . . . . . . . . . . . . . . . . . . . 43

1



Shkoller 1 RIEMANN INTEGRATION

2.8 The geometry of the gradient . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.9 The Mean Value Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.10 Higher-order derivatives and Ck-class functions . . . . . . . . . . . . . . . . 52
2.11 Taylor’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.12 The minima and maxima of functions f : Rn → R . . . . . . . . . . . . . . . 61
2.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3 Inverse and Implicit Function Theorems 70
3.1 The space of continuous functions . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Contraction mapping theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.3 Proof of the Contraction Mapping Principle . . . . . . . . . . . . . . . . . . 74
3.4 The fundamental theorem of ODEs . . . . . . . . . . . . . . . . . . . . . . . 75
3.5 Inverse function theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

1 Riemann integration

Throughout these notes the numbers ε > 0 and δ > 0 should be thought of as very small
numbers. The objective of this section is to provide a rigorous definition for the integral∫ b
a f(x)dx of a bounded function f(x) on the interval [a, b]. We will see that the real number∫ b
a f(x)dx is really the limit of sums of areas of rectangles.

1.1 Partitions and Riemann sums

Definition 1.1 (Partition Pδ of size δ > 0). Given an interval [a, b] ⊂ R, a partition Pδ

denotes any finite ordered subset having the form

Pδ = {a = x0 < x1 < · · ·xN−1 < xN = b} ,

where
δ = max{xi − xi−1 | i = 1, ..., N}

denotes the maximum distance between any two adjacent partition point xi−1 and xi, and
where N denotes the number of subintervals that [a, b] is partitioned into, with N depending
on δ so that N = N(δ).

The simplest partitions have uniform spacing between partition points, in which case
δ = b−a

N or conversely,

N(δ) =
b− a

δ
.
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In order to build good intuition for partitions, there is no harm in considering our partitions
to have uniform spacing between adjacent points, even though this is not the most general
case.

Given a bounded function f : [a, b] → R, we are going to use a partition Pδ to define
a piecewise constant approximation of the function f(x) on the interval [a, b]. (The idea is
that the integral of a piecewise constant function is the sum of the areas of a finite collection
of rectangles.) We get to choose how we form this piecewise constant approximation to f(x).
The partition width δ > 0 tells us how wide each rectangle will be, and what remains to be
chosen is the height of each rectangle; this height depends on where we evaluate the function
f(x) over each subinterval [xi−1, xi], and since there are an uncountably many points in the
interval [xi−1, xi], there are an uncountable many choices that we can make.

Definition 1.2 (Selection of evaluations points zi). The evaluations points zi are a collec-
tion of N points in the interval [a, b] such that

{x0 ≤ z1 ≤ x1 ≤ z2 ≤ x2 ≤ · · · ≤ xN−1 ≤ zN ≤ xN} .

Having a partition Pδ of the interval [a, b] and having chosen the set of N evaluation
points z1, z2, ..., zN , we can now define the so-called Riemann sum.

Definition 1.3 (Riemann sum for the function f(x)). Given a function f : [a, b] → R, a
partition Pδ, and a selection of evaluation points zi, the Riemann sum of f is denoted by

Sδ(f) =
N∑

i=1

f(zi)(xi − xi−1) .

Again, note that since the choice of the evaluation points zi is arbitrary, there are
infinitely many Riemann sums associated with a single function and a partition Pδ.

Definition 1.4 (Integrability of the function f(x)). The function f : [a, b] → R is Riemann
integrable if Sδ(f) → S(f) as δ → 0. Equivalently, f : [a, b] → R is Riemann integrable if
for all ε > 0, we can choose δ > 0 sufficiently small so that

|Sδ(f)− S(f)| < ε

for any Riemann sum Sδ(f) with maximum partition width δ.

Whenever the limit S(f) exists we say that S(f) is the integral of f(x) over the interval
[a, b] and write ∫ b

a
f(x)dx = S(f) = lim

δ→0
Sδ(f) .

Thus,
∫ b
a f(x)dx is just a limit of Riemann sums Sδ(f) whenever such a limit exists.

Definition 1.5 (Notation for integrable functions). We let

R(a, b) = {f : [a, b] → R | f is Riemann integrable} .
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1.2 A criterion for integrability

Having provided a “rigorous” definition for the integral of a function, we must ask under
what conditions is a function f : [a, b] → R integrable. We will derive a few different criteria
to ensure that

∫ b
a f(x)dx is a well-defined finite real number. We begin with a fairly general

test.

Theorem 1.6 (Integrability criterion). Given f : [a, b] → R, if for every ε > 0, there exists
δ > 0 sufficiently small so that

|S1
δ (f)− S2

δ (f)| < ε (1.1)

for any two Riemman sums S1
δ (f) and S2

δ (f), then f ∈ R(a, b).

Proof. For simplicity, lets take [a, b] = [0, 1], the unit interval. We take a sequence of
Riemann sums {S1/n(f)}∞n=1 with each S1/n(f) having partition width 1/n. Since 1/n → 0
as n → ∞, we see that for any δ > 0 given, we can choose N such that 1/N < δ, so that
according to (1.1),

|S1/(n+m)(f)− S1/n(f)| < ε ∀n ≥ N,m = 1, 2, 3, ....

This shows that {S1/n(f)} is a Cauchy sequence in R. Since R is complete, S1/n(f) → S(f)
as n →∞. It follows that for any ε > 0, we can choose N̄ > 0 sufficiently large so that

|S1/(n)(f)− S(f)| < ε ∀n ≥ N̄ . (1.2)

It remains to show that the limit S(f) of our Cauchy sequence is indeed the integral of
f . In particular to show that

∫ b
a f(x)dx = S(f), we must show that for any ε̄ > 0, we can

choose δ > 0 small enough so that

|Sδ(f)− S(f)| < ε̄

for any Riemann sum Sδ(f). For this, we write

|Sδ(f)− S(f)| = |Sδ(f)− S1/n(f) + S1/n(f)− S(f)| ,

and by the triangle inequality we see that

|Sδ(f)− S(f)| ≤ |Sδ(f)− S1/n(f)|+ |S1/n(f)− S(f)| .

If we choose n so large so that n > max(N, N̄) then we see that

|S1/n(f)− S(f)| < ε

by the inquality (1.2), and that

|Sδ(f)− S1/n(f)| < ε

by the inequality (1.1) (we are using the δ > 0 given in the statement of theorem). This
shows that |Sδ(f)− S(f)| < 2ε, so we let ε̄ = 2ε to complete the proof.
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Theorem 1.6 is sometimes called the Cauchy criterion for integrability. The converse to
Theorem 1.6 is much easier to establish.

Lemma 1.7. If f ∈ R(a, b) then for any ε > 0, there exists δ > 0 such that

|S1
δ (f)− S2

δ (f)| < ε

for any two Riemman sums S1
δ (f) and S2

δ (f).

Proof. Since f ∈ R(a, b), given ε > 0, by Definition 1.4 we can choose δ > 0 small enough
so that

|S1
δ (f)−

∫ b

a
f(x)dx| < ε

2
and |S2

δ (f)−
∫ b

a
f(x)dx| < ε

2
.

Then, by the triangle inequality,

|S1
δ (f)− S2

δ (f)| = |S1
δ (f)−

∫ b

a
f(x)dx +

∫ b

a
f(x)dx− S2

δ (f)|

≤ |S1
δ (f)−

∫ b

a
f(x)dx|+ |S2

δ (f)−
∫ b

a
f(x)dx| < ε .

1.3 Upper and Lower Riemann Sums

The integrability criterion given by Theorem 1.6 is a bit too general, and we can refine it so
as to make it more practical. This leads us to the notion of the upper and lower Riemann
sum, known also as the upper and lower Darboux sum. The idea is to fix the selection points
zi so as to select two particular Riemann sums: the lower sum is based on the piecewise
constant approximation to f(x) whose graph lies just below the graph of f(x), and the
upper sum is based on the piecewise constant approximation to f(x) whose graph lies just
above the graph of f(x).

Definition 1.8 (Mi and mi). Given a partition Pδ, for i = 1, ...N(δ), we set

Mi = sup
x∈[xi−1,xi]

f(x)

and
mi = inf

x∈[xi−1,xi]
f(x) .

Definition 1.9 (Upper and Lower Riemann (or Darboux) Sums). Given a partition Pδ, we
let

Uδ(f) =
N∑

i=1

Mi(xi − xi−1) and Lδ

N∑
i=1

mi(xi − xi−1)

denote the upper and lower Riemann sums, respectively.
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Figure 1: The shaded region is the area represents the upper Riemann sum, while the
shaded area with diagonal lines represents the lower Riemann sum

Definition 1.10 (Upper and Lower Darboux Integral). We set

U(f) = inf
δ>0

Uδ(f) and L(f) = sup
δ>0

Lδ(f) .

U(f) and L(f) are sometimes called the upper and lower Darboux integrals, respectively.

We will see that the inf and the sup in this definition amount to passing to the limit as
δ → 0. We will also see, that an equivalent criterion for integrability is the following:

Definition 1.11 (Integrability of f(x) in terms of L(f) and U(f)). f ∈ R(a, b) if L(f) =
U(f). In this case, ∫ b

a
f(x)dx = L(f) = U(f) .

While this definition may not look exactly the same as our original Definition 1.4, we will
show that the two are indeed equivalent; on the other hand, Definition 1.11 is, in practice,
much easier to compute with.

Example 1.12 (Compute
∫ 1
0 x dx). We subdivide [0, 1] into N subintervals, with partition

width δ = 1/N . It follows that for i = 1, ..., N , mi = xi−1 = (i− 1)/N and Mi = xi = i/N .
Then,

Lδ(f) =
N∑

i=1

i− 1
N

· 1
N

=
1

N2

N−1∑
i=0

i =
(N − 1)N

2N2

6
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and

Uδ(f) =
N∑

i=1

i

N
· 1
N

=
1

N2

N∑
i=1

i =
N(N + 1)

2N2
.

Since L(f) = limδ→0 Lδ(f) = 1
2 and U(f) = limδ→0 Uδ(f) = 1

2 , we see that
∫ 1
0 x dx =

L(f) = U(f) = 1
2 .

(Note, that the computation in this example used the identity
∑N

i=1 = 1
2N(N + 1). Also,

note that the limit as δ → 0 is the same as the limit as N →∞ since δ = 1/N .)

Example 1.13 (Compute
∫ 1
0 x2 dx). We use the same partition as the previous example;

then, for i = 1, ..., N , mi = x2
i−1 = (i− 1)2/N2 and Mi = x2

i = i2/N2, so that

Lδ(f) =
N∑

i=1

(i− 1)2

N2
· 1
N

=
1

N3

N−1∑
i=0

i2 =
(N − 1)N(2N − 1)

6N3

and

Uδ(f) =
N∑

i=1

i2

N2
· 1
N

=
1

N3

N∑
i=1

i2 =
N(N + 1)(2N + 1)

6N3
.

Passing to the limit as δ → 0, we see that U(f) = L(f) = 1
3 so that

∫ 1
0 x2 dx = 1

3 .

Example 1.14 (A function f(x) that is not (Riemann) integrable). Consider the function
f(x) on the unit interval [0, 1] given by

f(x) =
{

1 x is rational
0 x is irrational

.

Now, for any partition Pδ of [0, 1], we see that each mi = 0 and each Mi = 1. It follows
that

Lδ(f) =
N∑

i=1

mi(xi − xi−1) = 0 and Uδ(f) =
N∑

i=1

Mi(xi − xi−1) = 1 ,

so that 0 = L(f) 6= U(f) = 1, so that the Riemann integral does not exist.

1.4 The refinement of a partition

Recall that a partition Pδ is a collection of points {x0, x1, ..., xn} with maximum width δ
between any two adjacent points.

Suppose that P 1
δ1

and P 2
δ2

are two different partitions of the interval [a, b]. Then P 1
δ1
∪P 2

δ2
is usually a larger collections of points and usually has a smaller maximum partition width
(the only way that this does not occur is if P 1

δ1
= P 2

δ2
). We can write this as

P 1
δ1 ⊂ P 1

δ1 ∪ P 2
δ2 and P 2

δ2 ⊂ P 1
δ1 ∪ P 2

δ2 .

7
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Definition 1.15 (Refinement of partitions). If P 1
δ1
⊂ P 2

δ2
, then P 2

δ2
is a refinement of P 1

δ1
and δ2 ≤ δ1.

Again, this notion becomes much easier to understand if we consider uniform partitions.
For example, consider the unit interval [0, 1], and let

P 1
δ1 = {x0 = 0, x1 =

1
4
, x2 =

1
2
, x3 =

3
4
, x4 = 1}

so that δ1 = 1/4. Consider the refinement

P 2
δ2 = {x0 = 0, x1 =

1
8
, x2 =

1
4
, x3 =

3
8
, x4 =

1
2
, x5 =

5
8
, x6 =

3
4
, x7 =

7
8
, x8 = 1} .

Notice that δ2 = 1/8 and that P 1
δ1
⊂ P 2

δ2
.

1.5 Properties of upper and lower sums

The conceptual idea of the lower Riemann sum Lδ(f) is that we are underestimating the
value of the integral

∫ b
a f(x)dx, while with the upper Riemann sum Uδ(f) we are overes-

timating the value of the integral
∫ b
a f(x)dx. In particular, if we fix some δ > 0, then we

expect that Lδ(f) ≤
∫ b
a f(x)dx. As we make δ smaller and smaller, we hope that

Lδ(f) ↗
∫ b

a
f(x)dx as δ ↘ 0 .

Thus, we expect a certain monotonic behavior of the lower Riemann sums Lδ(f) as δ gets
smaller and smaller. We can now make this idea precise.

Lemma 1.16. If f : [a, b] → R is bounded and P 1
δ1

and P 2
δ2

are two partitions of [a, b] such
that P 1

δ1
⊂ P 2

δ2
, then

Lδ1(f) ≤ Lδ2(f) ≤ Uδ2(f) ≤ Uδ1(f) . (1.3)

Proof. Since Lδ2(f) is formed using the mi and Uδ2(f) is formed using the Mi, then by
definition the middle inequality in (1.3) holds. The first and third inequalities hold via the
same argument, so we will provide it for the first inequality. In particular, we will show
that

Lδ1(f) ≤ Lδ2(f) whenever P 1
δ1 ⊂ P 2

δ2 . (1.4)

By an induction argument, it suffices to assume that P 2
δ2

has only one more point, x∗,
than P 1

δ1
. If

P 1
δ1 = {a = x0 < x1 < · · · < xN}

8
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then we can assume that

P 2
δ2 = {a = x0 < x1 < · · · < xk−1 < x∗ < xk < · · · < xN}

for some k = 1, 2, ..., N . In this case, the difference between Lδ1(f) and Lδ2(f) occurs only
over the interval [xk−1, xk], and we have that

Lδ2(f)− Lδ1(f) = inf
x∈[xk−1,x∗]

f(x) · (x∗ − xk−1) + inf
x∈[x∗,xk]

f(x) · (xk − x∗)

− inf
x∈[xk−1,xk]

f(x) · (xk − xk−1) . (1.5)

To prove that (1.4) holds, we must show that the right-hand side of (1.5) is greater than or
equal to zero. Since P 1

δ1
⊂ P 2

δ2
, we know that inf P 2

δ2
≤ inf P 1

δ1
so that

inf
x∈[xk−1,xk]

f(x) · (xk − xk−1) = inf
x∈[xk−1,xk]

f(x) ·
(
(xk − x∗) + (x∗ − xk−1)

)
≤ inf

x∈[xk−1,x∗]
f(x) · (xk − x∗) + inf

x∈[x∗,xk]
f(x) · (x∗ − xk−1) ,

which completes the proof.

Lemma 1.17. If f : [a, b] → R is bounded, then for any two partitions P 1
δ1

and P 2
δ2

,

Lδ1(f) ≤ Uδ2(f) .

Proof. The set P 1
δ1
∪P 2

δ2
is also a partition of [a, b] and since P 1

δ1
∪P 2

δ2
⊂ P 1

δ1
and P 1

δ1
∪P 2

δ2
⊂

P 2
δ2

, Lemma 1.16 shows that

Lδ1(f) ≤ Lδ12(f) ≤ Uδ12(f) ≤ Uδ2(f)

where Lδ12 denotes any lower Riemann sum associated to the partition P 1
δ1
∪ P 2

δ2
, and Uδ12

denotes any upper Riemann sum associated to the partition P 1
δ1
∪ P 2

δ2
.

Theorem 1.18. If f : [a, b] → R is bounded, then L(f) ≤ U(f).

Proof. If we fix an arbitrary partition Pδ̄ of [a, b], then Lemma 1.17 shows that

Lδ̄(f) ≤ Uδ(f) ∀δ > 0 .

It follows that
Lδ̄(f) ≤ U(f) , (1.6)

Since (1.6) holds for all partitions Pδ̄ with partition width δ̄ > 0, then it follows that
L(f) ≤ U(f).

9
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Theorem 1.19 (Cauchy criterion for integrability in terms of upper and lower sums). A
bounded function f ∈ R(a, b) if for each ε > 0, there exists δ > 0 such that

Uδ(f)− Lδ(f) < ε . (1.7)

Proof. Suppose that δ > 0 is so small that (1.7) holds. Then we have that

U(f) ≤ Uδ(f) = Uδ(f)− Lδ(f) + Lδ(f)
≤ ε + Lδ(f) ≤ ε + L(f) .

Since ε > 0 is arbitrary, we conclude that U(f) ≤ L(f). Since Theorem 1.18 gives us the
reverse inequality, L(f) ≤ U(f), we must have that L(f) = U(f) so that f ∈ R(a, b).

1.6 Definition 1.4 implies Definition 1.11

Finally, let us show that if f is integrable according to our first definition (Definition 1.4)
then it is also integrable according to our second definition (Definition 1.11).

Suppose that f ∈ R(a, b) in the sense of Definition 1.4, so that given any ε > 0 there
exists δ > 0 so that

|Sδ(f)−
∫ b

a
f(x)dx| < ε .

For each i = 1, ..., N(δ), we select the evaluation points zi so that

f(zi) < mi + ε ,

so that
Sδ(f) ≤ Lδ(f) + ε(b− a) .

Hence,

L(f) ≥ Lδ(f) ≥ Sδ(f)− ε(b− a) >

∫ b

a
f(x)dx− ε− ε(b− a) .

Since ε > 0 is arbitrary, we see that L(f) ≥
∫ b
a f(x)dx. A similar argument shows that

U(f) ≤
∫ b
a f(x)dx, and since we know that L(f) ≤ U(f), we must have that L(f) =

U(f) =
∫ b
a f(x)dx.

1.7 Monotonic and piecewise continuous functions are integrable

In this section, we will show that functions f : [a, b] → R which are either piecewise
monotonic or piecewise continuous are integrable.

Recall that f : [a, b] → R is increasing if f(x) ≤ f(y) whenever x < y for any x, y ∈ [a, b].
Similarly, f : [a, b] → R is decreasing if f(x) ≥ f(y) whenever x < y for any x, y ∈ [a, b].
The function f : [a, b] → R is called monotonic if it is either increasing or decreasing.

10
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Theorem 1.20. If f : [a, b] → R is monotonic, then f ∈ R(a, b).

Proof. We will prove the theorem for the case that f is increasing, as the argument for the
case that f is decreasing is almost identitical.

Since f is increasing, by definition, f(a) ≤ f(x) ≤ f(b) for all x ∈ [a, b]. It follows that
f is bounded on [a, b] by the value f(b). In order to prove that f ∈ R(a, b), we will show
that the Cauchy criterion of Theorem 1.19 is satisfied. To this end, for ε > 0, we choose

δ <
ε

f(b)− f(a)
,

and choose any partition Pδ. Then

Uδ(f)− Lδ(f) =
N(δ)∑
i=1

(Mi −mi) · (xi − xi−1)

=
N(δ)∑
i=1

(f(xi)− f(xx−1) · (xi − xi−1)

<

N(δ)∑
i=1

(f(xi)− f(xx−1) ·
ε

f(b)− f(a)

=
ε

f(b)− f(a)

N(δ)∑
i=1

(f(xi)− f(xx−1)

=
ε

f(b)− f(a)
(f(b)− f(a)) = ε .

Theorem 1.21. If f : [a, b] → R is continuous (denoted by f ∈ C([a, b])), then f ∈ R(a, b).

Proof. Once again, we will use the Cauchy criterion of Theorem 1.19. Since [a, b] is closed
(hence compact), f is uniformly continuous on [a, b]; therefore, for any ε > 0, we can choose
δ > 0 such that

|f(x)− f(y)| < ε

b− a
whenever x, y ∈ [a, b] and |x− y| < δ . (1.8)

Let Pδ denote any partition of [a, b]. Since f is continuous, we can replace the inf and
sup with min and max, respectively, in the defintions of mi and Mi, so that for each
i = 1, ..., N(δ),

mi = min
x∈[xi−1,xi]

f(x) and Mi = max
x∈[xi−1,xi]

f(x) .

11
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According the inequality (1.8), for each i = 1, ..., N(δ),

Mi −mi ≤
ε

b− a
,

so that

Uδ(f)− Lδ(f) <

N(δ)∑
i=1

ε

b− a
· (xi − xi−1)

=
ε

b− a

N(δ)∑
i=1

(xi − xi−1)

=
ε

b− a
(b− a) = ε .

1.8 The Riemann integral is linear

Since the Riemann integral is defined as the infinite limit of a sequence of finite sums, and
as summation is linear operation, we expect that limiting integral should also be linear.
This is indeed the case.

Theorem 1.22 (Linearity of the integral). Suppose that f, g ∈ R(a, b). Then

(a) f + g ∈ R(a, b) and
∫ b
a (f(x) + g(x))dx =

∫ b
a f(x)dx +

∫ b
a g(x)dx;

(b) ∀c ∈ R, cf ∈ R(a, b) and
∫ b
a cf(x)dx = c

∫ b
a f(x)dx.

Proof. We begin with the proof of part (a). Since f and g are in R(a, b), for any ε > 0, we
can choose δ1 > 0 (for f) and δ2 > 0 (for g) so that∣∣∣∣Sδ1(f)−

∫ b

a
f(x)dx

∣∣∣∣ <
ε

2
and

∣∣∣∣Sδ2(g)−
∫ b

a
f(x)dx

∣∣∣∣ <
ε

2
.

Let δ < min(δ1, δ2) and let Pδ be any partition. It follows that∣∣∣∣Sδ(f)−
∫ b

a
f(x)dx

∣∣∣∣ <
ε

2
and

∣∣∣∣Sδ(g)−
∫ b

a
f(x)dx

∣∣∣∣ <
ε

2
.

We must show that the difference between Sδ(f + g) and
∫ b
a (f(x)dx+

∫ b
a g(x)dx is less than

ε whenever δ is sufficiently small. In other words, we wish to show that

lim
δ→0

Sδ(f + g) =
∫ b

a
(f(x)dx +

∫ b

a
g(x))dx . (1.9)

12
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Since by definition,
∫ b
a (f(x) + g(x))dx = limδ→0 Sδ(f + g), the proof will be complete when

we establish (1.9). Notice that∣∣∣∣Sδ(f + g)−
[∫ b

a
(f(x)dx +

∫ b

a
g(x)dx

]∣∣∣∣ =
∣∣∣∣[Sδ(f)−

∫ b

a
(f(x)dx

]
+

[
Sδ(g)−

∫ b

a
g(x)dx

]∣∣∣∣
≤

∣∣∣∣Sδ(f)−
∫ b

a
(f(x)dx

∣∣∣∣ +
∣∣∣∣Sδ(g)−

∫ b

a
g(x)dx

∣∣∣∣ < ε ,

which proves (1.9), and hence part (a).
To prove part (b), we can assume that c 6= 0, for otherwise the conclusion trivially holds.

For ε > 0, choose δ > 0 sufficiently small so that for any partition Pδ, we have that∣∣∣∣Sδ(f)−
∫ b

a
f(x)dx

∣∣∣∣ <
ε

|c|
.

It follows that∣∣∣∣Sδ(cf)− c

∫ b

a
f(x)dx

∣∣∣∣ = |c| ·
∣∣∣∣Sδ(f)−

∫ b

a
f(x)dx

∣∣∣∣ < |c| · ε

|c|
= ε .

Remark 1.23. Note well, that in both parts of the above proof, we crucially relied on the
linearity of Sδ(f); namely, we have used the fact that for any δ > 0, Sδ(f+g) = Sδ(f)+Sδ(g)
and that cSδ(f) = Sδ(cf).

1.9 Further properties of the Riemann integral

Theorem 1.24. If f, g ∈ R(a, b) and f(x) ≤ g(x) for all x ∈ [a, b], then
∫ b
a f(x)dx ≤∫ b

a g(x)dx.

Proof. We let h = g − f . According to Theorem 1.22, h ∈ R(a, b). Since h ≥ 0, any lower
Riemann sum Lδ(h) ≥ 0 for all δ > 0. Hence,

∫ b
a h(x)dx ≥ L(h) ≥ 0. Now, we apply

Theorem 1.22 once again to find that∫ b

a
g(x)dx−

∫ b

a
f(x)dx =

∫ b

a
h(x)dx ≥ 0 .

Theorem 1.25. Suppose f : [a, b] → R. Let c be any point in (a, b). If f ∈ R(a, c) and
f ∈ R(c, b), then f ∈ R(a, b) and∫ b

a
f(x)dx =

∫ c

a
f(x)dx +

∫ b

c
f(x)dx .

13
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We leave the proof as an exercise for the student.

Definition 1.26 (Piecewise monotonicity). f : [a, b] → R is piecewise monotonic if there
exists a partition

Pδ = {a = x0, x1, ..., xN−1, xN}

such that f is monotonic on each subinterval [xi−1, xi] for i = 1, ..., N . If the partition can
be chose such that f is continuous on each subinterval [xi−1, xi] for i = 1, ..., N , then f is
piecewise continuous.

Theorem 1.27. If f : [a, b] → R is either piecewise continuous or a bounded piecewise
monotonic function, then f ∈ R(a, b).

In order to state our next theorem, we recall the intermediate value theorem for functions.

If f ∈ C([a, b]), then for every point y such that f(a) < y < f(b), there exists at least
one x ∈ (a, b) such that f(x) = y.

Theorem 1.28 (The intermediate value theorem for integrals). If f : [a, b] → R is contin-
uous, then there exists at least one point c ∈ [a, b] such that

f(c) =
1

b− a

∫ b

a
f(x)dx .

Proof. Since f is continuous on [a, b], a compact set, we let m and M denote the minimum
and maximum of f , respectively. It follows that m(b − a) ≤

∫ b
a f(x)dx ≤ M(b − a) and

hence that

m ≤ 1
b− a

∫ b

a
f(x)dx ≤ M . (1.10)

Applying the intermediate value theorem for continuous functions to (1.10) yields the result.

Remark 1.29. Theorem 1.28 states that whenever f : [a, b] → R is continuous, there is
always some point x in [a, b] for which f(x) is equal to average value of f over the entire
interval [a, b].

Theorem 1.30. If f ∈ R(a, b), then |f | ∈ R(a, b) and∣∣∣∣∫ b

a
f(x)dx

∣∣∣∣ ≤ ∫ b

a
|f(x)|dx .

14
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Proof. Let Pδ be any partition. Then for each i = 1, ..., N(δ),

sup
[xi−1,xi]

|f |(x)− inf
[xi−1,xi]

|f |(x) ≤ sup
[xi−1,xi]

f(x)− inf
[xi−1,xi]

f(x)

from which it follows that

Uδ(|f |)− Lδ(|f |) ≤ Uδ(f)− Lδ(f) .

This shows that whenever f ∈ R(a, b), then |f | ∈ R(a, b).
Next, since

−
∫ b

a
|f(x)|dx ≤

∫ b

a
f(x)dx ≤

∫ b

a
|f(x)|dx

then Theorem 1.24 finishes the proof.

1.10 Interchanging limits with integrals

Theorem 1.31. Let {fn} be a sequence of continuous functions on [a, b], and suppose that
fn → f uniformly on [a, b]. Then

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx .

Proof. The limit f is continuous, so the functions fn − f are integrable on [a, b]. Since
fn → f uniformly, for ε > 0, there exists N sufficiently large such that |fn(x)− f(x)| < ε

b−a
for all x ∈ [a, b] and n > N . Hence∣∣∣∣∫ b

a
fn(x)dx−

∫ b

a
f(x)dx

∣∣∣∣ =
∣∣∣∣∫ b

a
[fn(x)− f(x)]dx

∣∣∣∣
≤

∫ b

a
|fn(x)− f(x)|dx ≤

∫ b

a

ε

b− a
dx = ε ,

which proves the theorem.

In fact, it is not necessary that the sequence of functions fn be continuous on [a, b].

Theorem 1.32. Let {fn} be a sequence of bounded (Riemann) integrable functions defined
on [a, b]. Suppose that fn → f uniformly. Then f is integrable on [a, b] and

lim
n→∞

∫ b

a
fn(x)dx =

∫ b

a
f(x)dx .

There are at least two ways to prove this theorem. The first is to show that the uniform
limit of integrable functions is integrable and then use the argument of Theorem 1.31. The
second involves showing that the sequence of integrals

∫ b
a fn(x)dx is a Cauchy sequence. The

reader will be asked to supply a proof of Theorem 1.32 in the exercises using the second
approach.

15
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1.11 The fundamental theorem of calculus

Having characterized a large class of integrable functions, we return our focus to the actual
computation of integrals. For integrals of 1-D intervals, the most practical approach relies
on the use of so-called antiderivatives and the fundamental theorem of calculus. For a
function F which is differentiable at x, we will denote F ′(x) = dF

dx (x).

Definition 1.33 (Antiderivative). For f : [a, b] → R, the antiderivative of f is a continuous
function F : [a, b] → R such that F is differentiable on the open interval (a, b) and F ′(x) =
f(x) for x ∈ (a, b).

Theorem 1.34 (Fundamental Theorem of Calculus). Let f : [a, b] → R be continuous.
Then f has an antiderivative F , and

F (b)− F (a) =
∫ b

a
f(x)dx . (1.11)

If G is any other antiderivative of f , then the identity G(b)−G(a) =
∫ b
a f(x)dx also holds.

Remark 1.35. According to Definition 1.33, since F ′ = f on (a, b), we can equivalently
write (1.11) as

F (b)− F (a) =
∫ b

a
F ′(x)dx . (1.11’)

This shows that differentiation and integration are inverse operations, and in particular, we
see that the integral of the derivative of a function is the function itself.

Remark 1.36. To gain intuition for the fundamental theorem of calculus, let us suppose
that f(x) ≥ 0. We define

F (x) =
∫ x

a
f(y)dy ,

so that F (x) represents the area under the graph of f from a to x. Recall that F ′(x) =

lim∆x→0
F (x+∆x)−F (x)

∆x . Now, the fact that F ′(x) = f(x) follows from looking at the figure:
notice that f(x) is the rate at which the area is increasing, since F (x+∆x)−F (x) ∼ f(x)∆x.

16
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Example 1.37.
∫ π/2
0 sinx dx = 1, since d

dx(− cos x) = sin x and − cos(π/2)− (− cos(0)) =
1.

An important question to ask is the following:

Let F (x) =
∫ x
a f(t)dt. Must F be differentiable if f is merely integrable (but

not continuous)?

The answer is NO! Continuity in Theorem 1.34 is necessary. To see this, let

f(x) =
{

0, 0 ≤ x ≤ 1 ,
1, 1 < x ≤ 2 .

and

F (x) =
{

0, 0 ≤ x ≤ 1 ,
x− 1, 1 < x ≤ 2 .

We see that F is continuous, but not differentiable at x = 1.

Proof of Theorem 1.34 (Fundamental Theorem of Calculus). We define F : [a, b] → R by

F (x) =
∫ x

a
f(y)dy . (1.12)

We begin by showing that F is the antiderivative of f . We let x ∈ (a, b) an we choose
δ > 0 sufficiently small so that the open interval (x, x + δ) ⊂ (a, b). Next, we consider the
following difference quotient:

F (x + δ)− F (x)
δ

=

∫ x+h
a f(y)dy −

∫ x
a f(y)dy

δ
=

1
δ

∫ x+δ

x
f(y)dy .

For ε > 0, since f is continuous, we take δ > 0 even small, if necessary, so that

|f(x)− f(y)| < ε whenever |x− y| < δ .

17
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It follows that ∣∣∣∣1δ
∫ x+δ

x
f(y)dy − f(x)

∣∣∣∣ =
∣∣∣∣∫ x+δ

x

f(y)− f(x)
δ

dy

∣∣∣∣
≤

∫ x+δ

x

|f(y)− f(x)|
δ

dy <
εδ

δ
= ε .

Thus, passing to the limit as δ ↘ 0, we see that

f(x+) = lim
δ↘0

F (x + δ)− F (x)
δ

.

Similarly, we find that

f(x−) = lim
δ↘0

F (x)− F (x− δ)
x− δ

.

It follows that F ′(x) exists and that F ′(x) = f(x). But F ′(x) = d
dx

∫ x
a f(y)dy by (1.12) so

that
d

dx

(
F (x)−

∫ x

a
f(y)dy

)
= 0

Hence for some constant c ∈ R,

F (x)−
∫ x

a
f(y)dy = c .

On the other hand,
∫ a
a f(y)dy = 0 (since we are integrating the function over an interval of

zero width) so that F (a) = c and it follows that F (x)− F (a) =
∫ x
a f(y)dy. Letting x = b,

we obtain the claimed identity that

F (b)− F (a) =
∫ b

a
f(y)dy .

We must now show that F is also continuous x = a and x = b. Since f is continuous on
[a, b] it has a maximum value, say M . Then

|F (a + δ)− F (a)| ≤
∫ a+δ

a
|f(y)|dy ≤ δM ,

which shows that F is continuous at x = a. A similar argument shows that F is also
continuous at x = b.

Next, suppose that G is any antiderivative of f . Since G′(x) = F ′(x) and hence d
dx(G−

F ) = 0 on (a, b), we see that G−F = c for some constant c ∈ R. It follows that G(b)−G(a) =∫ b
a f(y)dy for any antiderivative G.

18



Shkoller 1 RIEMANN INTEGRATION

Example 1.38. If f(x) = xp+1

p+1 , then f ′(x) = xp so by the Fundamental Theorem of
Calculus, as long as p ≥ 0, ∫ b

a
xpdx =

bp+1

p + 1
− ap+1

p + 1
.

In particular,
∫ 1
0 x2dx = 1/3, which is much easier than our previous computation of this

integral in Example 1.13 which relied on the limit of Riemann sums.

An extremely useful corollary to the Fundamental Theorem of Calculus is the integration
by parts formula.

Theorem 1.39 (Integration by parts). If f, g are continuous on [a, b] and differentiable on
(a, b), and if f ′, g′ are integrable on [a, b], then∫ b

a
f(x)g′(x)dx +

∫ b

a
f ′(x)g(x)dx = f(b)g(b)− f(a)g(a) .

Proof. Let w = fg. By the product rule, w′ = f ′g + fg′, and Exercise 1.3 shows that w′ is
integrable. By the Fundamental Theorem of Calculus,∫ b

a
w′(x)dx = w(b)− w(a) = f(b)g(b)− f(a)g(a) ,

which completes the proof.

1.12 Improper integrals

In previous sections, we have developed the theory of the Riemann integral for bounded
functions f(x) on a bounded interval [a, b]. We now develop the extension of this theory to
unbounded functions or integrals over unbounded regions. This extension is known as the
theory of improper integrals, which lead to convergence problems similar to those that are
often encountered for infinite series.

It is customary to define the improper integral over an infinitely-long interval [a,+∞]
as ∫ ∞

a
f(x)dx = lim

L→0

∫ L

a
f(x)dx ,

and for unbounded functions near the x = 0 by∫ b

0
f(x) = lim

ε→0

∫ b

ε
f(x)dx .
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We must be extremely careful, however, when we try to extend such definitions to odd
functions such as sin(x) over intervals that extend to both −∞ and +∞. In particular, we
will not define ∫ +∞

−∞
f(x)dx = lim

L→∞

∫ L

−L
f(x)dx ,

for in the case that f(x) = x, the above definition would lead to
∫∞
−∞ xdx = 0. This is

extremely problematic, as
∫∞
0 xdx = ∞ and

∫ 0
−∞ xdx = −∞, and in order to retain the

linearity of the integral, we must be extremely careful. The solution, which avoids this
issue of “cancellation of infinities,” consists of the decomposition of the function f(x) into
its positive and negative parts. In the following, we shall explain this process in great detail.

1.12.1 Improper integrals over unbounded domains

We set A = [a,∞), and begin by studying functions functions f(x) ≥ 0 for all x ∈ A. We
then extend f to all of R by setting f = 0 on (−∞, a).

Definition 1.40. Define
∫
A fdx :=

∫∞
a f(x)dx to be limL→∞

∫ L
−L f(x)dx whenever this

limit exists. Here f should be bounded and integrable on each closed interval [−L,L]. If∫∞
a f(x)dx exists (and is finite), then we say that f is integrable.

Theorem 1.41. For f ≥ 0, bounded and integrable on any closed interval [−L,L], f is
integrable on A if for any nested sequence of intervals {Bi}∞i=1 such that (i) Bi ⊂ Bi+1,
and (ii) for any closed interval C, we have that C ⊂ Bi for i taken sufficiently large, then
limi→∞

∫
Bi

f(x)dx exists. In this case,
∫
A f(x)dx = limi→∞

∫
Bi

f(x)dx.

This theorem is checking if for f ≥ 0, (a) f is Riemann integrable on any finite interval
[−L,L], and (b) if the limit of the integrals (as the interval length becomes larger and
larger) is converging. When both (a) and (b) are verified, then the non-negative function f
is called integrable over the unbounded interval A.
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Note that if f ≥ 0 is integrable, and g : A → R is another functions such that g ≥ 0 is
Riemann integrable over any finite interval [−L,L] and

0 ≤ g ≤ f ,

then g is also integrable over the unbounded domain A. This follows since for any bounded
interval [−L,L], Theorem 1.24 asserts that∫ L

−L
g(x)dx ≤

∫ L

−L
f(x)dx ,

and hence ∫
A

g(x)dx = lim
L→∞

∫ L

−L
g(x)dx ≤ lim

L→∞

∫ L

−L
f(x)dx =

∫
A

f(x)dx .

This is known as the comparison test.

1.12.2 Unbounded functions on possibly unbounded regions

We next consider the notion of integral for arbitrary functions f ≥ 0 which are unbounded
and defined on possibly unbounded intervals in R.

Definition 1.42 (Cut-off for an unbounded function). For each M > 0, let

fM (x) =
{

f(x), f(x) ≤ M ,
0, f(x) > M .

The function fM is bounded by M from above, and bounded from below by zero, since
we assumed that f ≥ 0. Hence, we can define

∫
A fMdx as in Definition 1.40. Note that∫

A fMdx increases as M increases and once again, 0 ≤ fM ≤ f . We then define∫
A

f(x)dx = lim
M→∞

∫
A

fM (x)dx
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whenever this limit exists and is finite, in which case we say that f is integrable on A.
Once again, we may invoke the comparison test: if f ≥ 0 is integrable on the (possibly
unbounded) interval A, and if 0 ≤ g ≤ f , then g is also integrable on A. (Of course, we are
again assuming that g is Riemann integrable over any finite interval [−L,L].)

Having discussed the improper integral of functions f ≥ 0, we now turn our attention to
the general function f : A → R which may also take negative values. We treat the case of
the general function f by decomposing f into its positive and negative parts.

Definition 1.43 (f = f+ − f−). For a general function f : A → R, we set

f+(x) =
{

f(x), f(x) ≥ 0 ,
0, f(x) < 0 .

and f−(x) =
{
−f(x), f(x) ≤ 0 ,
0, f(x) > 0 .

Definition 1.44 (Integrability for general f : A → R). If both
∫
A f+dx and

∫
A f−dx exist,

we define ∫
A

fdx =
∫

A
f+dx−

∫
A

f−dx,

and say that f is integrable on A.

Notice that not only is f = f+ − f− (by definition), but that |f | = f+ + f−. Hence, f
is integrable on A if |f | is integrable on A since∫

A
fdx ≤ |

∫
A

fdx| ≤
∫

A
f+dx +

∫
A

f−dx =
∫

A
|f |dx .

Conversely, if
∫
A |f | exists, then both

∫
A f+dx and

∫
A f−dx must be finite, since they are

nonnegative and
0 ≤ f+ ≤ |f | and 0 ≤ f− ≤ |f | .

Thus, f is integrable on A iff |f | is integrable on A.
This leads us to the notion of absolute convergence for an improper integral.

22



Shkoller 1 RIEMANN INTEGRATION

Definition 1.45 (Absolute convergence). We say that
∫
A fdx is absolutely convergent if∫

A |f |dx < ∞.

For integrals of functions defined over intervals in R, i.e. for integrals in one space
dimension, there is a more practical means of computing the improper integral, and the
following theorem is in many ways more useful than Theorem 1.41. In particular, it is
based on the Fundamental Theorem of Calculus.

Theorem 1.46 (Improper integrals in 1-D).

1. (Unbounded interval) Suppose that f : [a,∞) is continuous and f ≥ 0. Let F be an
antiderivative of f . Then f is integrable on [a,∞) iff limx→∞ F (x) exists. In this
case ∫ ∞

a
f(x)dx =

[
lim

x→∞
F (x)

]
− F (a) .

2. (Unbounded function near x = a) Suppose that f : (a, b) → R is continuous and f ≥ 0.
Then f is integrable on [a, b] iff

lim
ε→0+

∫ b

a+ε
f(x)dx exists.

This limit is equal to
∫ b
a f(x)dx.

As with infinite series, we must be able to test an improper integral for convergence of
divergence, and it should come as no surprise, that the tests closely resemble those used
for infinite series. The comparison test, already discussed above, is one of the most useful
tests. If

∫∞
a f(x)dx converges and f ≥ 0 and 0 ≤ g ≤ f , then

∫∞
a g(x)dx converges. As we

have already discussed,
∫∞
a g(x)dx must converge since

∫ L
a g(x)dx increases as L →∞ and

is bounded above by
∫∞
a f(x)dx.

We have already defined absolute convergence of an integral. There is a weaker notion
of convergence known as conditional convergence of the improper integral. Such conditional
convergence is defined by ∫ ∞

a
f(x)dx = lim

L→∞

∫ L

a
f(x)dx

if the limit exists. For functions f which may take negative values, this is not the same as
absolute convergence. For absolute convergence, the this limit must hold for both f+ and
f−.

Example 1.47 (Absolute vs. conditional convergence). Let f(x) = sin x
x . We prove that∫∞

1 f(x)dx is conditionally but not absolutely convergent.
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If f were integrable on [1,∞), then |f | would also be. But then∫ ∞

1

| sinx|
x

dx ≥
∫ nπ

π

| sinx|
x

dx =
n∑

i=2

∫ iπ

(i−1)π

| sinx|
x

dx ≥ 2
π

n∑
i=2

1
i

,

since on the interval [(i− 1)π , iπ],
1
x
≥ 1

iπ

and
∫ iπ
(i−1)π | sinx|dx = 2. Then, since

n∑
i=2

1
i
→∞ as n →∞ ,

we see that
∫∞
1

| sin x|
x dx = +∞, so that

∫∞
1 f(x)dx is not absolutely convergent.

On the other hand, limL→∞
∫ L
1

sin x
x dx exists. To see this, note that∫ L

1

sinx

x
dx = −

∫ L

1
x−1 d

dx
cos xdx

so that integration by parts shows that

−
∫ L

1
x−1 d

dx
cos xdx = −

∫ L

1
x−2 cos xdx +

[
−cos L

L
+ cos 1

]
,

and
∫∞
1 cos x/x2dx exists because∫ L

1
x−2| cos x|dx ≤

∫ L

1
x−2dx = 1− 1

L
,

which converges as L →∞. It follows that
∫∞
1 f(x)dx is conditionally convergent.

A driving theme throughout these lecture notes, has been the reduction of a difficult
problem to an easier one, whose solution we know how to obtain. One of the fundamen-
tal difficulties in analysis is the determination of the (absolute) convergence of improper
integrals. Most integrals do not have antiderivatives that can be expressed in closed-form
(i.e., explicitly computed), but the comparison test offers a means of estimating these inte-
grals, and obtaining upper bounds. In the following example, we provide a list of standard
improper integrals which can be readily evaluated by either direct integration, successive
integration by parts, or some other well-known calculus tricks. In practice, these inte-
grals are used in conjunction with the comparison test for the purpose of determining the
integrability of many large classes of functions.
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Example 1.48 (List of well-known improper integrals).

1.
∫∞
1 xpdx

{
converges if p < −1
diverges if p ≥ −1

;

2.
∫ 1
0 xpdx

{
converges if p > −1
diverges if p ≤ −1

;

3.
∫∞
1 e−xxpdx converges for all p;

4.
∫ a
0 e1/xxpdx diverges for all p;

5.
∫ a
0 log x dx converges;

6.
∫∞
1

(
1

log x

)
dx diverges.

We begin by considering 1. Here we will apply Theorem 1.46. Notice that

∫ L

1
xpdx


xp+1

p+1

∣∣∣L
1

, p 6= −1 ,

log x|L1 , p = −1 .

Now log L → ∞ as L → ∞, and Lp+1 → ∞ as L → ∞ if p + 1 > 0 or p > −1. Part
2. is similar, and parts 5. and 6. can be proved in the same way also. The proof of
parts 3. and 4. will be left as exercises, but we note that convergence of these integrals
demonstrates the so-called Dirichlet test for integrals (generalizing the Dirichlet test for
series) in which a function f which decays to zero is multiplied against a continuous function
g that is integrable on all finite intervals; the result is that the product fg is integrable on
the unbounded interval.

Example 1.49. The integral
∫∞
1

1√
x3+1

dx converges.
The integrand becomes unbounded as x → ∞. Notice that on our interval of interest,

x ≥ 1 and for such x, we see that

1√
x3 + 1

≤ 1√
x3

= x−3/2 ,

and
∫∞
1 x−3/2dx converges by part 1. of Example 2.51. Hence, the comparison principle

shows that
∫∞
1

1√
x3+1

dx converges as well.

Proof of Theorem 1.46. Part 1. Suppose that L > a and extend f to [−L,∞ by setting
f = 0 on [−L, a). Then

∫ L
−L f(x)dx =

∫ L
a f(x)dx, and by the Fundamental Theorem of
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Calculus,
∫ L
a f(x)dx = F (L) − F (a). Hence, limL→∞

∫ L
−L f(x)dx exists iff limL→∞ F (L)

exists, and by definition
∫ f
a (x)dx = [limL→∞ F (L)]− F (a).

Part 2. For the second part, we need an approximate to f which cuts-off the singular
behavior of f near x = a. To this end, we set

f ε(x) =
{

0 , x ∈ [a, a + ε] ,
f(x) , x ∈ (a + ε, b] .

We proceed in two steps.
Step 1. First, recall the definition of the function fM given in Definition 1.12.2. Then,
with M given by M = supx∈[a+ε , b] f(x), we see that fM (x) = f(x) if f(x) ≤ M and fM = 0
otherwise; hence, ∫ b

a
f ε(x)dx =

∫ b

a+ε
f(x)dx ≤

∫ b

a
fM (x)dx

since f ≤ fM on [a+ ε , b]. Note that fM (x) might not be zero on [a , a+ ε] as in the figure.

Step 2. For any ε > 0 and M ,∫ b

a
fM (x)dx−

∫ b

a
f ε(x)dx ≤ εM ,

since fM ≤ M on [a, a + ε], and for x ∈ (a + ε, b], fM (x) = f(x), so that∫ b

a
fM (x)dx−

∫ b

a
f ε(x)dx =

(∫ a+ε

a
fM (x)dx +

∫ b

a+ε
f(x)dx

)
−

∫ b

a+ε
fM (x)dx ≤ εM ,

as fM ≤ M .
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In order to prove the theorem, suppose that
∫ b
a fM (x)dx → I as M → ∞. Notice that

since f ≥ 0,
∫ b
a fM (x)dx increases as M increases. We remains to show that

∫ b
a f ε(x)dx

also converges to I as ε → 0, but it clearly increases to a value which is bounded above
by I according to Step 1. Hence, given δ > 0, choose M such that I −

∫ b
a fM (x)dx < δ/2.

Then if we let ε = δ/2M , by Step 2.,
∫ b
a fM (x)dx −

∫ b
a f ε(x)dx < δ/2. It follows that

I −
∫ b
a f ε(x)dx < δ, so that limε→0

∫ b
a f ε(x)dx = I.

The converse follows in essentially the same way, again using Steps 1 and 2 to show that
if

∫ b
a f ε(x)dx → I, then

∫ b
a fM (x)dx → I.

1.13 Exercises

Problem 1.1. Give an example of a function f on [0, 1] that is not integrable for which |f |
is integrable. (Hint: Modify Example 1.14.)

Problem 1.2. Let f : [a, b] → R and suppose that |f(x)| ≤ A < ∞ for all x ∈ [a, b].

(a) Show that Uδ(f2)− Lδ(f2) ≤ 2A
(
Uδ(f)− Lδ(f)

)
for all partitions Pδ. (Hint: Recall

the identity [(f(x)− f(y)] [f(x) + f(y)] = f(x)2 − f(y)2.)

(b) Show that if f ∈ R(a, b), then f2 ∈ R(a, b).

Problem 1.3. Suppose that f, g ∈ R(a, b). Using the identity (f − g)2 − (f + g)2 = 4fg,
show that fg ∈ R(a, b).

Problem 1.4. Suppose that f : [a, b] → R is continuous, f(x) ≥ 0 for x ∈ [a, b], and
f(x) > 0 for some x ∈ [a, b]. Then

∫ b
a f(x)dx > 0.

Problem 1.5. Let

f(x) =
{

sin 1
x x 6= 0

0 x = 0
.

Show that f ∈ R(0, 1).

Problem 1.6. (a) Use integration by parts to evaluate∫ 1

0
x arctanx dx .

(Hint. If in the integration by parts formula, you set f(x) = arctanx, then f ′(x) =
1

1+x2 .)

(b) In the integration by parts formula, if you used g(x) = x2

2 in part (a), do the compu-
tation once again with g(x) = x2+1

2 for an interesting surprise.
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Problem 1.7. Prove Theorem 1.32 using the following argument:

1. Prove that f is bounded.

2. With I =
∫ b
a f(x)dx, we must find a number I such that for all ε > 0, there is a δ > 0

such that
|Sδ(f)− I| < ε .

If such an I exists, we want to show that I = limn→∞
∫ b
a fn(x)dx. Show that

∫ b
a fn(x)dx

is a Cauchy sequence.

3. Use a triangle inequality argument to show that with 1/N < δ for some integer N
chosen sufficiently large,

|S1/N (f)− I| ≤ |S1/N (f)− S1/N (fN )|+ |S1/N (fN )−
∫ b

a
fN (x)dx|+ |

∫ b

a
fN (x)dx− I| .

4. Conclude that |Sδ(f)− I| < ε and hence that I =
∫ b
a f(x)dx.

Problem 1.8. Prove all of the assertions of Example 2.51.

Problem 1.9. Compute
∫∞
0

1
(1+x)2

dx .

Problem 1.10. Is
∫∞
0 xpdx convergent for any p? If so, for which p?

2 Differentiable mappings of Rn to Rm

We consider functions f : Rn → Rm, called mappings, and study their differentiability
properties. A certain amount of lower-division linear algebra will be necessary, and the
reader may wish to review linear transformations and their matrix representations.

2.1 The derivative f : Rn → Rm

2.1.1 The one-dimensional case

We begin with a review of the derivative of a function defined over an interval in R.

Definition 2.1 (Derivative in one-dimension). f : (a, b) → R is differentiable at x0 ∈ (a, b)
if for h > 0 chosen sufficiently small such that x0 + h ∈ (a, b), the limit

df

dx
(x0) = lim

h→0

f(x0 + h)− f(x0)
h

exists. We often write f ′(x0) for df
dx(x0), and call f ′(x0) the derivative of f at x0.
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Notice that for functions over one-dimensional intervals, the derivative is the limit of a
sequence of difference quotients, whenever this limit exists, with each difference quotient
representing the approximate slope of the line tangent to the graph of the function f at the
point x0. The formula in Definition 2.1 can also be expressed as

lim
h→0

f(x0 + h)− f(x0)− f ′(x0)h
h

= 0 . (2.1)

The number h > 0 is the interval width over which the approximate slope of the function
f is computed at x0. We can define the point x ∈ (a, b) to be

x = x0 + h ,

in which case (2.1) takes the form

lim
x→x0

|f(x)− f(x0)− f ′(x0))(x− x0)|
|x− x0|

= 0 .

2.1.2 The multi-dimensional case

Let A ⊂ Rn denote an open subset. An element x of Rn is an n-vector, so that with respect
to the usual basis of Rn, given by e1 = (1, 0, ..., 0), e2 = (0, 1, ..., 0), ..., en = (0, 0, ..., 1),

x = (x1, x2, ..., xn) .

For each i = 1, ..., n, xi denotes the ith component of the n-vector x. A map f : Rn → Rm

can also be written in terms of its components:

f(x) = (f1(x), ..., fm(x)) = (f1(x1, ..., xn), . . . , fm(x1, ..., xn)) . (2.2)

So, a map f : Rn → Rm has m-components and each component is a function of n inde-
pendent variables (x1, ..., xn).
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Definition 2.2 (Derivative in multi-dimensions). A map f : Rn → Rm is said to be differ-
entiable at the point x ∈ A if there exists a linear transformation, denoted Df(x) : Rn → Rm

and called the derivative of f at x0, such that

lim
x→x0

‖f(x)− f(x0)−Df(x0) · (x− x0)‖
‖x− x0‖

= 0 .

We are using ‖·‖ to denote the Euclidean norm on Rm, and the notation Df(x0)·(x−x0)
denotes the value of the linear map Df(x0) applied to the vector (x − x0) ∈ Rn. As an
example, fix n = 2 and m = 1 so that f : R2 → R. Then the matrix (or vector in this case)
representation of Df(x0) (with respect to the standard orthogonal basis of R2) is given by

Df(x0) =
(

∂f

∂x1
(x0) ,

∂f

∂x2
(x0)

)
and the point x0 ∈ A is given by x0 = (x01, x02)

and Df(x0) · (x− x0) is simply the inner-product of two vectors in R2:

Df(x0) · (x− x0) =
∂f

∂x1
(x01, x02) [x1 − x01] +

∂f

∂x2
(x0) [x2 − x02] .

(We will discuss this in much greater detail in Section 2.3.)
In Definition 2.2, we are taking a sequence of points x ∈ A that are approaching the

distinguished point x0 ∈ A. (When we write x → x0, we really mean that there is a sequence
of points {xn}∞n=1 such that limn→∞ ‖xn − x0‖ = 0.)

We can provide a so-called ε-δ definition for the derivative which is equivalent to Defi-
nition 2.2.
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Definition 2.3 (ε-δ). For every ε > 0, there exists δ > 0 such that for x0 ∈ A, if ‖x−x0‖ <
δ, then

‖f(x)− f(x0)−Df(x0) · (x− x0)‖ ≤ ε‖x− x0‖ .

(We choose δ > 0 sufficiently small so that x− x0 ∈ A).

The idea is that with the point x0 ∈ A fixed, the function

x 7→ f(x)− f(x0)−Df(x0) · (x− x0)

is intended to be the best possible affine approximation of the function f at the point
x0 ∈ A. (In this context, an affine function is a linear functions plus a constant.)

Definition 2.4 (Differentiability over A ⊂ Rn). If f is differentiable at each point x ∈ A,
then f is said to be differentiable on A.

Theorem 2.5. Let A ⊂ Rn be an open set, and suppose that f : A → Rm is differentiable
at x0 ∈ A. Then the linear transformation Df(x0) is uniquely determined by f .

This theorem asserts that as long as f is differentiable (so that it is not discontinuous),
there can be at most one best linear approximation. In the case that f : R2 → R, so that
the graph of f is a surface in R3, this means that there is a unique tangent plane to every
point on this surface, whenever f is differentiable.

Proof of Theorem 2.5. Let L1 and L2 be two linear mappings which both satisfy the con-
ditions of Definition 2.2. We must show that L1 = L2.

Fix a vector e ∈ Rn, such that ‖e‖ = 1, and let x = x0 +λe for λ ∈ R. Geometrically, to
get to x from x0 we move in the direction e a distance λ. Since L1 and L2 are both linear,
It follows that

|λ| = ‖x− x0‖ and ‖L1 · e− L2 · e‖ =
‖L1 · λe− L2 · λe‖

|λ|
.

Since A is open, the point x is in A whenever λ is taken sufficiently small. By the triangle
inequality,

‖L1 · e− L2 · e‖ =
‖L1 · (x− x0)− L2 · (x− x0)‖

‖x− x0‖

≤ ‖f(x)− f(x0)− L1 · (x− x0)‖
‖x− x0‖

+
‖f(x)− f(x0)− L2 · (x− x0)‖

‖x− x0‖
.

Notice that by assumption, both terms on the right-hand side of the inequality converge to
zero as λ → 0, so that L1 · e = L2 · e. Since e was an arbitrary unit vector (i.e., ‖e‖ = 1),
and since for any y ∈ Rn, y

|y| is also a unit vector, it follows by linearity of L1 and L2 that
if L1 · e = L2·, then L1 · y = L2 · y for any vector y ∈ Rn. Hence, L1 = L2.
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Example 2.6. Let f : R → R, f(x) = x3. We compute Df(x) and df
dx .

In this case, we know that df
dx(x) = 3x2. Hence, the linear mapping Df(x) is given as

h 7→ Df(x) · h = 3x2 · h .

In particular, the linear map consists of multiplication by 3x2.

2.2 A reminder of the mean-value theorem for functions of one variable

Theorem 2.7. If f : (a, b) → R is differentiable at c ∈ (a, b) and f has a maximum
(respectively minimum) at c, then f ′(c) = 0.

Proof. Let f have a maximum at c. Then for h ≥ 0, f(c+h)−f(c)
h ≤ 0, so letting h ↘ 0

with h ≥ 0, we find that f ′(c) ≤ 0. Similarly, with h ≤ 0, we obtain f ′(c) ≥ 0. Hence
f ′(c) = 0.

Theorem 2.8 (Rolle’s Theorem). If f : [a, b]] → R is continuous, f is differentiable on
(a, b) and f(a) = 0 and f(b) = 0, then there exists c ∈ (a, b) such that f ′(c) = 0.

Proof. If f(x) = 0 for all x ∈ [a, b], then we can choose any c; hence, assume f is not
identically zero. Since f is continuous, there is a point c1 where f achieves its maximum,
and a point c2 where f achieves its minimum. Since f(a) = 0 and f(b) = 0, at least one of
the c1 or c2 must lie in the open interval (a, b). If c1 ∈ (a, b), we get f ′(c1) = 0 by Theorem
2.7, and similarly for c2.

Theorem 2.9 (Mean Value Theorem). If f : [a, b] → R is continuous and differentiable on
(a, b), there is a point c ∈ (a, b) such that f ′(c) = f(b)−f(a)

b−a .

Proof. Let ϕ(x) = f(x)− f(a)− (x−a)[f(b)− f(a)]/(b−a) and apply Rolle’s theorem.

Corollary 2.10. If, in addition, f ′(x) = 0 on (a, b), then f is constant.
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Proof. Applying Theorem 2.9 to f on [a, x], we see that f(x)− f(a) = f ′(c)(x− a) = 0, so
f(x) = f(a) for x ∈ [a, b], and therefore f is constant.

This partial list of theorems summarizes sum of the fundamental properties of dif-
ferentiable functions on the real line. We will generalized these ideas to multiple space
dimensions.

Example 2.11. Let f : (a, b) → R be differentiable and |f ′(x)| ≤ M . Then |f(x)− f(y)| ≤
M |x− y| for all x, y ∈ (a, b). To see this, note that by the mean value theorem,

f(x)− f(y) = f ′(c)(x− y)

for some c ∈ (x, y); hence, taking absolute values provides the desired inequality.

2.3 Matrix representation for the derivative Df(x)

As we alluded to above, once we choose a basis, we can express the derivative for a func-
tion f of multiple variables using components of vectors and matrices to represent linear
transformations. With f : Rn → Rm given by (2.2), we can represent the derivative Df(x0)
in terms of its partial derivatives. With f(x1, ..., xn) = (f1(x1, ..., xn), ..., fm(x1, ..., xn)),
we compute the partial derivatives ∂fj

∂xi
for i = 1, ..., n and j = 1, ...,m. The notation ∂fj

∂xi

means that we compute the usual derivative of fj with respect to xi while keeping the other
independent variables x1, ..., xi−1, xi+1, ..., xn fixed.

Definition 2.12 (The partial derivative). ∂fj

∂xi
(x) is given by the following limit, whenever

the limit exists:

∂fj

∂xi
(x1, . . . , xn) = lim

h→0

(
fj(x1, ..., xi + h, ..., xn)− fj(x1, ..., xi, ..., xn)

h

)
.

For each of the m functions fj with j = 1, ...,m, we must compute n partial derivatives.

We have already seen that Df(x) for a function f : R → R is just the linear map
consisting of multiplication by df/dx. This fact, which followed from the definition, can be
generalized to the following theorem.

Theorem 2.13. Suppose that A ⊂ Rn is an open set, and that f : A → Rm is differentiable.
Then the partial derivatives ∂fj

∂xi
exist, and the matrix of the linear map Df(x) (with respect
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to the standard basis of Rn and Rm) is given by

∂f1

∂x1

∂f1

∂x2
· · · ∂f1

∂xn

∂f2

∂x1

∂f2

∂x2
· · · ∂f2

∂xn

· · ·
· · ·
· · ·

∂fm

∂x1

∂fm

∂x2
· · · ∂fm

∂xm


(2.3)

where each partial derivative of f is evaluated at x = (x1, ..., xn). This matrix of partial
derivatives is often called the Jacobian matrix of f .

An important special case is when m = 1. f is then a scalar function of n variables, and
Df is the gradient of f :

Df(x) =
(

∂f

∂x1
(x), . . . ,

∂f

∂xn
(x)

)
,

and the derivative applied to a vector w = (w1, ..., wn) is

Df(x) · w =
n∑

i=1

∂f

∂x1
(x1, ..., xn)wi .

Note well that Df(x) is a linear mapping at each x ∈ A, and that the definition of
Df(x) is independent of the basis used. In particular, if we change the standard basis to
another one, the entries in the Jacobian matrix would change, but so would the entries in
the components of the vector w, and Df(x) · w would be the same.

Another important case occurs when f : Rn → Rm is already a linear map. We denote
this by f = L. Then from the definition of the derivative, we see DL = L, as expected since
the best affine approximation of a linear map L is L itself.

It is also of interest to consider the case that f is a constant map. Since each partial
derivative must vanish, in this case Df = 0.

Example 2.14. We let f = R2 → R3 be given by f(x1, x2) = (f1, f2, f3) = (x2
1, x

3
1x2, x

4
1x

2
2)

and compute Df as follows:
∂f1

∂x1

∂f1

∂x2

∂f2

∂x2

∂f2

∂x2

∂f3

∂x1

∂f3

∂x2

 =


2x1 0

3x2
1x2 x3

1

4x3
1x

2
2 2x4

1x2

 .
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Example 2.15. Let L : Rn → Rm denote a linear map (that is, L(x + y) = L(x) + L(y)
and L(αx) = αL(x)). We show that DL = L.

Given x0 and ε > 0, we must find δ > 0, such that ‖x− x0‖ < δ implies that

‖L− L(x0)−DL(x0) · (x− x0)‖ ≤ ε‖x− x0‖ .

But with DL(x) = L, the left side of this inequality becomes ‖L−L(x0)−L(x− x0)‖ which
is zero by linearity of L. Hence DL(x) = L satisfies the definition for any δ > 0.

Example 2.16. We compute the gradient of the function f : R3 → R with f(x1, x2, x3) =
x1 sin x2

x3
. Since the gradient is Df = ( ∂f

∂x1
, ∂f

∂x2
, ∂f

∂x3
), where

∂f

∂x1
=

sinx2

x3
,

∂f

∂x2
=

x1 cos x2

x3
,

∂f

∂x3
= −x1 sinx2

x2
3

.

Proof of Theorem 2.13. Our proof is essentially just unwinding definitions from linear al-
gebra about the entries of a matrix. We let ei denote the standard basis of Rn and bbcrm.

The jith matrix element of Df(x) is given by the jth component of the vector Df(x)·ei.
We denote this jith component by aji.

Next, let y = x + hei for some h ∈ R and note that

‖f(y)− f(x)−Df(x) · (x− y)‖
‖y − x‖

=
‖f(x1, ..., xi + h, ..., xn)− f(x1, ..., xi, ..., xn)− hDf(x) · ei‖

|h|
.

By assumption, f is differentiable at x so that the left-hand side goes to zero as y → x, which
means that the right-hand side goes to zero as h → 0. Thus, so does the jth component of
the numerator, which means that

‖fj(x1, ..., xi + h, ..., xn)− fj(x1, ..., xi, ..., xn)− haji‖
|h|

→ 0 as h → 0 .

Therefore, the partial derivative of fj with respect to xi exists and we have that

aji = lim
h→0

fj(x1, ..., xi + h, ..., xn)− fj(x1, ..., xi, ..., xn)
h

=
∂fj

∂xi
.
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2.4 Continuity of differentiable mappings and differentiable paths

Recall (from lower-division calculus) that differentiable functions on the real line are con-
tinuous. The intuition, here, is that having a tangent line (to a curve) at every point is a
stronger requirement than not having breaks (discontinuities) in the graph of the function.

For functions f : (a, b) → R, it is easy to see why differentiability implies continuity.
Specifically, if f is differentiable at x0 ∈ (a, b), then

lim
x→x0

(f(x)− f(x0)) = lim
x→x0

(
f(x)− f(x0)

x− x0

)
· (x− x0)

= f ′(x0) · lim
x→x0

(x− x0) = f ′(x0) · 0 = 0 ,

so that limx→x0 [f(x)− f(x0)] = 0, implying that f is continuous at x0.
There is a natural generalization of this idea to functions f : Rn → Rm.

Theorem 2.17. Suppose A ⊂ Rn is open and f : A → Rm is differentiable on A. Then f
is continuous. In fact, for each x0 ∈ A, there is a constant M > 0 and a δ0 > 0 such that
‖x− x0‖ < δ0 implies

‖f(x)− f(x0)‖ ≤ M‖x− x0‖ . (2.4)

(A function f that satisfies this inequality is called Lipschitz continuous.)

For the proof, students should recall a fundamental property of linear transformations
(matrices) L : Rn → Rm, which states that there exists a constant M0 such that ‖Lx‖ ≤
M0‖x‖ for all x ∈ Rn. We will employ this inequality for the linear transformation L =
Df(x0). (Note that whenever the linear transformation L has eigenvalues, then M0 is the
largest eigenvalue of L.)

Proof of Theorem 2.17. Continuity of f follows from the Lipschitz condition (2.4), for given
ε > 0, we can choose δ = min(δ0,

ε
M ). To do this, let ε = 1 in Definition 2.3; then, there

exists δ0 so that ‖x− x0‖ < δ0 implies that

‖f(x)− f(x0)−Df(x0) · (x− x0)‖ ≤ ‖x− x0‖

which, in turn, shows (using the triangle inequality) that

‖f(x)− f(x0)‖ ≤ ‖Df(x0) · (x− x0)‖+ ‖x− x0‖ .

Setting M = M0 + 1, we see that since ‖Df(x0) · (x − x0)‖ ≤ M0‖x − x0‖, the proof is
complete.
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We have already considered the special case that f : Rn → R. Another very important
case is that of a parameterized curve c : R → Rm, where c(t) represents a curve (or path)
in Rm. In this case, the derivative Dc(t) : R → Rm is represented by the vector

dc1
dt (t)
·
·
·

dcm
dt (t)


where c(t) = (c1(t), ..., cm(t)). In this case, the vector Dc(t) is usually denoted c′(t) and is
called the tangent vector (or velocity vector) to the curve c(t). We will write the row vector
c′(t) (the proper representaion) as the column vector (c′1(t), ..., c

′
m(t)) (which is easier to

type).

Example 2.18. With f : R → R given by f(x) = |x|, f is continuous, but f is not
differentiable at x = 0. To see this, notice that f(x) = x for x ≥ 0, and f(x) = −x for
x < 0; hence, f is continuous on (0,∞) and (−∞, 0). Since limx→0 f(x) = 0 = f(0), f
is also continuous at x = 0, and so continuous on all of R. On the other hand, f is not
differentiable at x = 0, for if it were, then

lim
x→0

f(x)− f(0)
x− x0

= lim
x→0

f(x)
x

would exist. But, for x > 0, f(x)/x = 1 and for x < 0, f(x)/x = −1, so the limit cannot
exist.
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Example 2.19. The derivative of a function need not be continuous. A simple example is
given by

f(x) =
{

x2 sin(1/x), x 6= 0,
0, x = 0 .

In order to show that f is differentiable at x = 0, we must prove that

f(x)
x

→ 0 as x → 0 .

Indeed, |f(x)/x| = |x sin(1/x)| ≤ |x| → 0 as x → 0. Thus f ′(0) exists and is equal to zero,
so that f is differentiable at x = 0. However, from basic calculus, we have that

f ′(x) = 2x sin(1/x)− cos(1/x) for x 6= 0 .

As x → 0, the first term on the right-hand side converges to zero, but the second term
oscillates between +1 and −1, and thus limx→0 f ′(x) does not exist. This proves that f”
exists but is not continuous at x = 0.

Example 2.20. Let c denote a parameterized curve in R3, given by c(t) = (t2, t, sin t). To
find the tangent vector to c(t) at c(0), we compute c′(t) = (2t, 1, cos t) and evaluate this
expression at t = 0, to find c′(0) = (0, 1, 1).

2.5 Criteria for differentiability

From a practical viewpoint, we would like to know if the existence of all of the partial deriva-
tives of a function f : Rn → Rm implies the existence of the derivative Df . Unfortunately,
this is not true in general as the following example demonstrates.

Example 2.21. Let f : R2 → R be defined by f(x1, x2) = x1 when x2 = 0, f(x1, x2) = x2

when x1 = 0, and f(x1, x2) = 1 elsewhere. Then both ∂f/∂x1 and ∂f/∂x2 exist at x = (0, 0)
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and are equal to 1. However, f is not continuous at (0, 0), so the derivative Df cannot exist
at (0, 0).

It is not very difficult to understand the failure of the existence of the derivative in
the above example. The partial derivatives ∂f/∂x1 and ∂f/∂x2 are only checking the
convergence of the difference quotients in two particular directions: namely, the two axes
{x1 = 0} and {x2 = 0}, whereas the definition of derivative requires checking convergence of
difference quotients in every possible direction (not just lines). Essentially, what is missing
in the above example, is continuity of the two partial derivatives that we computed.

Theorem 2.22. Let A ⊂ Rn be an open set and f : A ⊂ Rn → Rm, so that f = (f1, ..., fm).
If each of the partial derivatives ∂fj/∂xi exists and is continuous on A, then f is differen-
tiable on A.

Proof. By Theorem 2.13, if Df(x) exists, then its matrix representation is given by (2.3).
We will show that for x ∈ A fixed, and for ε > 0, there exists δ > 0 such that ‖y − x‖ < δ
(with y ∈ A) implies that

‖f(y)− f(x) + Df(x) · (y − x)‖ ≤ ε‖y − x‖ . (2.5)

Recall that for an m-vector F ∈ Rm, ‖F‖ =
√∑m

j=1 |Fj |2. Since ‖F‖ is a sum of m

nonnegative terms, it follows that if ‖F‖2 ≤ C for some constant C, then each component
also satisfies |Fj |2 ≤ C, and conversely, if |Fj |2 ≤ C/m then ‖F‖2 ≤ C. Hence, it suffices
to prove (2.5) for each component of f , and we choose to start with the first component f1.

To avoid too many subscripts in our notation, we will denote f1 by g. Then for y =
(y1, y2, ..., yn) and x = (x1, x2, , ..., xn), two points in A, we write

g(y)− g(x) = g(y1, y2, ..., yn)− g(x1, y2, ..., yn) + g(x1, y2, ..., yn)− g(x1, x2, ..., yn)
+ g(x1, x2, y3, ..., yn)− g(x1, x2, x3, ..., yn) + · · ·
+ g(x1, x2, ...., xn−1, yn)− g(x1, x2, ...., xn−1, xn) .

By the mean-value theorem (and with y2, y3, ..., yn fixed), there exists u1 ∈ (x1, y1) such
that

∂g

∂x1
(u1, y2, ..., yn)(y1 − x1) = g(y1, y2, ..., yn)− g(x1, y2, ..., yn) ,

and we can obtain similar expressions for the other n-1 intervals (xi, yi), i = 2, ..., n. It
follows that

g(y)− g(x) =
∂g

∂x1
(u1, y2, ..., yn)(y1 − x1) +

∂g

∂x2
(y1, u2, ..., yn)(y2 − x2)

+ · · ·+ ∂g

∂xn
(y1, y2, ..., un)(yn − xn) .
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Since

Dg(x) · (y − x) =
n∑

i=1

∂g

∂xi
(x1, x2, ..., xn)(yi − xi) ,

the triangle inequality shows that

‖g(y)− g(x)−Dg(x) · (y − x)‖

≤
{∣∣∣∣ ∂g

∂x1
(u1, y2, ..., yn)− ∂g

∂x1
(x1, x2, ..., xn)

∣∣∣∣
+ · · ·+

∣∣∣∣ ∂g

∂x1
(x1, ..., xn−1, yn)− ∂g

∂x1
(x1, ..., xn−1, xn)

∣∣∣∣} ‖y − x‖ . (2.6)

Since ∂g/∂x1 = ∂f1/∂x1 is assumed to be continuous, if ‖y − x‖ < δ for δ > 0 taken
sufficiently small, we have that∣∣∣∣ ∂g

∂xi
(y1, y2, ..., yn)− ∂g

∂xi
(x1, x2, ..., xn)

∣∣∣∣ ≤ ε

m
3
2

for each i = 1, 2, ..., n .

Since each ui lies between xi and yi, we see that the terms in braces in (2.6) are bounded
by ε/

√
m and hence we see that

‖f(y)− f(x)−Df(x) · (y − x)‖ ≤ ε‖y − x‖

as desired.

2.6 The directional derivative

In multiple space dimensions, it is of great interest to be able to measure the rate-of-change
of functions in any given direction.

Definition 2.23 (Directional Derivative). Let U denote an open neighborhood of x0 ∈ Rn,
and suppose that f : U → R. Let e ∈ Rn denote a unit vector (so that ‖e‖ = 1). Then

d

dt
f(x0 + te)

∣∣∣∣
t=0

= lim
t→0

f(x0 + te)− f(x0)
t

is called the directional derivative of f at x0 in the direction e.

From the definition and the figure, we see that the directional derivative is indeed the
rate of change of f in the direction e.

In particular, we claim that the directional derivative of f at x0 in the direction e is,
in fact, Df(x0) · e. To see this, we need only examine the definition of derivative with the
nearby point x taken to be x = x0 + te. We find that∥∥∥∥f(x0 + te)− f(x0)

t
−Df(x0) · e

∥∥∥∥ ≤ ε‖e‖ for any ε > 0
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if |t| is sufficiently small. Thus, whenever f is differentiable at x0, then the directional
derivatives also exist and are given by

lim
t→0

f(x0 + te)− f(x0)
t

= Df(x0) · e .

Specific examples of the directional derivative are the partial derivatives: for each i =
1, ..., n, ∂f/∂xi is the derivative of f in the direction of the ith coordinate axis ei =
(0, 0, ..., 1︸︷︷︸

ith slot

, ..., 0, 0).

Notice that for a function f : R2 → R, the directional derivative Df(x0) · e can be used
to determine the plane tangent to the graph of f . Namely, the line l, z = f(x0)+Df(x0)·te,
is the tangent to the graph of f since as in the figure, Df(x0) · e is just the rate of change
of f in the direction e. Thus, the tangent plane to the graph of f at (x0, f(x0)) is given by
the equation

z = f(x0) + Df(x0) · (x− x0) .

This equation can be used to provide a rigorous definition of the tangent plane to a surface.
Again, it may be tempting to believe that the existence of all directional derivatives at

a point might imply differentiability at that point, but this is not the case.

Example 2.24. Suppose that f : R2 → R is given by

f(x, y) =
{ xy

x2+y
, x2 6= −y ,

0, x2 = −y .
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Then if e = (e1, e2) and e2 6= 0, then

1
t
f(te1, te2) =

1
t

t2e1e2

t2e2
1 + te2

=
e1e2

te2
1 + e2

→ e1 as t → 0 ,

while if e2 = 0, then 1
t f(te1, te2) → 0 as t → 0. Hence, each directional derivative exists at

(0, 0), but f is not continuous at (0, 0) since for x2 near −y with both x, y small, f is very
large.

Given δ > 0 and M , choose (x, y) such that x2 = −y + ε and ‖(x, y)‖ < δ. Then
f(x, y) = xy/ε, which for ε > 0 taken small, can be made larger than M . Thus f is not
bounded on the ball of radius δ, {(x, y) ∈ R2 |

√
x2 + y2 < δ}, for any δ > 0. It follows that

f is not continuous at (0, 0), so by Theorem 2.17, f is not differentiable at (0, 0).

This example shows that the existence of all directional derivatives of f does not even
imply continuity of f , let alone differentiability.

Example 2.25. Let f : R2 → R be given by f(x, y) = x2 + y. Let us compute the tangent
plane to the graph(f) at x = 1 and y = 2. Since

Df(x, y) = (∂f/∂x, ∂f/∂y) = (2x, 1) ,

we see that Df(1, 2) = (2, 1). Thus, the equation for the tangent plane at the point (1, 2)
becomes

z = 3 + (2, 1)
(

x− 1
y − 2

)
= 3 + 2(x− 1) + (y − 2) ,

or
2x + y − z = 1 .
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2.7 The chain-rule and product-rule

2.7.1 Chain-rule

The chain-rule is one of the most important tools in analysis because it provides an algo-
rithm for differentiating composite functions which most commonly arise from changing (or
mapping) the independent variables and the domains over which they are defined. Some of
the most important formulas, identities, and solutions to differential equaions are obtained
by a very carefully (and clever) change of variables, and the chain-rule shows how these
various equations can be transformed.

Students may recall from vector calculus, that if u(x, y) and v(x, y) are real-valued
differentiable functions of two variables, and if f(u, v) is also a real-valued differentiable
functions of two variables, then

∂

∂x
f(u(x, y), v(x, y)) =

∂f

∂u
(u(x, y), v(x, y))

∂u

∂x
(x, y) +

∂f

∂v
(u(x, y), v(x, y))

∂v

∂x
(x, y) .

In order to generalize this, we define the composition of two functions.

Definition 2.26 (Composite function). Let A ⊂ Rn denote an open set, and let B ⊂ Rm

denote an open set. Suppose that f : A → Rm, g : B → Rp , and that f(A) ⊂ B. Then the
composite function g ◦ f : A → Rp is defined as

[g ◦ f ](x) = g(f(x)) .

Theorem 2.27 (Chain-rule). Let f : A → Rm be differentiable on the open set A ⊂ Rn and
g : B → Rp be differentiable on the open set B ⊂ Rm, and suppose that f(A) ⊂ B. Then
the composite function g ◦ f : A → Rp is differentiable on A and for x0 ∈ A,

D[f ◦ g](x0) = Dg(f(x0) ·Df(x0) .

Notice that by definition, Df(x0) : Rn → Rm and Dg(f(x0)) : Rm → Rp so that
Dg(f(x0)) ·Df(x0) : Rn → Rp is well-defined. With respect to the standard basis of vectors
ei (for Euclidean space), we can express Dg(f(x0)) · Df(x0) as the multiplication of two
matrices. If h = g ◦ f , then

Dh(x) =


∂g1

∂y1
· · · ∂g1

∂ym

· ·
· ·
· ·

∂gp

∂y1
· · · ∂gp

∂ym




∂f1

∂x1
· · · ∂f1

∂xn

· ·
· ·
· ·

∂fm

∂x1
· · · ∂fm

∂xn


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where ∂gi/∂yj are evaluated at y = f(x), and ∂fj/∂xk are evaluated at x. Thus, in order
to compute the kth partial derivative of the ith component of the vector h, we write

∂hi

∂xk
(x) =

m∑
j=1

∂gi

∂yj
(f(x))

∂fj

∂xk
(x) i = 1, ..., p, k = 1, ...,m .

Example 2.28 (Polar coordinates). Suppose that f : R2 → R, so that f(x, y) is real-valued,
and let x(r, θ) = r cos θ and y(r, θ)r sin θ. The pair (r, θ) are called polar coordinates. If we
apply the chain rule to the composite function

f(x(r, θ), y(r, θ)) ,

we find
∂f

∂r
=

∂f

∂x
cos θ +

∂f

∂y
sin θ ,

and
∂f

∂θ
= −∂f

∂x
r sin θ +

∂f

∂y
r cos θ .

Hence, we see that the chain-rule allows us to derive the famous identities

∂

∂r
= cos θ

∂

∂x
+ sin θ

∂

∂y
and

∂

∂θ
= −r sin θ

∂

∂x
+ r cos θ

∂

∂y
.

Example 2.29. Suppose that f(u, v, w) = u2v + wv2, u(x, y) = xy, v(x, y) = sin x, and
w(x, y) = ex. If we form the composite function h(x, y) = f(u(x, y), v(x, y), w(x, y)) given
by

h(x, y) = x2y2 sinx + ex sin2 x ,

then we can directly compute the partial derivative

∂h

∂x
= 2xy2 sinx + x2y2 cos x + ex sin2 x + 2ex sinx cos x .

On the other hand, by the chain-rule, we can also compute that

∂h

∂x
=

∂f

∂u

∂u

∂x
+

∂f

∂v

∂v

∂x
+

∂f

∂w

∂w

∂x

= 2uv
∂u

∂x
+ (u2 + 2vw)

∂v

∂x
+ v2 ∂w

∂x
= xy2 sinx + x2y2 cos x + ex sin2 x + 2ex sinx cos x .

Example 2.30. Let f : R → R be differentiable and F : R2 → R also be differentiable. We
set

F (x, y) = f(xy) .

By the chain-rule, ∂F
∂x = f ′(xy)y and ∂F

∂y = f ′(xy)x, which shows that x∂F
∂x = y ∂F

∂y .
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Proof of Theorem 2.27(The Chain-Rule). To show that D(g ◦f)(x0) = Dg(f(x0)) ·Df(x0),
we must prove that

lim
x→x0

‖g ◦ f(x)− g ◦ f(x0)− [Dg(f(x0)) ·Df(x0)] · (x− x0)‖
‖x− x0‖

= 0 .

We proceed by estimating the numerator as follows:

‖g ◦ f(x)− g ◦ f(x0)−Dg(f(x0)) ·Df(x0) · (x− x0)‖
= ‖g(f(x)− g(f(x0))−Dg(f(x0)) · (f(x)− f(x0))

+ Dg(f(x0)) · (f(x)− f(x0))−Df(x0) · (x− x0)‖
≤ ‖g(f(x)− g(f(x0))−Dg(f(x0)) · (f(x)− f(x0))‖

+ ‖Dg(f(x0)) · [f(x)− f(x0)−Df(x0) · (x− x0)]‖

by the triangle inequalty. Since f is differentiable, by Theorem 2.17 there exists δ0 > 0 and
M > 0 such that ‖f(x)−f(x0)‖ ≤ M‖x−x0‖ whenever ‖x−x0‖ < δ0. By the definition of
the derivative, for ε > 0 given, there exists δ1 > 0 such that ‖y − f(x0)‖ < δ1 implies that

‖g(y)− g(f(x0))−Dg(f(x0)) · (y − f(x0))‖ ≤
( ε

2M

)
‖y − f(x0)‖ .

Next, we set δ2 = min(δ0, δ1). Then, for ‖x− x0‖ < δ2, we have that

‖g(f(x))− g(f(x0))−Dg(f(x0)) · (f(x)− f(x0))‖
‖x− x‖

<
ε

2
.

Since Dg(f(x0)) is a linear map, we know that there is a constant M̃ > 0 such that
‖Dg(f(x0)) · y‖ ≤ M̃‖y‖ for all y ∈ Rm. By definition of the derivative, there exists δ3 > 0
such that ‖x− x0‖ < δ3 implies that

‖f(x)− f(x0)−Df(x0) · (x− x0)‖
‖x− x0‖

<
ε

2M̃
.

Then ‖x− x0‖ < δ3 implies that

‖Dg(f(x0)) · [f(x)− f(x0)−Df(x0) · (x− x0)]‖
‖x− x0‖

≤ M̃ ‖f(x)− f(x0)−Df(x0) · (x− x0)]‖
‖x− x0‖

<
ε

2
.
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Finally, choosing δ = min(δ2, δ3), we see that ‖x− x0‖ < δ implies that

‖g ◦ f(x)− g ◦ f(x0)−Dg(f(x0)) ·Df(x0) · (x− x0)‖
‖x− x0‖

≤ ‖g(f(x))− g(f(x0))−Dg(f(x0)) · (f(x)− f(x0))‖
‖x− x‖

+
‖Dg(f(x0)) · [f(x)− f(x0)−Df(x0) · (x− x0)]‖

‖x− x0‖
<

ε

2
+

ε

2
= ε .

2.7.2 Product-rule

At almost the same time that Sir Isaac Newton had developed calculus in England, a German
mathematician named Gottfried Leibniz had independently developed the fundamentals of
calculus, and the product-rule of differentiation is commonly termed the Liebniz rule.

Theorem 2.31 (Product-rule). Let A ⊂ Rn be open and let f : A → Rm and g : A → R
be differentiable functions. Then the product gf is also differentiable, and for x ∈ A the
derivative D(fg)(x) exists and is a linear transformation of Rn to Rm, given by

D(gf)(x) · w = g(x) [Df(x) · w] + [Dg(x) · w] f(x) for all w ∈ Rn . (2.7)

Remark 2.32. Notice that while f is vector-valued (taking values in Rm), the function g is
scalar-valued (taking values in R). We understand what it means to multiply a real number
with a vector: the real number multiplies each component of the vector. On the other hand,
multiplication of two vectors can have many meanings, with the scalar dot product and the
vector cross product being just two examples.

Remark 2.33. It is common to abbreviate the identity (2.7) as

D(gf) = g Df + Dg f ,

removing the explicit dependence on the independent variables, but the meaning is always
as given in (2.7).

Students may recall the product-rule from lower-division calculus. Expressed in terms
of the components of the vectors x and f(x), the product-rule can be expressed as

∂

∂xi
(g fj) = g

∂fj

∂xi
+

∂g

∂xi
fj ,

so that for each i = 1, ..., n and j = 1, ...,m fixed, we have the same identity as in the
one-variable case.

The other differentiation rules are encapsulated by the statement that D is linear, mean-
ing that
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1. D(u + v) = Du + Dv for all u : Rn → Rm and v : Rn → Rm that are differentiable;

2. D(αu) = αDu for all α ∈ R and u : Rn → Rm differentiable.

Proof of the Theorem 2.31. Our objective is to show that the product gf is differentiable
at say x0 ∈ A, and that g(x0)Df(x0) · (x − x0) − [Dg(x0) · (x − x0)] f(x0) satisfies the
definition of the derivative of fg, hence showing that (2.7) holds (with w given by x− x0).
In anticipation of the use of the triangle inequality, we first write some needed inequalities.

Since f and g are both differentiable, given ε > 0 and x0 ∈ A, we choose δ > 0 sufficiently
small so that if ‖x− x0‖ < δ, then

(i) |g(x)| ≤ |g(x0)|+ 1 = M ;

(ii) ‖f(x)− f(x0)−Df(x0) · (x− x0)‖ ≤ ε
3M ‖x− x0‖;

(iii) ‖g(x)− g(x0)−Dg(x0) · (x− x0)‖ ≤ ε
3‖f(x0)‖‖x− x0‖;

(iv) ‖g(x)− g(x0)‖ ≤ ε
3M .

Recall, that from linear algebra, ‖Df(x0) · w‖ ≤ M‖w‖ for all w ∈ Rn. (The inequalities
(iii) and (iv) are needed only if f(x0) 6= 0 and Df(x0) 6= 0.)

Using the triangle inequality, we see that for ‖x− x0‖ < δ,

‖g(x)f(x)− g(x0)f(x0)− g(x0)Df(x0) · (x− x0)− [Dg(x0) · (x− x0)] f(x0)‖
≤ ‖g(x)f(x)− g(x)f(x0)− g(x)Df(x0) · (x− x0)‖

+ ‖g(x)Df(x0) · (x− x0)− g(x0)Df(x0) · (x− x0)‖
+ ‖g(x)f(x0)− g(x0)f(x0)− [Dg(x0) · (x− x0)]f(x0)‖

≤ M
ε‖x− x0‖

3M
+

ε

3M
M‖x− x0‖+

ε‖x− x0‖
3‖f(x0)‖

‖f(x0)‖

= ε‖x− x0‖ .

2.8 The geometry of the gradient

Let A ⊂ Rn denote an open set, and let : A → R be a differentiable function. With respect
to the standard basis of Rn, the gradient of f can be written as

grad f(x) = Df(x) =
(

∂f

∂x1
, · · ·, ∂f

∂xn

)
.

Hence, the directional derivative of f at x0 in the direction e can be written in terms of
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the gradient of f as follows:

d

dt

∣∣∣∣
t=0

f(x0 + te) = grad f(x0) · e .

In order to understand the geometry of the gradient of f , we consider the surface S given
by

S = {x ∈ Rn | f(x) = c = constant} .

For example suppose that f : R3 → R and f(x) = ‖x‖ =
√

x2
1 + x2

2 + x2
3. In this case for

every constant a > 0,

S = {x ∈ R | ‖x‖ = a} denotes the sphere of radius a.

Each such surface S is called the level set of f , and denotes the set of points x ∈ Rn on
which the function takes a constant value a.

We claim that if x ∈ S, then grad f(x) is a vector that is orthogonal to the surface S
at the point x. To see this, let c(t) denote a continuously differentiable curve lying on the
surface S. Since the curvec(t) is differentiable, there is a tangent vector dc/dt(t) at every
point t of the curve, which we denote by c′(t). Next, suppose that the point x0 = c(0); then
since c′(0) is a vector tangent to the curve, and since the curve is lying on the surface S,
the vector c′(0) is also tangent to the surface S at the point x0. With this terminology in
place, our claim can be restated as

grad f(x0) · c′(0) = 0 .
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The proof is straightforward. We consider the composite function f(c(t)) which is merely
the function evaluated along the curve c(t). Since c(t) lies on the level surface S, along
which f takes the constant value a, we see that

f(c(t)) = a .

Differentiating this identity with respect to t, the chain-rule tells us that

Df(c(t)) · c′(t) = 0 or equivalently grad f(c(t)) · c′(t) = 0 .

Evaluating this expression at t = 0, and using the fact that c(0) = x0, we find that
grad f(x0) · c′(0) = 0, which proves the claim.

Note, that we may describe the tangent plane to S at x0 by

grad f(x0) · (x− x0) = 0 , (2.8)

since grad f(x0) is orthogonal to S. We can write this
We also have, from the definition of the inner-product, that

grad f(x0) · e = ‖ grad f(x0)‖ cos θ ,

where ‖e‖ = 1 and θ is the angle between grad f(x0) and the unit-vector e. It is evident
that grad f(x0) is the direction along which the function f is changing the fastest. It is
often stated that moving along the direction of grad f is the path of steepest descent.

Example 2.34. Since grad f is a vector which is orthogonal to the level set surface of a
function f , we can compute the unit normal vector to such a surface. Suppose we consider
the sphere of radius 3 in R3 given by

f(x, y, z) = x2 + y2 + z2 = 3 ,

and determine the unit normal at the point x0 = (1, 1, 1) on this surface.
Since grad f = (2x, 2y, 2z), it follows that grad f(x0) = (2, 2, 2). This vector is pointing

in the normal direction, but it is not normalized to have unit length. The unit normal is

N(x0) =
grad f(x0)
‖ grad f(x0)‖

,

so that N(x0) = (1/
√

3, 1/
√

3, 1/
√

3).

Example 2.35. We can also compute the tangent plane to a level surface of f . Suppose
that the surface S is given by f(x1, x2, x3) = x2

1 − x2
2 + x1x3 = 2, and we would like to

compute the tangent plane to S at the point x0 = (1, 0, 1). Since grad f(x0) = (3, 0, 1), we
see that the identity (2.8) shows that the tangent plane is given by

0 = grad f(x0) · (x− x0) = 3(x1 − 1) + 1(x3 − 1) or 3x1 + x3 = 4 .
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2.9 The Mean Value Theorem

In Theorem 2.9, we stated the mean value theorem for functions f : [a, b] ⊂ R → R: if
f : [a, b] → R is continuous and f : (a, b) is differentiable, then there exists c ∈ (a, b) such
that f(b)− f(a) = f ′(c)(b− a).

Unfortunately, for f : Rn → Rm, this version of the mean-value theorem does not hold.
As we discussed in lecture, if f : R → R2 is given by f(x) = (x2, x3), then it is not possible
to find a point c ∈ (0, 1) such that f(1) − f(0) = Df(c)(1 − 0), for this would mean that
(1, 1)− (0, 0) = (2c, 3c2) and c would have to satisfy both 2c = 1 and 3c2 = 1 which is not
possible.

On the other hand, our intuition suggests that if we consider the rate of change of
a function in a given direction, the mean value theorem should somehow still hold if we
consider the directional derivative in the direction of the line joining two points x and y in
Rn. In order to proceed, we first

assume that f is real-valued, so that f : Rn → R .

For intervals in (a, b) in R, we take for granted what it means for a point c to be “between”
the points x and y. In higher dimensions, we must give a precise definition of this.

Definition 2.36 (c is “between” x and y for c, x, y ∈ Rn). We say that c is on the line
segment joining x and y, or is between x and y if

c = (1− λ)x + λy for some 0 ≤ λ ≤ 1 .

Theorem 2.37 (Mean Value Theorem for f : Rn → R). Suppose that f : A ⊂ Rn → R
is differentiable on an open set A. For any x, y ∈ A such that the line segment joining x
and y lies in A (which need not happen for any two points x, y), there is a point c on that
segment such

f(y)− f(x) = Df(c) · (y − x) .
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Next, for vector-valued functions f : Rn → Rm, we can generalize Theorem 2.37 to the
following:

Theorem 2.38 (Mean Value Theorem for f : Rn → Rm). Suppose that f : A ⊂ Rn → Rm

is differentiable on an open set A. Suppose that the line segment joining x and y lies in A
and f = (f1, ..., fm). Then there exists a vector c = (c1, ..., cm) on that segment such

fj(y)− fj(x) = Dfj(cj) · (y − x) j = 1, ...,m .

Definition 2.39 (Convex sets). A set A ⊂ Rn is said to be convex if for each x, y ∈ A, the
segment joining x, y also lies in A.

Example 2.40. Let A ⊂ Rn be an open convex set and let f : A → Rm be differentiable.
If Df = 0, then we can prove that f is constant.

For x, y ∈ A, and for each component fj of the vector-valued function f = (f1, ..., fm),
there is a vector cj such that

fj(y)− fj(x) = Dfj(cj) · (y − x) .

Since Df = 0, it follows that Dfj = 0 for each component fj, and so fj(y) = fj(x). It
follows that f(y) = f(x), so that f is constant.

Example 2.41. Suppose that f : [0,∞) → R is continuous, f(0) = 0, f : (0,∞) is
differentiable, and f ′ is non-decreasing. We prove that the function g(x) given by g(x) = f(x)

x
is non-decreasing on (0,∞) as well.

According to the mean value theorem, a function h : R → R is non-decreasing if h′(x) ≥
0, because x ≤ y implies that

h(y)− h(x) = h′(c)(y − x) ≥ 0 .
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Now

g′(x) =
xf ′(x)− f(x)

x2

and
f(x) = f(x)− f(0) = f ′(c) · x ≤ xf ′(x)

since 0 < c < x and f ′(c) ≤ f ′(x). Thus xf ′(x) − f(x) ≥ 0, so g′(x) ≥ 0, which implies
that g is non-decreasing.

Proof of Mean Value Theorem 2.37. For 0 ≤ t ≤ 1, we consider the segment (1 − t)x + ty
joining the points x and y. Notice that when t = 0 we recover x, while when t = 1 we recover
y, so the parameter t moves us in a straight-line from point x to point y as t increases from
0 to 1.

Consider the function h : [0, 1] → R defined by

h(t) = f((1− t)x + ty) .

By the chain-rule and the assumed differentiability of f on the set A, the function h is
differentiable in t on the open interval (0, 1). By the mean value theorem for real-valued
functions of one space variable (Theorem 2.9), there exists a point t0 ∈ (0, 1) such that
h(1)− h(0) = h′(t0)(1− 0). On the other hand, h(1) = f(y) and h(0) = f(x). We use the
chain-rule to compute h′(t0). We see that

h′(t0) = Df((1− t)x + ty) · (y − x) ,

since
d

dt
[(1− t)x + ty] = y − x .

It follows that the desired point c in the statement of theorem can be chosen as

c = (1− t0)x + t0y .

Proof of Mean Value Theorem 2.38. The proof follows by applying the proof of Theorem
2.37 to each component of f separately.

2.10 Higher-order derivatives and Ck-class functions

We begin with a discussion of higher-order derivatives for functions f : Rn → Rm. This is
accomplished by iterating the partial derivative; for example, if f : R2 → R, then

∂2f

∂x1∂x2
=

∂

∂x1

(
∂

∂x2
f

)
.

More generally, the second derivative of f : Rn → Rm is obtained (when it exists) by
differentiating Df .
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Definition 2.42. Let L(Rn, Rm) denote the space of linear transformations (or maps) from
Rn to Rm. (Given a basis for Rn and Rm, L(Rn, Rm) can be identified with the m × n
matrices, and hence with Rnm.)

Recall, that if f : A ⊂ Rn → Rm is differentiable on the open set A, then

Df : A ⊂ Rn → L(Rn, Rm) , (2.9)

which is merely a restatement of the fact that for each x0 ∈ A, Df(x0) ∈ L(Rn, Rm). On the
other hand, (2.9) allows us to clearly understand the second derivative. If we differentiate
(2.9) at the point x0 ∈ A, the definition of derivative shows that D(Df)(x0) is a linear map
from Rn to L(Rn, Rm). We write

D(Df)(x0) = D2f(x0).

Now, since D2f(x0) : Rn → L(Rn, Rm), then for each vector u ∈ Rn, D2f(x0) · u ∈
L(Rn, Rm). This means that if we take any other vector v ∈ Rn, then

(D2f(x0) · u) · v ∈ Rm .

It is convenient to identify D2f(x0) with a bilinear map which maps Rn × Rn → Rm and
write

(D2f(x0) · u) · v = D2f(x0)(u, v) ∀ u, v ∈ Rn .

Recall that a bilinear map B : Rn×Rn → Rm is a map which is linear in each of its variables
separately, so that for u, v ∈ Rn, the map u 7→ B(u, v) is linear for v fixed, and the map
v 7→ B(u, v) is linear for u fixed.

In the special case that the bilinear map takes values is real-valued, so that B : Rn×Rn →
R, we can associate to each bilinear map an n×n matrix (in a basis for Rn). In particular,
letting ei denote the standard basis of Rn, the ijth component of the matrix representing
B is given by

Bij = B(ei, ej) .

Then, if we write u = (u1, ..., un) and v = (v1, ..., vn), we see that

B(u, v) =
n∑

i=1

n∑
j=1

Bijuivj

= (u1, ..., un)


B11 · · · B1n

· ·
· ·
· ·

Bn1 · · · Bnn




v1

·
·
·

vn

 .

When f : Rn → R is twice differentiable at x0, we can write D2f(x0) as an n× n matrix in
the standard basis of Rn.
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Theorem 2.43 (D2f(x0) in matrix form). Let f : A ⊂ Rn → R be twice differentiable on
the open set A. Then the matrix of D2f(x0) (x0 ∈ A) is given by

∂2f
∂x1∂x1

· · · ∂2f
∂x1∂xn

· ·
· ·
· ·

∂2f
∂xn∂x1

· · · ∂2f
∂xn∂xn


where each second-order partial derivative is evaluated at x0 ∈ A.

Proof. Since f : A → R, Df(x) is given in the standard basis as (∂f/∂x1, ..., ∂f/∂xn).
Thus, we simply apply Theorem 2.13 to Df to conclude the proof.

Each component of this matrix is written as ∂2f/∂xi∂xj where the indices i, j can range
from 1 to n.

For higher-order derivatives, we proceed in an similar manner. For example, if f : Rn →
Rm is three-times differentiable, then D3f(x0) is a trilinear map: for each x0,

D3f(x0) : Rn × Rn × Rn → Rm .

A trilinear map is a map which is linear in each of its variables separately. We are not
able to associate a matrix with D3f(x0), but we can express it in component form as
∂3f/∂xi∂xj∂xk where the indices i, j, k can range from 1 to n. This object has an intrinsic
meaning, and is called a tensor, but we shall not discuss tensors in this set of lecture notes.

We can now state a very important property of functions which are twice continuously
differentiable at x0 ∈ A: the bilinear map D2f(x0) is symmetric, meaning that

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
for each i, j ∈ {1, ..., n} .

Theorem 2.44 (D2f(x0) is symmetric). Let f : A ⊂ Rn → Rm be twice differentiable
on the open set A with D2f continuous (meaning that all of the components ∂2f

∂xi∂xj
are

continuous). Then D2f(x) is symmetric for each x ∈ A so that

∂2f

∂xi∂xj
=

∂2f

∂xj∂xi
for each i, j ∈ {1, ..., n} . (2.10)

Proof. Since we want to prove that (2.10) holds, by fixing all other variables, we can reduce
the problem to the case of two independent variables; thus, we assume that f = f(x, y), is
a twice continuously differentiable real-valued functions on A ⊂ R2.
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We form difference quotients about the point (x, y) by perturbing this point a distance
h horizontally and a distance k vertically. For (h, k) taken small enough (meaning that
‖(h, k)‖ =

√
h2 + k2 is small enough) so that (x, y) + (h, k) ∈ A, we consider

Sh,k = [f(x + h, y + k)− f(x, y + k)]− [f(x + h, y)− f(x, y)] . (2.11)

We next define the function gk

gk(u) = f(u, y + k)− f(u, y) ,

and note that Sh,k can be written in terms of gk as

Sh,k = gk(x + h)− gk(x) .

It follows from the mean value theorem that

Sh,k =
dgk

dx
(ck,h) · h for some ch,k ∈ (x, x + h) .

Hence,

Sh,k =
[
∂f

∂x
(ch,k, y + k)− ∂f

∂x
(ch,k, y)

]
· h

=
∂

∂y

∂f

∂x
(ch,k, dh,k) · hk for some dh,k ∈ (y, y + k) ,

where we have once again employed the mean value theorem.
Since Sh,k is symmetric with respect to both h, k and x, y, by interchanging the two

middle terms in (2.11), we can derive in the identical fashion that

Sh,k =
∂

∂x

∂f

∂y
(c̃h,k, d̃h,k) · hk .

55



Shkoller 2 DIFFERENTIABLE MAPPINGS OF RN TO RM

Equating these two formulas (and dividing by hk), we see that

lim
(h,k)→(0,0)

∂2f

∂y∂x
(ch,k, dh,k) = lim

(h,k)→(0,0)

∂2f

∂x∂y
(c̃h,k, d̃h,k) .

Since the second derivatives of f are assumed continuous, we find that

∂2f

∂y∂x
(x, y) =

∂2f

∂x∂y
(x, y) .

By a simple induction argument, it can be proven that all the higher-order derivatives
of f are symmetric as well. Furthermore, the case that f : A ⊂ Rn → Rm can now be
treated also, by applying the above definition to each component of f .

The symmetry of second derivatives represents a fundamental property not encountered
in single variable calculus. Examples may shed some light on this.

Example 2.45. Suppose that f : R3 → R is given by f(x, y, z) = exy sinx + x2y4 cos2 z.
Then

∂f

∂x
= exy cos c + yexy sinx + 2xy4 cos2 z ,

∂f

∂y
= xexy sinx + 4x2y3 cos2 z ,

and
∂2f

∂y∂x
= xexy cos x + exy sinx + xyexy sinx + 8xy3 cos2 z

which is the same as ∂2f
∂x∂y .

Example 2.46. Now suppose that f(x, y) = yx2 cos(y2). Then

∂f

∂x
= 2xy cos(y2) ,

∂2f

∂y∂x
= 2x cos(y2)− 4xy2 sin(y2) ,

while
∂f

∂y
= x2 cos(y2)− 2y2x2 sin(y2) ,

∂2f

∂x∂y
= 2x cos(y2)− 4xy2 sin(y2) .

As usual, we denote by A ⊂ Rn an open subset.
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Definition 2.47 (k-times continuously differentiable functions). A function f : A ⊂ Rn →
Rm is said to be of class Ck, k ≥ 0 integer, and denoted by

f ∈ Ck(A; Rm) ,

if the first k derivatives of f exist and are continuous on A. When f is real-valued, we often
write f ∈ Ck(A) instead of f ∈ Ck(A; R). In this case, we write f ∈ C∞(A; Rm).

Definition 2.48 (k-times continuously differentiable and uniformly bounded functions).
When the closed set A is compact, we write

f ∈ Ck(A; Rm)

to denote the k-times continuously differentiable and uniformly bounded functions on the
compact set A. Similarly, C∞(A; Rm) denotes the space of smooth, uniformly bounded
functions on A.

Definition 2.49 (Smooth functions). A function f : A ⊂ Rn → Rmis called smooth or of
class C∞ if f ∈ Ck(A; Rm) for all k ≥ 0.

2.11 Taylor’s theorem

We continue to let A ⊂ Rn denote an open set.

Theorem 2.50 (Taylor’s theorem). Suppose that f ∈ Ck(A), and let x, y ∈ A such that
the segment joining x and y is in A. Then there exists a point c on that segment such that

f(y) = f(x) +
k−1∑
l=1

1
l!

Dlf(x) (y − x, . . . , y − x)︸ ︷︷ ︸
l vectors

+
1
k!

Dkf(c) (y − x, . . . , y − x)︸ ︷︷ ︸
k vectors

,

where Dlf(x)(y − x, . . . , y − x) denotes Dlf(x) as l-linear map applied to the l-tuple
(y − x, . . . , y − x).

In coordinates,

Dlf(x)(y − x, . . . , y − x) =
n∑

i1,...,il=1

∂lf

∂xi1 · · · ∂xil

(yi1 − xi1) · · · (yil − xil)

Setting y = x + h, we can write the Taylor formula as

f(x + h) = f(x) + Df(x) · h + · · ·+ 1
(k − 1)!

Dk−1f(x) · (h, ..., h) + Rk−1(x, h) ,
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where Rk−1(x, h) is the remainder and satisfies

Rk−1(x, h)
‖h‖k−1

→ 0 as h → 0 .

Lagrange’s form of the remainder is given by

Rk−1(x, h) =
n∑

i1,...,ik=1

∫ 1

0

(1− t)k−1

(k − 1)!
∂kf

∂xi1 · · · ∂xik

(x + th)hi1 · · · hik dt .

In the course of proving this theorem, we will see other equivalent forms of the remainder
term. Note well that this theorem is a generalization of the mean value theorem (which is
the case that k = 1), and of Taylor’s theorem for functions of one variable that is normally
covered in lower-division calculus courses.

From Taylor’s theorem, we are led to form the Taylor series of f about the point x0:

∞∑
l=0

Dlf(x0) (x− x0, . . . , x− x0)︸ ︷︷ ︸
l vectors

where we use the usual convention that D0f(x0) = f(x0). This series does not always
converge, even when f is C∞; when the series does converge in some neighborhood of x0,
we say the function f is real analytic at x0. To show that a function f is real analytic (and
hence that the Taylor series converges in a neighborhood of x0) amounts to showing that
the remainder term

1
k!

Dkf(c)(y − x, . . . , y − x) → 0 as k →∞ .

This then is used to establish the usual power series expressions for sinx, cos x, expx, and
so forth.

Example 2.51. Suppose that f ∈ C∞([a, b]) for every closed interval ([a, b]) ⊂ R, and that
there exists a constant M such that |f (l)(x)| ≤ M for all integers l ≥ 0 and for all x ∈ [a, b].
Then f is real analytic at each x0 and for |x− x0| < 1,

f(x) =
∞∑
l=0

f (l)(x0)
l!

(x− x0)l .

To see this, we estimate the remainder:∣∣∣∣∣f (l)(x0)
l!

(x− x0)l

∣∣∣∣∣ ≤ M |x− x0|l

l!
→ 0 as l →∞ .
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Example 2.52. The function

f(x) =
{

0, x ≤ 0
e−1/x, x > 0

is C∞(R) but is not real analytic. To see that f is indeed smooth, we must check its behavior
at x = 0. Notice that for x > 0,

f ′(x) =
1
x2

e−1/x

which converges to zero as x → 0+ (by l’Hospital’s rule for example (and a change of
variables y = 1/x)). Similarly, we see that f (l)(x) → 0 as x → 0+. Thus, f (l)(0) = 0 and
f ∈ C l(R) for each l ≥ 0, so that f ∈ C∞(R). But since each derivative vanishes at x = 0,
the Taylor series is identically zero in a neighborhood of x = 0, which is not equal to f . It
follows that f is not real analytic.

Example 2.53. Let us compute the second-order Taylor expansion for f(x, y) = sin(x+2y)
in a neighborhood of (x, y) = (0, 0). We first compute f(0, 0) = 0. Next, we have that

∂f

∂x
(0, 0) = cos(0 + 2 · 0) = 1 ,

∂f

∂y
(0, 0) = 2 cos(0 + 2 · 0) = 2 ,

∂2f

∂2x
(0, 0) = 0 ,

∂2f

∂2y
(0, 0) = 0 ,

∂2f

∂x∂y
(0, 0) = 0 .

It follows for (h, k) close to (0, 0), we have that

f(h, k) = h + 2k + R2(h, k)

where
R2(h, k)
|(h, k)|2

→ 0 as (h, k) → (0, 0) .

Proof of Theorem 2.50. By the chain-rule,

d

dt
f(x + th) =

n∑
i=1

∂f

∂xi
(x + th)hi ,

and thanks to the fundamental theorem of calculus, we write

f(x + h)− f(x) =
∫ 1

0

n∑
i=1

∂f

∂xi
(x + th)hi dt .
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The idea is to employ our integration-by-parts Theorem 1.39 to the right-hand side of this
expression. Using linearity of the integral and the fact that − d

dt(1− t) = 1, we write∫ 1

0

n∑
i=1

∂f

∂xi
(x + th)hi dt = −

n∑
i=1

∫ 1

0

d

dt
(1− t)

∂f

∂xi
(x + th)hi dt

and integrate-by-parts with respect to d
dt :∫ 1

0

n∑
i=1

∂f

∂xi
(x + th)hi dt =

n∑
i,j=1

∫ 1

0
(1− t)

∂2f

∂xi∂xj
(x + th)hihj dt +

∂f

∂xi
(x)hi .

We have thus shown that

f(x + h)− f(x) =
n∑

i=1

∂f

∂xi
(x)hi + R1(x, h) ,

where

R1(x, h) =
n∑

i,j=1

∫ 1

0
(1− t)

∂2f

∂xi∂xj
(x + th)hihj dt . (2.12)

Since each component of h satisfies |hi| ≤ ‖h‖, we have that

|R1(x, h)| ≤ ‖h‖2

 n∑
i,j=1

∫ 1

0
(1− t)

∣∣∣∣ ∂2f

∂xi∂xj
(x + th)

∣∣∣∣ dt

 ≤ ‖h‖2M1

for some constant M1 > 0, since the integrand is bounded on the segment between x and
x + h.

If instead of estimating R1, we continue the analysis by further integration-by-parts in
(2.12), then we find that

R1(x, h) =
n∑

i,j,k=1

∫ 1

0

(1− t)2

2
∂3f

∂xi∂xj∂xk
(x + th)hihjhkdt +

1
2

∂2f

∂xi∂xj
(x)hihj ,

from which it follows that

f(x + h) = f(x) +
n∑

i=1

∂f

∂xi
(x)hi +

1
2

n∑
i,j=1

∂2f

∂xi∂xj
(x)hihj + R2(x, h) ,

where

R2(x, h) =
n∑

i,j,k=1

∫ 1

0

(1− t)2

2
∂3f

∂xi∂xj∂xk
(x + th)hihjhkdt .
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Now the integrand is again bounded on the segment between x and x + h so for some
constant M2 > 0, we see that

|R2(x, h)| ≤ ‖h‖3M2 .

In particular, note that |R2(x, h)|/‖h‖2 ≤ ‖h‖M2 → 0 as h → 0.
The other form of the remainder Rk−1(x, h) which generalizes the mean value theorem,

arises from the so-called second mean value theorem of integrals: there exists cin(a, b) such
that ∫ b

a
u(t)v(t)dt = u(c)

∫ b

a
v(t)dt

provided that u and v are continuous on [a, b] and v ≥ 0. Returning to the Lagrange form
of R1(x, h), we see that

R1(x, h) =
n∑

i,j=1

∫ 1

0
(1− t)

∂2f

∂xi∂xj
(x + th)hihj dt

=
n∑

i,j=1

∫ 1

0
(1− t)D2f(x + th)(h, h) dt

=
1
2
D2f(c)(h, h) ,

where (1 − t) played the role of v(t) and D2f played the role of u(t) in the second mean
value theorem for integrals stated above. Here c is some point on the segment between x
and y = x + h.

One can proceed via induction to obtain the formula for the remainder at all orders,
and this then completes the proof.

Remark 2.54. In fact, with more effort, a stronger theorem can be established: if f ∈
Ck(A), then

f(x + h) = f(x) +
k∑

l=1

1
l!

Dlf(x) · (h, ..., h)︸ ︷︷ ︸
k copies

+Rk(x, h) ,

where Rk(x, h)/‖h‖k → 0 as h → 0, h ∈ R. We leave the proof to the interested student.

2.12 The minima and maxima of functions f : Rn → R

Taylor’s Theorem 2.50 provides a convenient method to determine the local maxima and
minima of functions f : A ⊂ R → R, and this method involves the second derivative D2f ,
the Hessian matrix.

Recall that for real-valued functions of a single variable f : R → R, if f has a local max-
imum or minimum at a point x0 and if f differentiable at x0, then f ′(x0) = 0; furthermore,
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if f is twice continuously differentiable and if f ′′(x0) < 0, then x0 is a local maximum and
if f ′′(x0) > 0, it is a local minimum.

We want to generalize these facts to functions f : A ⊂ Rn → R.

Definition 2.55 (Local minimum/maximum). Let f : A ⊂ Rn → R with A open. If there
is a neighborhood U of x0 ∈ A on which f(x0) is a maximum, i.e., f(x0) ≥ f(x) for all
x ∈ U , we say that f(x0) is a local maximum for f . Similarly, we can define the local
minimum of f . A point is called extreme if it is either a local minimum or a local maximum
for f . A point x0 is a critical point if f is differentiable at x0 and Df(x0) = 0.

Theorem 2.56 (Critical Point). If f : A ⊂ Rn → R is differentiable, A is open, and if
x0 ∈ A is an extreme point of f , then Df(x0) = 0; that is, x0 is a critical point.

Corollary 2.57 (Multidimensional version of Rolle’s theorem). With B = {x ∈ Rn :
‖x‖ ≤ 1}, let f : B ⊂ Rn → R be continuous and let f be differentiable on int(B), the
interior of B. Suppose that f(x) = 0 for all x ∈ ∂B, the boundary of B. Then there is a
point x0 ∈ int(B) for which Df(x0) = 0.

Proof. If f is identically zero, then the corollary trivially holds, so suppose that f(x) 6= 0
for some x ∈ int(B). Then f attains a maximum or a minimum at some interior point,
since B is compact. Thus there is an extreme point x0 ∈ int(B) and hence by Theorem
2.56, Df(x0) = 0.

The proof of Theorem 2.56 (given below) is the same as for functions of one variable,
and the result is intuitively obvious since at an extreme point, the graph of f must have
a horizontal tangent plane. However, if x0 is a critical point of a function f , this is not
sufficient to guarantee that x0 is also extreme. A simple example is the cubic polynomial
f(x) = x3; since f ′(0) = 0, x0 = 0 is a critical point, but x3 > 0 for x > 0 and x3 < 0 for
x < 0, so 0 is not an extreme point. Another example is f(x, y) = y2 − x2, for which the
origin (0, 0) is a critical point since Df = (∂f/∂x, ∂f/∂y) = (−2x, 2y). However, in any
neighborhood of the origin, we can find points where f > 0 and points where f < 0. A
critical point which is not a local extreme value is called a saddle point (see Figure below).

Returning to the simple case of f : A ⊂ R → R, we have already reviewed that f(x0)
is a local maximum if f ′(x0) = 0 and f ′′(x0) < 0. Recall that the geometric picture for
f ′′(x0) < 0 is that f is concave downwards. To generalize this concept to f : A ⊂ Rn → R,
we define the Hessian of f at x0.

Definition 2.58 (Hessian). If f ∈ C2(A), the Hessian of f at x0 ∈ A is D2f(x0). In the
standard basis of Rn, it is the n × n matrix of partial derivatives ∂2f/∂xi∂xj. We view
D2f(x0) as a bilinear map taking Rn × Rn to R.
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Definition 2.59. A bilinear form B : Rn×Rn → R is called positive definite if B(x, x) > 0
for all x 6= 0 in Rn and is positive semi-definite if B(x, x) ≥ 0 for all x ∈ Rn. Nega-
tive definite and negative semi-definite bilinear maps are defined similarly, by reversing the
inequality.

Theorem 2.60. [Criteria for local maximum/minimum]

(i) If f ∈ C2(A) and x0 ∈ A is a critical point of f such that the Hessian D2f(x0) is
negative definite, then f has a local maximum at x0.

(ii) If f ∈ C2(A) has a local maximum at x0 ∈ A, then the Hessian D2f(x0) is negative
semi-definite.

The case of a local minimum for f at x0 is obtained by changing negative to positive. (Note
that a minimum of f is a maximum of −f .)

When f : A ⊂ R2 → R, the Hessian is a 2 × 2 matrix, and in this case it is easy to
determine when the Hessian is positive definite (or negative definite).

Lemma 2.61. The matrix (
a b
b d

)
is positive definite iff a > 0 and ad− b2 > 0.

Proof. Positive definite means that

(
x y

) (
a b
b d

) (
x
y

)
> 0 if (x, y) 6= (0, 0)

which reduces to the condition ax2 + 2bxy + dy2 > 0. First, suppose that this inequality
holds for all (x, y) 6= (0, 0). Setting x = 1 and y = 0 shows that a > 0. Setting y = 1, we
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see that ax2 + 2bx + d > 0 for all x. This function is a parabola with a minimum (since
a > 0) at 2ax + 2b = 0, that is, x = −b/a. Hence

a

(
− b

a

)2

+ 2b

(
− b

a

)
+ d > 0

so that ad− b2 > 0. The converse is proved in the same way.

Similarly, we have that

Lemma 2.62. The matrix (
a b
b d

)
is negative definite iff a < 0 and ad− b2 > 0.

Example 2.63. Consider the function f(x, y) = x2 − xy + y2. This function is smooth so

−2

−1

0

1

2 −2
−1

0
1

2

0

2

4

6

8

10

12

YX

we can compute partial derivatives:

∂f

∂x
(x, y) = 2x− y ,

∂f

∂y
(x, y) = −x + 2y ,

∂2f

∂x2
(x, y) = 2 ,

∂2f

∂y2
(x, y) = 2 ,

∂2f

∂x∂y
(x, y) = −1 .

The critical point satisfies 2x = y and x = 2y and hence must be at (0, 0). The Hessian of
f at (0, 0) is given by

D2f(0, 0) =
(

2 −1
−1 2

)
.
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Since the conditions of Lemma 2.61 are satisfied, then D2f(0, 0) is positive definite so that
(0, 0) is a local minimum.

Note that we can compute the eigenvalues λi and eigenvectors wi of the Hessian satis-
fying:

D2f(0, 0) · wi = λi wi for i = 1, 2 .

We find that

λ1 = 1 and w1 =

−
√

2
2

−
√

2
2

 ,

and

λ2 = 3 and w2 =

−
√

2
2

√
2

2

 .

The geometric significance of the Hessian follows from the fact that the eigenvectors w1

and w2 are the two principle directions of curvature for the graph(f), while the eigenvalues
λ1 = 1 and λ2 = 3 are the two principle curvatures. If both eigenvalues are positive at the
critical point x0, then x0 is a local minimum, while if both eigenvalues are negative, then
we have a local maximum. If one eigenvalue is positive and the other is negative, then x0

is a saddle point.

Proof of Theorem 2.56. Suppose for the sake of contradiction that Df(x0) 6= 0. In this
case, there exists x ∈ Rn such that Df(x0) · x 6= 0 and for concreteness, we suppose that
for some c > 0, Df(x0) · x = c.

Then, we can choose δ > 0 sufficiently small so that whenever ‖h‖ < δ,

‖f(x0 + h)− f(x0)−Df(x0) · h‖ ≤
c

2‖x‖
‖h‖ .

We choose λ > 0 so that λ‖x‖ < δ so that

‖f(x0 + λx)− f(x0)−Df(x0) · λx‖ ≤ λc

2
.

Since Df(x0) · λx = λc,

‖f(x0 + λx)− f(x0)− λc‖ ≤ λc

2
.

Thus,
f(x0 + λx)− f(x0) > 0

so f(x0) cannot be a local maximum.
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Similarly, by considering −(λx) instead of λx, we see that

‖f(x0 − λx)− f(x0) + λc‖ ≤ λc

2

from which we conclude that

f(x0 − λx)− f(x0) < 0 ,

so that f(x0) cannot be a local minimum, and hence if Df(x0) 6= 0, then f(x0) cannot be
an extreme point.

Example 2.64. Consider f(x, y) = x3 − 3x2 + y2. We compute

∂f

∂x
= 3x2 − 6x = 0 ,

∂f

∂y
= 2y = 0 ,

so that the critical points are at (0, 0) and (2, 0). Since

D2f =
(

6x− 6 0
0 2

)
,

we see that

D2f(0, 0) =
(
−6 0
0 2

)
and D2f(2, 0) =

(
6 0
0 2

)
It follows that (2, 0) is a local minimum and (0, 0) is a saddle point.
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Proof of Theorem 2.60. (i) If D2f(x0) is negative definite, then D2f(x0)(x, x) < 0 for all
x 6= 0 in Rn. As D2f(x0)(x, x) is blinear in x and since linear maps are continuous, it
follows that D2f(x0)(x, x) is a continuous function of x ∈ Rn.

Let S = {x ∈ Rn | ‖x‖ = 1}. S is compact, so there is some point x̄ ∈ S such that

D2f(x0)(x, x) ≤ D2f(x0)(x̄, x̄) < 0 for all x ∈ S .

Now, let 0 < ε = D2f(x0)(x̄, x̄). Then, since D2f(x0) is bilinear,

‖x‖2D2f(x0)
(

x

‖x‖
,

x

‖x‖

)
≤ −ε‖x‖2 ∀x ∈ Rn, x 6= 0 ,

where we have used the fact that x/‖x‖ ∈ S whenever x 6= 0. Since D2f is continuous on
A, there exists δ > 0 such that ‖y − x0‖ < δ implies that ‖D2f(y)−D2f(x0)‖ < ε̄/2. Here
δ > 0 is chosen so small so as to ensure that y ∈ A. Also, for each x ∈ A, D2f(x) is an n×n

matrix so its norm is given by ‖D2f(x)‖2 =
∑n

i,j=1

[
∂2f

∂xi∂xj
(x)

]2
. Since |D2f(x0)(x, x)| ≤

C‖D2f(x0)‖‖x‖2 for some constant C > 0 depending only on n, we set ε = Cε̄.
Now, by Taylor’s Theorem 2.50, there is a point c on the segment between x0 and y in

A such that

f(y)− f(x0) = Df(x0) · (y − x) +
1
2
D2f(c)(y − x0, y − x0) .

We write

D2f(c)(y−x0, y−x0) = D2f(x0)(y−x0, y−x0)+D2f(c)(y−x0, y−x0)−D2f(x0)(y−x0, y−x0)

Since ‖D2f(c)−D2f(x0)‖ < ε/2, we see that

D2f(c)(y − x0, y − x0) ≤ D2f(x0)(y − x0, y − x0)

+ |D2f(c)(y − x0, y − x0)−D2f(x0)(y − x0, y − x0)|

≤ −ε‖y − x0‖2 +
ε

2
‖y − x0‖2

= − ε

2
‖y − x0‖2 .

Since Df(x0) = 0, we find that

f(y)− f(x0) =
1
2
D2f(c)(y − x0, y − x0) ≤ − ε

4
‖y − x0‖2 < 0 .

It follows that f(y) ≤ f(x0) for all points y such that ‖y − x0‖ < δ, and so f has a local
maximum at x0.
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(ii) For the sake of contradiction, suppose that f has a local maximum at x0 and that
D2f(x0)(x, x) > 0 for some x ∈ Rn. We define g(t) = −f(x0 + tx). Since f is defined in a
neighborhood of x0, then g is defined in a neighborhood of t = 0. By the chain-rule,

g′(t) =
n∑

i=1

∂f

∂xi
(x0 + tx)xi and g′′(t) =

n∑
i,j=1

∂2f

∂xi∂xj
(x0 + tx)xixj ,

so that
g′(0) = Df(x0) · x = 0 , and g′′(0) = −D2f(x0)(x, x) < 0 .

By part (i), g has a local maximum at t = 0, so that for |t| < δ, g(t) < g(0) for t 6= 0. This,
in turn, implies that f(x0 + tx) > f(x0) for |t| < δ so that f does not have a local maximum
at x0, and we have reached a contradiction. Thus, D2f(x0)(x, x) ≤ 0 for all x ∈ Rn.

As can be seen from this proof, Theorem 2.60 only guarantees semi-definiteness of the
Hessian at a local minimum and maximum, and the question that was asked in class was
what type of function has a local minimum (for example) at x0 for which D2f(x0)(x, x) = 0
for some x ∈ Rn. The geometric interpretation of the Hessian provides the answer, for
suppose that we have a function f(x, y) which has curvature 0 in one direction and positive
curvature in another direction. The function f(x, y) = x2 does the job:

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
0

0.2

0.4

0.6

0.8

1

2.13 Exercises

Problem 2.1. Compute Df(x) for f : R → R with f(x) = x sinx.
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Problem 2.2. Suppose that f : Rn → Rm and g : Rn → Rm are both differentiable. Prove
that D(f + g) = Df + Dg.

Problem 2.3. Let A = {(x1, x2) ∈ R2 | 0 ≤ x1 ≤ 1 , x2 = 0}. This is not an open set.
Prove that the conclusion of Theorem 2.5 is false for this set A. (Hint. Take, for example,f :
R2 → R with f(x1, x2) = 0 and show that both Df(x1, x2) = 0 and Df(x1, x2)·(w1, w2) = w2

satisfy the definition of derivative.)

Problem 2.4. Let f : Rn → Rm and suppose that there is a constant M such that for
x ∈ Rn, ‖f(x)‖ ≤ M‖x‖2. Prove that f is differentiable at x0 = 0 and that Df(x0) = 0.

Problem 2.5. If f : R → R and |f(x)| ≤ |x|, must Df(0) = 0?

Problem 2.6. Does the mean value theorem (Theorem 2.9) apply to the function f(x) =
√

x
on [0, 1]? Does it apply to g(x) =

√
|x| on [−1, 1]?

Problem 2.7. Is the Lipschitz condition (2.4) strong enough to guarantee differentiability?

Problem 2.8. Let f(x) = x sin(1/x) for x 6= 0 and f(0) = 0. Investigate the continuity
and differentiability of f(x) at x = 0.

Problem 2.9. Use Theorem 2.22 to show that

f(x, y) =

{
(xy)2√
x2+y2

, (x, y) 6= (0, 0),

0, (x, y) = (0, 0) .

is differentiable at (x, y) = (0, 0).

Problem 2.10. Let f(x, y) = xy√
x2+y2

. Is f(x, y) differentiable at (x, y) = (0, 0) if f(0, 0) =

0?

Problem 2.11. Find the unit normal to the surface x2−y2 +xyz = 1 at the point (1, 0, 1).

Problem 2.12. In what direction is f(x, y) = ex2y increasing the fastest?

Problem 2.13. Prove l’Hospital’s rule: if f ′, g′ exist at x0, g′(x0) 6= 0, and if f(x0) = 0 =
g(x0), then

lim
x→x0

f(x)
g(x)

=
f ′(x0)
g′(x0)

.

Problem 2.14. Using Problem 2.13, evaluate

(a) limx→0
sin x

x .

(b) limx→0
ex−1

x .
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Problem 2.15. Let f : A ⊂ Rn → R be differentiable with A convex and suppose that
‖ grad f(x)‖ ≤ M for x ∈ A. Prove that

|f(x)− f(y)| ≤ M‖x− y‖ for x, y ∈ A .

Do you think that this is true if A is not convex?

Problem 2.16. Let

f(x) =
{

x2 sin
(

1
x

)
, x ∈ (−1, 0) ∪ (0, 1) ,

0 , x = 0 .

How can you apply Taylor’s theorem to f about the point x = 0?

Problem 2.17. Find the Taylor series representation about x = 0 for f(x) = log(1 − x),
x ∈ (−1, 1) and show that this series expansion equal f(x) for each x ∈ (−1, 1). Also, show
that this series converges uniformly to f on all closed subintervals of (−1, 1).

Problem 2.18. Verify that if the conditions in Example 2.51 are met then we can differ-
entiate the Taylor series term by term to obtain f ′(x).

Problem 2.19. Investigate the nature of the critical point (0, 0) of f(x, y) = x2 + 2xy +
y2 + 6.

Problem 2.20. Determine the nature of the critical point (0, 0) of f(x, y) = x3 + 2xy2 −
y4 + x2 + 3xy + y2 + 10.

3 Inverse and Implicit Function Theorems

Given a system of linear equations,

a11x1 + · · · + a1nxn = y1

· · ·
· · ·
· · ·

an1x1 + · · · + annxn = y1

the vector (x1, . . ., xn) of unknowns can be solved for, whenever the matrix A = (aij) is
non-singular, i.e. detA 6= 0. The question that we would like to examine is the following:
given a system of nonlinear equations

f1(x1, ..., xn) = y1

· ·
· ·
· ·
fn(x1, ..., xn) = yn

,
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under what conditions can we solve for the vector (x1, . . ., xn) of unknowns? Here, f should
be viewed as the mapping f : Rn → Rn and the object that plays the role of det A for the
linear system is the Jacobian determinant of f :

det Df(x) = det


∂f1

∂x1
· · · ∂f1

∂xn

· ·
· ·
· ·

∂fn

∂x1
· · · ∂fn

∂xn

 .

It turns out that whenever detDf(x) 6= 0, we might indeed be able to solve the vector
equation f(x) = y for x. The inverse function theorem will provide us with the necessary
conditions for such a solution to exist. On the other hand, if we write F (x, y) = f(x)− y,
then we may wish to find the pair (x, y) which solves F (x, y) = 0 with y an implicit function
of x, and it is the implicit function theorem which describes those circumstances when such
an implicit solution exists.

3.1 The space of continuous functions

Let A ⊂ Rn and let V denote the set of functions f : A → Rm. Then V is a vector space,
the zero element is the function f(x) = 0 for all x ∈ A, and (f + g)(x) = f(x) + g(x),
(λf)(x) = λf(x) for each λ ∈ R, f, g ∈ V. We let

C(A; Rm) = {f : A → Rm | f is continuous} .

Then C(A; Rm) is also a vector space since the sum of two continuous functions is continuous,
and for each λ ∈ R and f ∈ C(A; Rm), λf ∈ C(A; Rm).

Next, let Cb(A; Rm denote the vector subspace of C(A; Rm) consisting of bounded func-
tions:

Cb(A; Rm) = {f ∈ C(A; Rm) | ‖f‖ ≤ M}
for some constant M < ∞. In the case that A is closed and compact, then C(A; Rm) =
Cb(A; Rm).

Definition 3.1 (Norm on Cb(A; Rm)). For f ∈ Cb(A; Rm), let

‖f‖Cb(A;Rm) = sup
x∈A

‖f(x)‖

which exists since f is bounded. The real number ‖f‖Cb(A;Rm) is called the norm of f .

The norm ‖f‖Cb(A;Rm) is what Rosenlicht, Chapter 4, refers to as the largest distance
supx∈A d(f(x), 0) from f(x) to the origin 0. It is a measure of the size of f , just as ‖x‖ is a
measure of the size of the vector x ∈ Rn. Note that ‖f‖Cb(A;Rm) ≤ M iff |f(x)| ≤ M for all
x ∈ A.
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Theorem 3.2. The function f 7→ ‖f‖Cb(A;Rm) satisfies the properties of a norm:

(i) ‖f‖Cb(A;Rm) ≥ 0 and ‖f‖Cb(A;Rm) = 0 iff f = 0;

(ii) ‖αf‖Cb(A;Rm) = |α|‖f‖Cb(A;Rm) for all α ∈ R, f ∈ Cb(A; Rm);

(iii) ‖f + g‖Cb(A;Rm) ≤ ‖f‖Cb(A;Rm) + ‖g‖Cb(A;Rm) (triangle inequality).

Given two functions f, g ∈ Cb(A; Rm),

‖f − g‖Cb(A;Rm)

measures the difference between these two functions. According to (i) of Theorem 3.2, f = g
iff ‖f − g‖Cb(A;Rm) = 0.

Definition 3.3 (Convergence in Cb(A; Rm)). Given a sequence {fn} in Cb(A; Rm), we say

fn → f in Cb(A; Rm) if lim
n→∞

‖fn − f‖Cb(A;Rm) = 0 .

When A is compact, this convergence is the same as uniform convergence of fn → f .
When a metric space is endowed with a norm, the way that Cb(A; Rm) is, there is a

special name for this space.

Definition 3.4 (Banach Space). A normed vector space which is complete is called a Banach
space. Every Cauchy sequence in a Banach space X converges to a limit in X.

As is established in the second theorem of Rosenlicht, Chapter 4, Section 6, the space
Cb(A; Rm) is a complete metric space, meaning that all Cauchy sequences converge. We
state this as a theorem.

Theorem 3.5. The normed vector space Cb(A; Rm) is a Banach space.

Example 3.6. Let B = {f ∈ C([0, 1]; R) | f(x) > 0 ∀x ∈ [0, 1]}. We will prove that B is
an open set in C([0, 1]; R. By definition, for any f ∈ B, we must produce an ε > 0 which is
sufficiently small so that {g ∈ C([0, 1]; R) | ‖f − g‖C([0,1];R)} < ε. Since [0, 1] is compact, f
has a minimum value, say m, at some point of [0, 1]. Thus f(x) ≥ m > 0 for all x ∈ [0, 1].
Let ε = m/2. Then if ‖f − g‖C([0,1];R) < ε, then for any x ∈ [0, 1], |f(x)− g(x)| < ε = m/2.
Hence g(x) ≥ m/2, so g ∈ B.

Example 3.7. The closure of the set B in the above example is B = {f ∈ C([0, 1]; R) | f(x) ≥
0 ∀x ∈ [0, 1]}. The set B is closed because if fn(x) ≥ 0 and fn → f uniformly on [0, 1],
then f(x) ≥ 0 for all x ∈ [0, 1]. To show that B is indeed the closure of B, we must show
that for every f ∈ B, there is a sequence of functions fn in B such that fn → f uniformly.
The sequence fn is then chosen to be fn = f + 1/n.
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Example 3.8. Suppose that we have a sequence of functions fn in Cb(A; Rm) and that

‖fn − f‖Cb(A;Rm) ≤ rn , where
∞∑

n=1

rn converges .

Then fn converges to some f in Cb(A; Rm). Indeed, this follows by an application of the
triangle inequality, since

‖fn − fn+k‖Cb(A;Rm) ≤ ‖fn − fn+1‖Cb(A;Rm) + ‖fn+1 − fn+2‖Cb(A;Rm)

+ · · ·+ ‖fn+k−1 − fn+k‖Cb(A;Rm)

≤ rn + rn+1 + · · ·+ rn+k .

Since
∑∞

n=1 rn converges, then limn→∞
∑n+k

l=n rl = 0. Hence {fn} is a Cauchy sequence,
and hence converges to some f in Cb(A; Rm) by Theorem 3.5.

3.2 Contraction mapping theorem

Theorem 3.9 (Contraction Mapping Principle). Let T : Cb(A; Rm) → Cb(A; Rm) be a
given mapping such that there exists a constant λ with 0 ≤ λ < 1 and such that

‖T (f)− T (g)‖Cb(A;Rm) ≤ λ‖f − g‖Cb(A;Rm) ∀f, g ∈ Cb(A; Rm) .

Then T (is continuous and) has a unique fixed point; that is, there exists a unique element
f0 ∈ Cb(A; Rm) such that T (f0) = f0.

In fact, the theorem is valid for any complete metric space, and not just Cb(A; Rm).
In such a general metric space, the condition on T would be d(T (f), T (g)) ≤ λd(f, g).
Such a map is called a contraction as it shrinks distances between two functions f and g
by a factor λ < 1. The method of proof is called successive approximations or sometimes
Newton’s method. We are search for the fixed point f0 for which T (f0) = f0, so the method
begins with some guess: f ∈ Cb(A; Rm). Then we form the sequence

f, T (f), T 2(f) = T (T (f)), T 3(f) = T (T (T (f))), . . .

Remarkaby, this sequence is Cauchy with respect to the norm on Cb(A; Rm), and hence
converges to some limit function in Cb(A; Rm) which necessarily is the fixed-point we were
after. This method of successive approximations is constructive, and is immensely useful
in many numerical algorithms designed to solve nonlinear equations. One successively
computes the elements of the approximating sequence Tn(f), and if by some luck, the
fixed-point is obtained at some finite n < ∞, then the sequence “stops.”
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3.3 Proof of the Contraction Mapping Principle

In the event that the previous section skipped, we will give a proof of the contraction
mapping theorem in a slightly more general setting.

Theorem 3.10. Let X denote a complete metric space and let T : X → X be a contraction:
d(T (f), T (g)) ≤ λ d(f, g) for all f, g ∈ X, and 0 ≤ λ < 1 a fixed constant. Then T is
continuous and has a unique fixed-point.

Proof. Uniform continuity of T follows immediately from the contraction property of T ;
namely for any ε > 0, let δ = ε/λ, so that d(f, g) < δ implies that d(T (f), T (g)) < λδ = ε.

Next, let f0 ∈ X and set f1 = T (f0), f2 = T (f1), ..., fn+1 = T (fn) = Tn+1(f0). We
claim that fn is a Cauchy sequence in X. Since

d(fn+1, fn) = d(T (fn), T (fn−1))
≤ λd(fn, fn−1)
= λd(T (fn−1), T (fn−2))

≤ λ2d(fn−1, fn−2)
·
·
·
≤ λnd(f1, f0) = λnd(T (f0), f0) ,

it follows that

d(fn, fn+k) ≤ d(fn, fn+1) + d(fn+1, fn+2) + · · ·+ d(fn+k−1, fn+k)

≤ (λn + λn+1 + · · ·+ λn+k−1)d(T (f0), f0) .

Because λ < 1,
∑∞

l=1 λn is a convergent geometric series, so given ε > 0, there is an N
such that n ≥ N implies (λn +λn+1 + · · ·+λn+k−1) < ε/d(T (f0), f0). Hence n ≥ N implies
that d(fn, fn+k) < ε. Thus fn is a Cauchy sequence, and by completeness of X, fn → f for
some f ∈ X.

It remains to prove that T (f) = f as asserted. Since fn → f in X and T : X → X is
continuous, we see that

T (f) = lim
n→∞

T (fn) .

On the other hand, since T (fn) = fn+1,

T (f) = lim
n→∞

T (fn) = lim
n→∞

fn+1 = f .
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To see that f is the unique fixed-point of T , suppose that T (f) = f and T (g) = g. Then

d(f, g) = d(T (f), T (g)) ≤ λ d(f, g) .

If d(f, g) 6= 0, then 1 ≤ λ which contradicts our assumption. It then must be that d(f, g) = 0
or f = g.

3.4 The fundamental theorem of ODEs

One of the most important applications of the Contraction Mapping Theorem (CMT) is the
construction of solutions to ordinary differential equations (ODEs). In lower-division ODE
courses such at MAT22B, explicit solutions are constructed for certain linear differential
equations; for example, the solution to dx

dt = ax(t) is given by x(t) = Ceat and the solution
to d2x

dt2
+ a2x = 0 is x(t) = C cos(kt− ω) for some constants C and ω. For nonlinear ODEs,

it is generally not possible to construct explicit solutions, so a natural question is if these
equations always have solutions? If so, are these solutions unique? If so, do the solutions
exists for all time (t can be thought of as time in this context) or do they have a finite-time
”blowup,” meaning that the solution becomes unbounded in finite time.

Example 3.11. Consider the nonlinear equation dx
dt = x2 for t > 0 and x(0) = 1. We

can directly integrate to find the solution: we write dx/x2 = 1 so that −1/x = t + C
and x(t) = −1/(t + C). To find the constant C, we use the initial condition, so that
1 = x(0) = −1/C and C = −1. Thus, x(t) = 1/(t− 1) and x(t) → −∞ as t → 1 – that is,
x(t) blows-up in finite time, and x(1) is not defined.

As this example demonstrates, even in one-dimension, it is generally not possible to find
a solution to nonlinear ODEs which exists for all time t > 0; rather, there is usually a small
time interval of existence on which we have a differentiable solution.

Consider the system of ODEs

dy

dt
(t) = F (y(t), t) for t > 0 , (3.1a)

y = y0 for t = 0 . (3.1b)

One can think of the variable t as “time”, and the solution t 7→ y(t) is a curve in Rn. Here
y(t) = (y1(t), y2(t), ..., yn(t)) is a time-dependent n-vector modeling the state of the system
at time t.

The evolution equation (3.1a) defines the so-called dynamical system (or the dynamics)
for t > 0, while the initial condition (3.1b) prescribes the initial state of the system at t = 0,
in this case, we call that initial state y0. We are now ready to state the main existence and
uniqueness theorem. In the theorem we write

B(y0, r) = {z ∈ Rn | ‖y0 − z‖ ≤ r} .
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Theorem 3.12 (Fundamental theorem of ODEs). Let F : B(y0, r) × [−a, a] → Rn be a
continuous mapping, and let

M = sup
y∈B(y0,r),t∈[−a,a]

‖F (y, t)‖ .

Suppose there is a constant K such that

‖F (y1, t)− F (y2, t)‖ ≤ K‖y1 − y2‖ ∀y1, y2 ∈ B(y0, r), t ∈ [−a, a] . (3.2)

Let
b < min{a,

r

M
,

1
K
} .

Then there is a unique continuously differentiable map y : [−b, b] → B(y0, r) ⊂ Rn which is
the solution of equation (3.1).

Remark 3.13. The condition (3.2) is called the Lipschitz condition, and K is called the
Lipschitz constant. Whenever F is continuously differentiable on B(y0, r) with bounds that
are uniform in t, the Lipschitz condition is satisfied. To see this, let us use DyF (y, t) to
denote the derivative of F with respect to y. Then if

‖DyF (y, t) · z‖ ≤ K‖z‖ ∀ z ∈ Rn , t ∈ [−a, a] , y ∈ B(y0, r) ,

then (3.2) holds. The chain-rule verifies this claim:

d

ds
F (z + s(y − z), t) = DyF (z + s(y − z), t) · (y − z) ,

so integrating between s = 0 and s = 1,

F (y, t)− F (z, t) =
∫ 1

0
DyF (z + s(y − z), t) · (y − z)ds .

Taking absolute values then yields the result. Thus, whenever F is of class C1, we are
guaranteed to satisfy the conditions of Theorem 3.12.

By the fundamental theorem of calculus, equation (3.1) is equivalent to the integral
equation

y(t) = y0 +
∫ t

0
F (y(s), s)ds . (3.3)

We will establish existence of the method of successive approximations: Guess y1(t) such
that y1(0) = y0, for example y1(t) = y0. Then set

yn(t) = y0 +
∫ t

0
F (yn−1(s), s)ds .

The objective is then to show that as n → ∞, yn(t) converges to a (unique) solution (3.3)
and hence (3.1).
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Proof. Consider C([−b, b]; Rn) which is a complete metric space. (Note that C([−b, b]; Rn) =
Cb([−b, b]; Rn) since [−b, b] is compact.) Let

Y = {y ∈ C([−b, b]; Rn) | y(0) = y0 and y(t) ∈ B(y0, r)} .

Then Y is closed, and since a closed subset of a complete metric space is complete, Y is a
complete metric space. We will apply the contraction mapping theorem to the space Y.

Define the map T by

T (y)(t) = y0 +
∫ t

0
F (y(s), s)ds t ∈ (−b, b) .

We must show that T (y) is in Y whenever y ∈ Y. To see that T (y) is a continuous function,
let tn be a sequence such that tn → t as n →∞; we show that limn→∞ T (y)(tn) = T (y)(t).
But

lim
n→∞

T (y)(tn) = lim
n→∞

∫ tn

0
F (y(s), s)ds

= lim
n→∞

∫ b

−b
1[0,tn](s)F (y(s), s)ds ,

where 1[0,tn](s) = 1 if s ∈ [0, tn] and 1[0,tn](s) = 0 otherwise. Since

1[0,tn](s)F (y(s), s) → 1[0,t](s)F (y(s), s) uniformly on [−b, b] ,

then

lim
n→∞

∫ tn

0
F (y(s), s)ds =

∫ t

0
F (y(s), s)ds

by Theorem 1.32 so this establishes continuity; hence T (y) ∈ C([−b, b]; Rn). Furthermore
we see that T (y)(0) = y0. Thus, it remains to show that T (y) ∈ B(y0, r) which is the same
as showing that ‖T (y)− y0‖ ≤ r. Now, for all t ∈ [−b, b],

‖T (y)(t)− y0‖ =
∥∥∥∥∫ t

0
F (y(s), s)ds

∥∥∥∥ ≤ ∫ t

0
‖F (y(s), s)‖ds ≤ b ·M < r ,

since b < r/M . This shows that T (y) ∈ Y and that T : Y → Y.

77



Shkoller 3 INVERSE AND IMPLICIT FUNCTION THEOREMS

It remains to show that T : Y → Y is a contraction mapping. For y1, y2 ∈ Y,

sup
t∈[−b,b]

‖T (y1)(t)− T (y2)(t)‖ = sup
t∈[−b,b]

∥∥∥∥∫ t

0
[F (y1(s), s)− F (y2(s), s)] ds

∥∥∥∥
≤ sup

t∈[−b,b]

∫ t

0
‖F (y1(s), s)− F (y2(s), s)‖ds

≤ sup
t∈[−b,b]

∫ t

0
K‖y1(s)− y2(s)‖ds

≤ K b sup
t∈[−b,b]

‖y1(t)− y(t)‖ .

Since K b < 1, letting λ = k B, we see that d(T (y1), T (y2)) ≤ λd(y1, y2) so that T is a
contraction, and hence there exists a unique fixed-point y ∈ Y such that T (y) = y.

Example 3.14. Let us find b for the ODE in Example 3.11, dy/dt = y2, y(0) = 1. At first,
we will keep the time-interval [−a, a] in the statement of the theorem unspecified, and we
will also keep the radius r unspecified. We compute M :

M = sup{|F (y, t)| : t ∈ [−a, a] , y ∈ B(1, r)}
= sup{y2 : y ∈ B(1, r)}
= (1 + r)2 .

Hence r/M = r/(1 + r)2. Also DyF (y, t) = ∂F/∂y(y, t) = 2y, so

K = sup{2|y| : y ∈ B(1, r)} = 2(1 + r) .

Since F does not explicitly depend on t, a is not involved in the continuity criterion, so we
an choose it to be large enough that it does not alter the value of b. We let a = 1000. Then,
according to the FTODE, we must choose

b < min
{

r

(1 + r)2
,

1
2(1 + r)

}
.

The largest value of b occurs for r = 1, for which we find that t ∈ [0, b] for b < 1/4. Thus,
the theorem does not provide the optimal time of existence given by t ∈ [0, 1), which we
found by directly solving for y(t) = 1/(1− t). On the other hand if we take t = 1/4 we see
that y(1/4) = 1/(3/4) = 4/3, and we can apply the theorem again, this time with t = 1/4
playing the role of initial time, and 4/3 playing the role of initial condition. This allows us
to continue the solution for t < 1, but we cannot go past t = 1.
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3.5 Inverse function theorem

By definition, if f : Rn → Rn is differentiable at x and detDf(x) 6= 0, then Df(x) is a
linear isomorphism, meaning that Df(x) is an invertible matrix. The geometric picture
here, is that f : Rn → Rn is some nonlinear function, and at the point x ∈ Rn, the best
linear approximation to f , given by Df(x), is invertible, so perhaps (at least locally near
x) the nonlinear function f is also invertible.

To gain intuition, consider a function f : R → R, draw the graph(f) by plotting the
points y = f(x), and then rotate the graph by 90o. This rotated picture, now viewed as a
function over the y-axis, is a graph only if over each point y the curve has only one value.
If f is of class C1, and if f ′(x0) 6= 0, then f is invertible (one-to-one) in a small enough
neighborhood of x0. Geometrically, this is very clear, since f ′(x0) 6= 0, means that f has a
non-zero slope at x0 and hence a nonzero slope nearby x0.

We will focus on local invertibility of the function f , meaning the invertibility of f(x)
for x near x0 and for y near y0 = f(x0). Suppose that the inverse function exists so that
x = f−1(y). In this case, we can employ the chain-rule to compute the derivative of f−1.
Observe that

f−1(f(x)) = x .

Then
d(f−1 ◦ f)

dx
(x) =

df−1

dy
(f(x))

∂f

∂x
(x) = 1 ,

so that
df−1

dy

∣∣∣∣
y=f(x)

=
1

df/dx
.

To actually verify that f−1 is differentiable requires a good deal more care.
If f ′(x0) = 0, then f may or may not be invertible near x0; in the above figure, f is

not invertible near x1, but f(x) = x3 is invertible near x0 = 0. In the case that f ′(x0) = 0,
further analysis is required to determine invertibility. Furthermore, the condition f ′(x0) 6= 0
does not guarantee that we can solve f(x) = y for all y. For example, looking at the above
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figure, we see that there does not exist any point x such that f(x) = y1. Even when
solutions to exist, they need not be unique. The above figure shows that f(x0) = f(x2).
Thus, we can only expect to have a unique solution in a sufficiently small neighborhood of
x0

In general, f is only invertible near f(x0), that is, only for y close to f(x0) can we
uniquely find some x near x0 such that f(x) = y.

Theorem 3.15 (Inverse Function Theorem). Let A ⊂ Rn denote an open set, and let
f ∈ C1(A; Rn). Suppose that for x0 ∈ A, det Df(x0) 6= 0. Then there exists a neighborhood
U of x0 in A and an open neighborhood W of f(x0) such that f(U) = W , and f has a C1

inverse f−1 : W → U .
Moreover, for y ∈ W , x = f−1(y), we have

Df−1(y) = [Df(x)]−1 ,

the inverse of Df(x) meaning the inverse of the linear mapping (corresponding to inverting
the matrix).

Whenever the inverse function f−1 of f exists, we can uniquely solve the nonlinear
equation f(x) = y ∈ W with some x ∈ U .

Example 3.16. Consider the equations (x4 + y4)/x = u(x, y), sinx+cos y = v(x, y). Near
which points (x, y) can we solve for (x, y) in terms of (u, v)?

Here the nonlinear functions are given by f1(x, y) = (x4 + y4)/x and f2(x, y) = sinx +
cos y and we have

f1(x, y) = u

f2(x, y) = v .

The domain of the function f = (f1, f2) can be taken to be A = {(x, y) ∈ R2 | x 6= 0}. We
compute the 2× 2 matrix Df(x, y):

Df(x, y) =


∂f1

∂x
∂f1

∂y

∂f2

∂x
∂f2

∂y

 =

3x4−y4

x2
4y3

x

cos x − sin y

 ,

so that

det Df(x, y) =
sin y

x2
(y4 − 3x4)− 4y3

x
cos x .

According to the inverse function theorem, we can solve for (x, y) in a neighborhood of points
(x0, y0) ∈ A where det Df(x0, y0) 6= 0. Thus, we are looking for points (x0, y0) such that
x0 6= 0 and sin y(y4 − 3x4) 6= 4xy3 cos x. In general, one cannot explicitly solve for all such
points, but, for example, (x0, y0) = (π/2, π/2) does the job.
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Example 3.17. Let f = (f1, f2) with f1(x, y) = ex cos y and f2(x, y) = ex sin y. Then f is
invertible locally, but not globally.

First, we compute

Df(x, y) =

ex cos y −ex sin y

ex sin y ex cos y


so that

det Df(x, y) = e2x(cos2 y + sin2 y) = e2x 6= 0 .

Then, using the inverse function theorem, we see that f is locally invertible. On the other
hand, f cannot be globally invertible on R2 since f is not a one-to-one map; in particular,

f1(x, y + 2π) = f1(x, y) , f2(x, y + 2π) = f2(x, y) .

Note that for functions f : R → R, if f is differentiable and if f ′(x) 6= 0 for all x ∈ R,
then f ′(x) is either strictly positive or strictly negative (since f ′(x) satisfies the intermediate
value theorem; hence, f must be globally one-to-one as f is always increasing or decreasing.
An example is f = tanh : R → R is one such example. Example 3.17 shows that this need
not be the case in R2.

Before proceeding with the proof of the inverse function theorem, we will need an im-
portant technical lemma.

Definition 3.18. Let L(Rn; Rn) denote the set of all n× n matrices (or linear maps from
Rn to Rn, and let GL(Rn; Rn) denote the subset of all invertible n×n matrices (or invertible
linear maps of Rn to Rn). Thus,

GL(Rn; Rn) = {B ∈ L(Rn; Rn) | det B 6= 0} .

The space GL(Rn; Rn) is called the general linear group.

Definition 3.19. Let Inv : GL(Rn; Rn) → GL(Rn; Rn) be the map that takes B ∈ GL(Rn; Rn)
to its inverse B−1, so that Inv(B) = B−1.

Lemma 3.20.

(i) GL(Rn; Rn) is an open subset of L(Rn; Rn);

(ii) Inv : GL(Rn; Rn) → GL(Rn; Rn) is a C∞ mapping.

Proof. (i) The determinant mapping det : Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R is an n-linear map (recall that

the determinant is linear in the rows of the matrix). Since multilinear maps are continuous,
the determinant map is continuous. Furthermore, just as we showed in Example 2.15,
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that the derivative of a linear map is equal to the linear map, so too is the derivative of a
multilinear map the multilinear map itself, so that the determinant map is also differentiable.
Because the set consisting of the singleton {0} is closed, we have that det−1({0}) is closed.
Hence L(Rn; Rn)\{0} is open, and this open set is exactly equal to GL(Rn; Rn).

(ii) Given B ∈ GL(Rn; Rn), the inverse matrix B−1 = (det B)−1[Cof(B)]T , where
Cof(B)]T denotes the transpose of the matrix of cofactors of the matrix B, where

Cof(B)ij = (−1)i+jMij ,

where Mij is the determinant of the minor matrix formed by removing the ith row and jth
column from B. As the function B 7→ (detB)−1 is differentiable, it suffices to show that
the mapping Cof : L(Rn; Rn) → L(Rn; Rn), which takes a matrix to its cofactor, is C∞.
Since each component of the cofactor matrix is just the determinant mapping, and as the
determinant mapping is C∞, being a multi-linear map, we see that Cof is C∞ as well.

Proof of Theorem 3.15.
Step 1. Simplification to the case that Df(x0) = Id. In this step, we show that we
can reduce the analysis to the special case that Df(x0) is the identity matrix, Id.

Let T = Df(x0); then T−1 exists and by the chain-rule,

D(T−1 ◦ f)(x0) = DT−1(f(x0))Df(x0) = T−1 Df(x0) = Id .

Now if the theorem is true for T−1 ◦ f , then the theorem is also true for f , for if g is an
inverse of for T−1 ◦ f , then the inverse for f is g ◦ T−1.

It is convenient to make one further simplification; namely, we can assume that x0 = 0
and f(x0) = 0. Suppose that we have established the theorem for this particular case that
x0 = 0 and f(x0) = 0; to see how the general case is obtained from this special case, let
h(x) = f(x + x0) − f(x0). Then h(0) = 0 and Dh(0) = Df(x0), so Dh(0) is invertible.
Then if h has an inverse near x = 0, the required inverse for f near x0 is given by

f−1(y) = h−1(y − f(x0)) + x0 .

Thus we have shown that it suffices to consider x0 = 0, f(x0) = 0, and Df(x0) = Id.

Step 2. Local inverse for f via the contraction mapping theorem. With the
simplification of Step 1, we wish to find an open neighborhood Y of f(x0) = 0 and an open
neighborhood X of x0 = 0 such that given any y ∈ Y, there exists a unique x ∈ X with
f(x) = y. In order to do so, we consider the function

gy(x) = y + x− f(x) , (y is a parameter for the function g) .

The idea is to show that g is a contraction mapping, in which case there exists a unique
fixed-point x ∈ X such that gy(x) = x which is the same as x = y + x− f(x) which is the
same as y = f(x), which is desired.
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We begin by first defining the function g(x) as

g(x) = x− f(x) , (3.4)

which implies that g(0) = 0 and that

Dg(0) = 0 .

Since f is assumed to be C1 in a neighborhood of x0 = 0, then g is also C1 on this
neighborhood, and hence Dg is continuous on this neighborhood; therefore, for r > 0 small
and with ‖x‖ < r, ‖Dgi(x)‖ < 1/(2

√
n) where g = (g1, ..., gn). By the mean value theorem,

Theorem 2.38, given x ∈ B(0, r) = {x ∈ Rn : ‖x‖ < r}, there are points c1, c2, ..., cn such
that

gi(x) = gi(x)− gi(0) = Dgi(ci) · (x− 0) = Dgi(ci) · x i = 1, ..., n .

We have that

‖g(x)‖2 =
n∑

i=1

|gi(x)|2 =
n∑

i=1

|Dgi(ci) · x|2 ≤
n∑

i=1

‖Dgi(ci)‖2 ‖x‖2 <
‖x‖2

4
<

r2

4
,

so that ‖g(x)‖ < r/2. Hence, we have shown that

g : B(0, r) → B(0, r/2) .

Next, let y ∈ B(0, r/2); then, gy : B(0, r) → B(0, r). To see this, note that for ‖y‖ ≤ r/2
and x ∈ B(0, r), we have that

‖gy(x)‖ = ‖y + g(x)‖ ≤ ‖y‖+ ‖g(x)‖ <
r

2
+

r

2
= r .

Now let x1 and x2 be any two points in B(0, r). Then ‖gy(x1)−gy(x2)‖ = ‖g(x1)−g(x2)‖
and by the mean value theorem,

‖g(x1)− g(x2)‖ ≤
1
2
‖x1 − x2‖ .

This shows that gy is a contraction on the complete metric space B(0, r), and hence that
f(x) = y for any y ∈ B(0, r/2). This means that f has an inverse f−1 : B(0, r/2) ⊂ Rn →
B(0, r) ⊂ Rn.

Step 3. f−1 is continuous. Let x1, x2 ∈ B(0, r). From (3.4), we see that

‖x1 − x2‖ ≤ ‖f(x1)− f(x2)‖+ ‖g(x1)− g(x2)‖ ≤ ‖f(x1)− f(x2)‖+
1
2
‖x1 − x2‖ ,
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so that ‖x1 − x2‖ ≤ 2‖f(x1)− f(x2)‖. It follows that if y1, y2 ∈ B(0, r/2), then

‖f−1(y1)− f−1(y2)‖ ≤ 2‖y1 − y2‖ ,

and hence f−1 is continuous.

Step 4. f−1 is differentiable on B(0, r/2) for r > 0 sufficiently small. By assumption
Df(0) is invertible, Df : A ⊂ Rn → Rn is continuous, and by Lemma 3.20, GL(Rn; Rn)
is open in L(Rn; Rn). Thus, for x in a sufficiently small neighborhood about 0, [Df(x)]−1

exists If this neighborhood does not contain B(0, r/2), then we take r > 0 even smaller.
Hence, we can assume that that [Df(x)]−1 exists for all x ∈ B(0, r/2). Moreover, since Df
is continuous and since inversion is a smooth operator according to Lemma 3.20, we see
that [Df(x)]−1 is continuous on B(0, r/2) and hence uniformly continuous so that

‖[Df(x)]−1 · y‖ ≤ M‖y‖ ∀ x ∈ B(0, r/2), y ∈ Rn .

Now for y1, y2 ∈ B(0, r/2), x1 = f−1(y1) and x2 = f−1(y2),

‖f−1(y1)− f−1(y2)− [Df(x2)]−1 · (y1 − y2)‖
‖y1 − y2‖

=
‖x1 − x2 − [Df(x2)]−1 · (f(x1)− f(x2))‖

‖f(x1)− f(x2)‖

=
[

‖x1 − x2

‖f(x1)− f(x2)‖

]
‖[Df(x2)]−1 · {Df(x2) · (x1 − x2)− (f(x1)− f(x2))} ‖

‖f(x1)− f(x2)‖
.

Since ‖x1 − x2‖ ≤ 2‖f(x1)− f(x2)‖ together with ‖[Df(x)]−1 · y‖ ≤ M‖y‖ shows that

‖f−1(y1)− f−1(y2)− [Df(x2)]−1 · (y1 − y2)‖
‖y1 − y2‖

≤ 2M
‖Df(x2) · (x1 − x2)− (f(x1)− f(x2))‖

‖x2 − x2‖
,

which converges as ‖x1 − x2‖ → 0 by the assumed differentiability of f at x2. This shows
that f−1 is differentiable at y2 with derivative

[Df(x2)]−1 = [Df(f−1(y2))]−1 .

To complete the proof, we set W = B(0, r/2) and U = f−1(W ).

3.6 Exercises

Problem 3.1. (a) Let u(x, y) = x2−y2, v(x, y) = 2xy. Show that the map (x, y) 7→ (u, v)
is locally invertible at all points (x, y) 6= (0, 0).
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(b) Compute ∂x
∂u , ∂x

∂v , ∂y
∂u , ∂y

∂v

Problem 3.2. Let f(x) = x + 2x2 sin(1/x) for x 6= 0 and f(0) = 0. Show that f ′(0) 6= 0,
but that f is not locally invertible near x = 0. Why does this not contradict Theorem 3.15?

Problem 3.3. Let L : Rn → Rn denote a linear isomorphism (invertible linear transfor-
mation), and let f(x) = L(x) + g(x), where ‖g(x)‖ ≤ M‖x‖2 and f ∈ C1(Rn; Rn). Show
that f is locally invertible near x = 0.

Problem 3.4. Investigate whether the system

u(x, y, z) = x + xyz

v(x, y, z) = y + xy

w(x, y, z) = z + 2x + 3z2

can be solved for (x, y, z) in terms of (u, v, w) near (x, y, z) = (0, 0, 0).

Problem 3.5. Solve dy
dt = 1 + y2, y(0) = 0 by the method of successive approximations. Is

y(t) defined for all t ≥ 0? Compute the b in Theorem 3.12 for this equation.

Problem 3.6. Show that dy
dt =

√
y, y(0) = 0 has two solutions:

y(t) = 0 and y(t) =
{

0, t ≤ 0
t2

4 , t > 0
.

Does this contradict Theorem 3.12?

Problem 3.7. Consider the equation dy
dt = tey2

sin y, y(0) = 1. Obtain an estimate on the
time interval for which y(t) is defined.

Problem 3.8. Let B denote an n× n matrix and consider the linear system

dy

dt
= B · y(t), y(t) ∈ Rn

Show that a solution is

y(t) = etBy(0) , where eB =
∞∑

n=0

Bn

n!
.

The solution exists for all t ≥ 0; can this fact be derived from Theorem 3.12?
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