Selected Homework Solutions
Math 125B: Winter 2013

9.1.8

e At y =0, we have
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It follows that Of/0x(0,0) doesn’t exist if p > 1/2, and is 0 if p < 1/2.

e By the quotient and chain rules, the partial derivative of f with respect
to x exists if (z,y) # (0,0) and is given by
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if p < 1/2, and in that case df/0x is continuous at (0,0).

e Thus, df/0x is continuous at (0,0) whenever it exists at (0,0).



9.2.4

e The differential matrix of G at (x,y) is
y/x Inx

[dG(z, y)] = e’ e
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e The differential matrix of G at (1, ) is

e The best affine approximation of G at (1, ) is given by

T(xz,y) = (0,e",0)
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9.2.10
e The function has first-order partial derivatives at every point of R2.
e For (z,y) # (0,0) the partial derivatives exist by the quotient rule.

e For (z,y) = (0,0), the partial derivatives exist since f(z,0) = = and
f(0,y) =0 for all z,y € R, so
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e The function is not differentiable at (0,0), even though it is continuous
at (0,0).

e To prove this, note that if f was differentiable at (0,0) with derivative
A then its differential matrix would be

4= (Foo.Zoo)-wo,

and the best linear approximation would be
f(0,0) + A(z,y) = .

e It follows that f is differentiable at (0,0) if and only if the limit that
defines the derivative,
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exists and is equal to 0.

e However, this limit doesn’t exist. For example, if we set x = rcos#,
y = rsiné, then
_ny
and we get different limits as » — 0 in the directions # = 0 (the limit
is 0) and # = 7/4 (the limit is —1/(2v/2)).
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9.3.8
e Define H : R? — R? by
H(s,t) = (x,y), xr=st, y=s-+t¢.

Its differential matrix is
[ 0x/Os Oxfot\ [t s
[dH (s, 2)] = ( dy/ds 0Oy/ot ) N ( 11 ) '
e We have G = F o H. Therefore, by the chain rule,

dG(s,t) = dF(z,y)dH (s,t).

o Writing F(z,y) = (fi(2,9), fo(2,y)) and G(s,t) = (g1(s,t), g2(s,1)),
we have the following differential matrices:
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o It follows that
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e The direct chain-rule calculation for g; goes like this:
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with the same computation for gs.



9.4.2

e The gradient of f is
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o At (1,1), we get
df(1,1) = (3,4).

e The direction in which f is increasing at the greatest rate is
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Similarly, f is decreasing at the greatest rate in the direction
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e The directional derivative of f is 0 in directions orthogonal to the gra-
dient. These directions are
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9.4.3

e The tangent vector to the curve v : R — R? at v(¢) is in the direction
dy(t) = (3¢%, —1/¢%,2¢*7?) .
e At t =1, we have
v(1) = (1,1,1), dvy(1) = (3,-1,2).

e The tangent line to the curve is the line though (1) in the direction
d~(1), which has the equation

(x,y,2) = (1,1,1) + ¢(3,—1,2)

or
r =1+ 3t, y=1-—t, z =1+ 2t.

e Alternatively, the unit tangent vector to the curve at (1,1,1) is

1
T=—(3,-1,2),
ﬂ( )

and a parametrization of the tangent line by arc-length s is

(z,y,2) = (1,1,1) + —(3,—1,2).
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