Problem Set 4: Additional questions Math 125B: Spring 2013

1. Suppose that $f_n, f : [a, b] \to \mathbb{R}$ are integrable functions and $f_n \to f$ as $n \to \infty$ uniformly on [a, b]. Let

$$F_n(x) = \int_a^x f_n(t) dt, \qquad F(x) = \int_a^x f(t) dt.$$

Prove that $F_n \to F$ uniformly on [a, b]. If $f_n \to f$ pointwise, does it follow that $F_n \to F$ pointwise?

2. Let $f_n : (a, b) \to \mathbb{R}$ be a sequence of differentiable functions whose derivatives $f'_n : (a, b) \to \mathbb{R}$ are integrable on (a, b). Suppose that $f_n \to f$ pointwise and $f'_n \to g$ uniformly on (a, b) as $n \to \infty$, where $f, g : (a, b) \to \mathbb{R}$ and g is continuous. Prove that f is differentiable in (a, b) with f' = g. Where do you need to use the continuity of g?

HINT. Show that the indefinite integrals of f'_n converge and use the fundamental theorem of calculus.